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A B S T R A C T  

 
 

In this paper, the problems of state estimation, tracking control and shape control in a micro-cantilever 
beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation 
of motion is converted into a set of ordinary differential equations by projection method. Observabillity 
of the system is proven and a state estimation system is designed using extended Kalman filter (EKF) 
algorithm. A tracking control system is designed to make a specific point of the beam follow a 
reference signal. The effect of mode selection to include in model on controller performance is also 
investigated. Based on the tracking controller a shape control algorithm is designed to form the shape 
of beam into a desired shape. The proposed algorithms are validated by numerical simulation and 
resulted in a promising performance. 
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1. INTRODUCTION    1 
 
MEMS systems have drawn growing attention in 
sensing and actuating fields, recently. Using 
electrostatic force is the most frequent actuating and 
sensing method in MEMS because of its simple 
structure, simple manufacturing and high efficiency. 
Microbeams are the most common structures that used 
in MEMS systems. They are the backbone of many 
MEMS devices, Younis [1]. The combination of the 
electrostatic actuation and microbeam structure has 
many applications in industrial and scientific fields like 
mass sensing systems, micro pressure sensors, micro 
flexible joints and ink injection printers as presented by 
Seoka [2], Kamisuki [3], Chu et al. [4], Hassanpour et 
al. [5], Takashi et al. [6] and Chau et al. [7], Gangi et al. 
[8].  

Some other works have considered dynamics of the 
system. Some papers were dedicated to deriving 
equation of motion for electrostatically actuated beams, 
while some others consider their vibration as Abdel-
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Rahman et al. [9], Brusa et al. [10], Batra [11], 
Mojahedi et al. [12], Abbasnejad et al. [13]. Pull-in 
instability also has drawn much attention in the 
literature. Numerous works are dedicated to predict 
pull-in voltage and its properties like Rezazadeh et al. 
[14], Ganji [15] and Lakard et al. [16]. 

The need for high performance control systems in 
order to control the motion of micro systems has 
emerged as the use of such systems is extended. Wang 
[17] designed a control system to suppress vibration in a 
cantilever beam by electrostatic force via a switching 
controller. Kharrat [18] proposed a controller for shape 
control of a microbeam. The beam is actuated by a 
substrate that is laid along the beam. The controller is 
designed based on linearization of the system equations. 
Kharrat, in another work designed a controller using 
pole-placement method [19]. Majority of works 
considering feedback control problem of 
electrostatically actuated mircosystems have used 
lumped parameters assumption to simplify equations of 
motion. Using this simplification, Vagia [20] designed a 
switching PID control. In another paper, he proposed a 
sliding mode control to handle nonlinearity and 
uncertainty in systems parameters [21].  

 

 

mailto:Salarieh@sharif.edu


F. Karami et al. / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 9, (September 2014)  1439-1448                             1440 
  

1V+

1V−2V −

2V +

 
Figure 1. An electrostatically actuated micro-cantilever 
 
 
 
In addition to electrostatic actuation, there are some 

works deal with vibration control of beams using piezo 
electric actuators. Optimal vibration control of beams 
using piezo electric actuation is presented by Kucuk et 
al. [22]. 

Shape control is an algorithm which made shape of a 
structure change into a specific one by means of 
actuators. Most common application of shape control in 
micro scale is in adaptive optic systems. 
Electrostatically actuated microsystems have wide 
applications in adaptive optic systems like deformable 
mirrors. Many studies are dedicated to fabrication and 
implementation of these systems as Huaet al. [23], 
Bonora [24], Cugata et al. [25], but controller design is 
not investigated widely. There are new trends in MEMS 
and Nano scale studies which focused on the effect of 
structure size in dynamics of small scale systems. The 
main scope of the paper is control and observer design 
for a micro scale system and authors tried to elaborate 
methods which can be used to control the shape of any 
micro structures. The modeling of Micro and Nano 
systems by nonclassic methods are investigated widely 
in the literature. For example, implementing of a simple 
regulator to suppress the vibration of a beam is 
presented in another work by the authors [26]. 

As mentioned before, works that dealt with 
controller design mainly used lumped parameter 
models. On the other hand, few works which used 
distributed parameter models include significant 
simplification of nonlinear nature of the excitation 
terms. Present work intends to avoid any significant 
simplifications and take the distributed parameters and 
nonlinearity into account to design a reliable and 
effective controller-observer system. The actuation term 
in the equation of motion that introduced significant 
nonlinearity into the equations is fully taken into 
account to avoid misunderstanding due to over 
simplification of equations. Using the developed 
comprehensive dynamic model, a control system is 
designed to ensure tracking of a reference signal for 
some points of the beam and based on the designed 
tracking control system an innovative shape control 
scheme is proposed to transform the microbeam into a 
desired shape. The main goal of this work is designing a 

nonlinear controller without any prominent 
simplification and linearization, and also proposing a 
new shape control algorithm. A state observation system 
is also designed to estimate the states which are needed 
in control system. Due to technological restrictions in 
micro scale, reliable estimation of the states is vital to 
control and stabilization tasks. This system should 
estimatethe states by the least measurements to fit limits 
of implementation and fabrication in micro scale. 
 
 
2. DYNAMIC MODEL 
 
The studied system is composed of a narrow, long and 
flexible cantilever beam that is subjected to electrostatic 
force via some electrodes. The actuators are modeled as 
separate electrodes. This configuration permits the use 
of multi input control algorithm. The electrostatic 
actuation is naturally unidirectional force and an 
actuator is only able to attract the beam not to drive it 
back. Thus, to exert force in two directions, actuators 
must be placed on both sides of the beam. It is necessary 
for control action that makes the beam move on both 
sides of its rest position. In Figure 1, the proposed 
combination is shown. Magnitude of the electrostatic 
force is obtained by the following Equations (1): 
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where ε, b and g  are vacuum permittivity, width of the 
beam and initial gap between the beam and the 
electrode, respectively. They are the characteristic 
function of the actuator effectiveness in spatial domain. 
This function weights the effect of electrostatic 
actuation on predetermined points of the beam. It is 
supposed that actuation only affects on the points 
located directly above or below the actuators. Therefore, 
the pulse function can be used for ψ. V is the applied 
voltage and w is the lateral displacement of the beam. 
The first equation pertains to actuators placed below the 
beam and the second equation to above actuators. The 
voltage of electrodes placed below the beam is denoted 
by V+ and the electrodes placed above the beam are 
denoted by V-. Since a pair of opposite electrodes plays 
as single bidirectional actuator with capability of 
attraction/repulsion, we have in every time onlyV+or V-, 
not both of them. Using Euler-Bernoulli model of beam 
and electrostatic actuation term of Equation (1) leads to 
the following equation as general equation of motion. 
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where, ρ, E, I and h  are density, effective modulus of 
elasticity, second moment of area and thickness of the 
beam, respectively. The right hand side of the above 
equation represents the structural model of the 
microbeam which in this works consists of Euler-
Bernoulli model of a micro-cantilever. In addition, the 
left side is the electrostatic actuation model which was 
explained in pervious paragraphs. It is assumed that 
there are N electrodes above and the same number 
below the beam. First and second series in actuation 
term present the electrodes at below and above the 
beam, respectively and each i index corresponds to one 
electrode. The equation can be written in dimensionless 
form as follows: 
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where: 
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The boundary conditions of the cantilever beam in 
dimensionless form are: 
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(5) 

The lateral displacement of the beam can be expressed 
in term of spatial part and a temporal part as following: 
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The spatial part of the answer must satisfy the boundary 
conditions of the problem. Usually, linear mode shapes 
of the beam are used as spatial part of the response. 
Galerkin projection method is used to convert the PDE 
equation of the system into a set of ODEs. Multiplying 
the PDE equation by the jth mode shape and equating to 
zero the integral of the resulted equation over the 
domain of problem which is the length of the beam 
here, leads to an ODE which is the equation of motion 
of the jth mode. For the jth mode shape, the Galerkin 
method yields: 
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(7)  

Integrating Equation (7) and exploiting orthogonality of 
the mode shapes result in: 
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which is dynamic equation of the jth mode. uj is the jth 
temporal term of the response.

ju&  is the derivative of  
with respect to time. The left hand side of the above 
equation presents linear part of Equation (2) for jth 
mode and the right hand consists of nonlinear terms 
which are resulted from the nonlinearity in electrostatic 
actuation term. Due to nonlinearity in Equation (2), the 
resulted ODEs are coupled to each other and each 
equation contains some temporal terms of the other 
modes. 
 
 
3. ESTIMATION ALGORITHM 
 
In this section, a state estimation system is designed. 
Due to restriction in using sensors in micro scale 
applications, it is necessary to estimate required states 
of the system by the least number of sensors. The beam 
has infinite degrees of freedom and direct measurement 
of the displacement needs infinite number of sensors 
around the beam that is obviously impossible. On the 
other hand, controller needs the states of the system to 
generate control signal, so using an estimation system 
with finite number of measurements is required. 

The first step for designing such a system is to check 
the observabillity of the system. In this paper, we use 
the first two modes for observer design. So, the 
dynamics that is used to prove observabillity consists of 
two first modes from ODEs derived in pervious section. 
Two first modes of the beam are included in the model; 
hence, the resulted system is called the reduced order 
model. These modes dominate the vibration of the beam 
but more modes can be used in the model in the same 
way. These two first modes of the system include four 
states which by notation of Equation (8) are u1, u2 and 
their time derivatives. In addition, five first terms of the 
Taylor expansion of actuation force is included in the 
model which is enough if the beam does not become 
very close to the pull-in instability region. If the 
working point of the system is very close to pull in 
limit, more terms must be included in the model. The 
state space model of such system is described as: 
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where: 
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aij's are obtained by integrating Equation (10) with 
respect to x for the first and the second modes. They are 
presented in Appendix B.  In Equation (11), it is 
assumed that only one electrode is active for actuating 
the system. This assumption is performed only for 
simplicity of calculation and in general the results 
obtained for observability is true for any number of 
actuators, because the form of the observability matrix 
does not depend on the number of electrostatic 
actuators. zis deflection of the beam that is measured by 
a sensor located at l1from the base of the beam. The 
states are all unknown and the measurement is only z. If 
matrix O defined in Equation (11) is full rank then the 
system will be locally observable, according to 
Besancon [27]. 
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where, Li
f(h) is the ith order Lie derivative of h with 

respect to f. For the system of Equation (10), vector   
becomes: 

1 1 1 2 1 2

1 1 2 2 1 4

1

2

( ) ( )
( ) ( )
l y l y
l y l y

P
P

φ φ
φ φ

+ 
 + Λ =
 
 
   

(12) 

where, P1 and P2 are polynomials in terms of y , φ1(l1)  
and , φ2(l1). O becomes: 
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where, Q1,Q2 ,Q3  andQ4 are polynomials in terms of y 
,φ1(l1)  and,φ2(l1) . Columns of O are independent from 
each other in general, so local observabillity of the 
system is proven. Qi and Pi polynomials are presented in 
Appendix A. Due to the fact that the system is highly 
nonlinear, a nonlinear estimator must apply. 
Deterministic nonlinear estimators such as extended 
Luenberger observer [25], Lyapunov based methods 
[27], or stochastic estimators like Kalman Filters are 
proposed to handle nonlinear observation problem. 
Draw backs of the deterministic estimators in the case 
of noisy measurements limit their applications in 
practice, so in this work we focus on stochastic 
methods. The most commonly used estimation system 

which has many applications in industrial plants is the 
Extended Kalman Filter (EKF). 

The noise of the measurement and nonlinearity in 
mathematical model of the system makes the EKF one 
of the best choices for the estimation system. 
Considering implementation practical aspects of 
estimation system, Discrete-time extended Kalman filter 
is used. In such algorithm, the dynamics of the system is 
modeled by much smaller solving steps than the 
estimation system. So, the system dynamics could be 
modeled as a continuous time system and the predict-
update and measurement as discrete time systems. The 
model of the system and measurements are represented 
as follows: 
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where, f and h are described in Equation (11) , xk=x(tk) ; 
w(t) and nk are noise of the process and noise of the 
measurement, respectively which are assumed to be 
white and Gaussian.tk is the time when the measurement 
is performed. The predict relations of EKF are as 
follows: 
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where, P is the estimated covariance matrix, F is 
Jacobian of the system which is calculated in Equation 
(17), and Q is the covariance of the process noise. The 
above equation is used between two successive 
measurements at times tk and tk+1 . The initial conditions 
for prediction and covariance equations and the Kalman 
gain are obtained by: 
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where,  K is the estimation or Kalman gain, R is the 
covariance of measurement noise, and I is the identity 
matrix, respectively. F and H are presented in 
Appendix.  
 
 
4. CONTROL SYSTEM 
 
4. 1. Tracking Control        The main goal of this 
subsection is designing a feedback control system for 
tracking control of desired points on a micro-cantilever 
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beam. The control system will be designed to locate 
some specific points of the beam at desired locations 
which are in the form of reference signal. Despite the 
pervious works which are done on this matter, the 
model of the system is continuous and has infinite 
degrees of freedom. The actuation term is also 
considered to be nonlinear. Configuration of the micro-
cantilever with two electrostatic actuators is depicted in 
Figure 1. Two first modes of the beam are included in 
the reduced order model. Number of modes and 
selection of suitable modes to accomplish control goals 
depend on the desired reference signal. Generally, more 
complex reference signal needs higher number of modes 
in controller and estimation model. In addition, the 
selected modes for the model must match the frequency 
of the desired reference signal. It is easier for the 
controller to follow a reference signal which has 
frequency near of its modes. The numbers of Taylor 
Expansion terms of the actuation forces taken into 
account are related to the beam deflection. If the beam 
comes close to the pull-in region, more terms of the 
Taylor series are required to proper approximation of 
displacement [1]. However, in the case of current work, 
due to assumption that the beam works far from pull in 
instability limit, we use only the first five terms for 
Taylor expansion of electrostatic force. The reference 
signals are chosen in order to avoid pull-in threshold; 
so, the actuation term can be approximated by its few 
first terms. If it is desired to track some points of the 
beam near or beyond the pull-in region, one must use 
more terms of the Taylor expansion in the controller 
model. The model of the system when the attracting 
electrodes are active becomes: 
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aij and bij are given in Appendix B. The method of 
designing the controller is based on feedback 
linearization. By this method, the nonlinearity of the 
system will be cancelled. The aim of the controller is to 
make the overall characteristic equation of the system as 
follows: 
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where, cij must be chosen in such a way that the resulted 
system of Equation (19) becomes exponentially stable. 
It means that Eigen values of the system have negative 
real parts. r1 and r2 are desired reference signals for the 

first and the second modes, respectively. Total 
amplitude of the reference signal is the weighted sum of 
r1 and r2 which is obtained as follows: 
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To convert Equation (21) into Equation (19) by means 
of control voltage, one can use the following control 
signal: 
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To convert Equation (21) into Equation (19) by means 
of control voltage, one can use the following control 
signal: 
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(22)  

Substituting Equation (23) into Equation (21) leads to 
Equation (19). By tuning cij coefficient in Equation (23), 
the performance of the controller can be improved. 

It must be noticed again that the force exerted by 
electrostatic actuation is unidirectional and an actuator 
cannot drive the beam back. To compensate this draw 
back, one can use another set of actuators on the other 
side of the beam. In Figure 1, such configuration is 
shown. V1+ and V1- works together as a bidirectional 
actuator just like V2+ and V2-. The model of the system, 
with actuators placed above the beam, i.e. the repulsive 
electrodes, is: 
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&&

 

(23) 

The coefficients of Equation (24) are the same as their 
counterparts in Equation (18) in magnitude but opposite 
in sign. The controller generates two sets of control 
signal based on the two models of Equations (18) and 
(24). The actuators are placed opposite to each other on 
the below and above the beam, so the signal that 
generates by the first and the second model has equal 
magnitude and opposite sign. A supervisor system 
checks signs for two pairs of actuators and choose the 
one with positive sign. The performance of the proposed 
system is demonstrated and compared with a linear 
controller in simulation section. 
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4. 2. Shape Control       In the next step, designing a 
shape control algorithm based on tracking control 
algorithm is considered. The aim of this algorithm is to 
create a desired shape in the beam by means of 
electrostatic actuation. The desired shape may be static 
or dynamic. Using the tracking control algorithm, some 
points of the beam can be located in desired positions. If 
adequate points are located in some proper location, the 
beam takes the form of the desired shape. The goal of 
the shape control algorithm is to find such proper places 
for certain number of points. These places are obtained 
in the form of desired reference signal for the tracking 
control system. Reference signal is found by minimizing 
an error function with respect to temporal terms of the 
response. The error function is defined as follows: 

( )
2

0

1 ( ) ( , )
2

l
E f x w t x dx= −∫  

(24) 

where, f(x) represents desired shape. One can calculate 
temporal terms of the response that minimize the 
proposed error function by differentiating the function 
with respect to uj's and setting it to zero. The number of 
resulting equations is the same as the number of needed 
temporal terms, so solving the obtained equations leads 
to the desired temporal parts. Using decomposition of 
temporal and spatial tems of the lateral displacement, 
Equation (26) shows one of these equations for jth 
mode. 

0
1

( ) ( ) ( ) ( ) 0

1

Nl

j i i
ij

E x f x u t x dx
u

j N

φ φ
=

∂  = − − = ∂  
< <

∑∫

 

(25)  

where, N is the number of modes. Orthogonality of the 
mode shapes cancels the term of response series except 
the one that has index of j. Solving the resulted equation 
for uj leads to the following equation which can be 
easily calculated. 

0

2

0

( ) ( )

( )

l

j
j l

j

x f x dx
u

x dx

φ

φ
= ∫

∫  
(26) 

The obtained temporal parts are constant because 
f(x) does not depend on time and the desired shape is 
static. Beam has infinite degree of freedoms and it is 
impossible to reach the exact desired shape by finite 
number of actuations. Theoretically, one should 
implement infinite actuators to have an exact shape 
control. The proposed algorithm minimizes the error 
between the desired and actual shape. By increasing 
number of the actuators the result will be improved. 
 
 
5. SIMULATION 
 
The designed control and estimation systems are 
validated by some simulations in this section. Five first 

modes of the beam are included in the plant model to 
investigate effects of unmodeled dynamics on the 
control system. The parameters which are used in 
simulations and a capacitive sensor are listed in Table 1. 
 
5. 1. Performance investigation of the estimation 
system        Performance of the state estimation system 
is investigated at the first step. The EKF algorithm 
includes dynamic equation of motion. The equation 
consists of two first modes of the beam.  

A constant voltage of 2 Volts is applied to the 
actuator and beam is released when its tip initially 
placed at 0.2 of the gap between the beam and the 
substrate. Estimation error for the tip of the beam 
displacement is shown in Figure 2. 
 
5. 2. Performance investigation of tracking 
control with two modes       Although the designed 
feedback control law ensures the stability of the reduced 
order system, there is no guarantee that the controller 
would stabilize the real system or has good tracking 
performance due to unmodeled dynamics and use of the 
reduced order system in the control loop. Therefore, 
performance of the real system must be investigated by 
simulation. 

The next simulation concerns tracking control 
algorithm which its aim in this simulation is locating the 
tip point of the beam at desired trajectory . 

The desired reference signal is a sinusoidal wave. 
Frequency of the signal is 0.1MHz and its amplitude is 
1 µm. Figure 3 shows tip displacement, desired tip 
displacement and tracking error. 
Figure 4 shows control voltage. The electrodes of 
actuators are located in 100 µm and 200 µm from the 
base of cantilever, respectively for V1+/V1- and V2+/V2- 
(see Figure 1). 

As it is shown in Figure 4, the error is in the order of 
10-8 which is one hundred times smaller than the desired 
deflection so the reference signal and the output of the 
system are overlapped and cannot be distinguished in 
the figure.  

The remained small oscillations are the effect of 
higher order modes which are truncated from the system 
model (i.e. the reduced order model) which is used to 
design controller but included in the plant model. To 
suppress this unfavorable vibration in the system 
response one should include more modes in designing 
the controller. 

As explained in controller design section, the pairs of 
V1+/V1- and V2+/V2- voltages work together to 
compensate restriction in direction of the electrostatic 
force. If the control algorithm requires force in reverse 
direction, another electrode in opposite side is activated 
and exerts force. It is clear in Figure 4 that when one 
electrode is exerting force the opposite one is inactive . 
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Figure 2. Estimation error of the tip displacement 

 
 

 
Figure 3. Deflection of the tip of the beam and tracking error 
of the tip for low frequency excitation 

 
 

 
Figure 4. Voltages of the Electrodes for tracking control of 
the beam 
 
 
5. 3. Tracking with Considering Higher Modes   
The effect of the mode contribution in constructing 
reference signal is investigated by some simulations. 
Here, we study a reduced model for controller design 
constructed by three modes. For a model with three 
modes due to the structure of controller which includes 
more modes, one should use more control inputs, 
otherwise the system will not be completely feedback 
linearizable. This results in using three pairs, i.e. six, of 
electrodes to produce the control signal in both repelling 
and attracting directions. The desired reference signal 
has the following form, and it is desired for tip of the 
beam to track it. 

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )tip tip tipr t r t l r t l r t lφ φ φ= + +  (27) 

Simulations just like ones illustrated in Figure 4 are 
performed to investigate the proper form of the 
reference signal with respect to frequency of the desired 
reference signal. The brief results of the simulations are 

reported in Table 2. As an example, the frequency of the 
reference signal is set to be 2.6 MHz which is near the 
linear natural frequency of the second mode. For 
comparing different combinations of the reference 
signal, the RMS value of tracking error and control 
voltages are listed in Table 2. The configuration that is 
used in simulations are the same as the preceding one 
except the number of electrode pairs, which is three 
here. V1+ and V1- are located at 100 µm from the base of 
the beam, V2+ and V2- at 200µm and V3+ and V3- at 
300µm, respectively. Plus indexes denote the electrodes 
that are located below the beam and minus ones denote 
the above electrodes. 

From Table 2, it is clear that choosing appropriate 
combination of reference signal has crucial effect on the 
control voltage. In the first raw of the table, the results 
for the case of r1(t)=1sin(2πvt) µm and r2=r3=0 ,v=2.6 
MHz, are depicted. The RMS of tracking error is 2.87e-
8 m which is reasonable but the voltages are much 
higher than the second row which is belongs to the case 
of r2(t)=1sin(2πvt) and r1=r3=0. In the second case, 
since the desired reference signal has frequency near the 
frequency of the second mode, the tracking performance 
has been achieved by less control effort which is crucial 
in MEMS applications. The last case is the most energy 
consuming case because in which r3(t)=1sin(2πvt) and 
r2=r3=0. From these simulations one could conclude that 
modes which have the nearest natural frequency to the 
desired reference signal frequency must have higher 
contribution in reference signal to avoid excessive 
control voltage. 
 
5. 4. Comparison of Proposed Model and 1 DOF 
Model       As mentioned in the introduction, some 
works are dedicated to design controller for one degree 
of freedom systems. In such systems, the whole body of 
the beam is modeled by one mass-spring model which 
significantly simplifies the design efforts. Also, in the 
case of cantilever beam, one could assume lumped mass 
and stiffness model and reduce the continuous 
parameter system into lumped parameter system. Using 
static deformation to approximate stiffness of the beam 
causes to overlook effect of higher modes. If the 
excitation of the beam remains in low frequencies, 
performance of the controller which is designed based 
on lumped parameter model will be reasonable. No 
surprisingly, increasing frequency of the input signal, 
spoils the output of the system due to model mismatch.  
Next simulations are dedicated to show the effect of 
using lumped parameter model to design controller. 
Two simulations are done to show the significance of 
modeling method on controller performance. In the first 
simulation, the frequency of input signal is about the 
natural frequency of the first mode and in the second 
one, it is ten time more. In both simulations, the 
controller is designed by the same method before 
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presented but using equivalent mass and stiffness in one 
differential equation. The used equation is as follows: 

( )

2

2
1
2eq eq

Vm u k u b
g u

ε+ =
−

&&
 

(28) 

Equivalent mass and stiffness are obtained using 
Rayleigh method. Parameters are the same as pervious 
simulations. The original model refers to the model 
which consists of five modes and developed in pervious 
sections. The reference signal is a sinusoidal wave with 
frequency of 250 KHz and amplitude of 1 µm and the 
second with 2000 KHz and same amplitude. As it is 
shown in Figure5, using reduced model leads to 
unfavorable performance of the controller in higher 
frequencies. The tracking error exceeds the amplitude of 
input signal due to phase difference between input and  
output. In low frequency input, as it was predicted, no 
significant difference occurred. 
 
5. 5. Shape Control       Remaining simulations are 
dedicated to shape control algorithm. The desired shape 
must satisfy boundary conditions of the beam. For 
instance cubic function has zero value and zero slopes at 
the origin which satisfies the boundary conditions of a 
cantilever beam. It is worthy to mention that making 
complex shapes with many inflection points needs 
higher number of actuators and more control effort. In 
current simulation, the desired shape has the form of a 
fifth order polynomial like f(x) =Ax5, which satisfies 
BCs of a cantilever beam and four electrodes, is used. 
The configuration of electrodes is the same as tracking 
control simulation in section 5.2. In Figure 6, the 
desired and actual shape of the beam and error between 
them are shown. The results show the steady state 
responses of the system. It is clear that the shape control 
system forms the beam to the desire shape with little 
deviation and the largest value of error is seen at the tip 
of the beam. In Figure 7, required control voltages are 
depicted. Because the desired shape is static, control 
voltages approaches to a constant value. Two electrodes 
(V1+ and V2-) have no contribution in the shape control, 

and it is obtained automatically from the controller 
output. 
 
 

 
Figure 5.Tracking error of beam’s tip position using original 
model and reduced model with reference signal of 250 KHz 
(top) and 2000 KHZ (bottom). 

 

 
Figure 6. Desired and actual shape of the beam after control 
(top) and difference between them (bottom) 

 

 
Figure 7.Control voltages for shape control 

 
 

TABLE 1. Parameters of the simulated microbeam and displacement sensor 
Beam length (µm) Thickness (µm) width (µm) Initial gap (µm) Effective Young’s modulus (GPa) Density 

300 3 20 2 160 2500 
Nominal measurement 

range (µm) 
Static resolution 

(% of measurement Range) 
Dynamic resolution 

(% of measurement Range) 
Linearity 

(% of measurement Range) 
20 0.001 0.002 3 

 
 

TABLE 2. RMS values of tracking error and control voltages for different combinations of reference signal 
Mode Contribution 1 2 3amplitude of r r r    Tracking Error(m) V1+(V) V1-(V) V2+(V) V2-(V) V3+(V) V3-(V) 

[ ]1 0 0mµ  2.8708e-008 116.2 115.1 192.2 191.5 270.8 263.6 

[ ]0 1 0mµ  2.5230e-008 73.7 58.9 65.0 51.9 50.1 61.8 
[ ]0 0 1 mµ  1.8621e-008 330.5 338.9 335.0 326.5 249.2 245.3 
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5. CONCLUSION 
 
In this research, the partial differential equation of 
motion of an electrostatically actuated micro-cantilever 
has been approximated by a set of nonlinear ordinary 
differential equations using Galerkin projection method. 
The ODEs are coupled because of nonlinearity in PDE. 
Observabillity of a model that consists of two modes 
have been proved and an estimation system based on the 
EKF method is designed. Then, a tracking control 
system is designed by feedback linearization method. 
By this controller selected points of the beam track 
reference signals. The relation of modes included in the 
model and frequency of the reference signal and its 
effect on the performance of the system are 
investigated. Simulation results show that the modes 
which are chosen to be used in model must be matched 
with the frequency of tracking signal. Based on the 
designed tracking control algorithm, a shape control 
algorithm is proposed that forms the beam into a desired 
shape. 
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APPENDIX B 
 

ija and
 ijb  are the same for the proposed observer and 

controller systems.  
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  چکیده
  

 
در این مقاله مسأله تخمین متغیرهاي حالت، کنترل رهگیري و کنترل شکل یک میکروتیر یکسردرگیر با تحریک غیرخطی 

اي سیستم با استفاده از روش  براي این منظور معادلات دیفرانسیل پاره. الکترواستاتیکی مورد بررسی قرار گرفته است
پذیري سیستم یک الگوریتم  پس از اثبات مشاهده. به یک ست از معادلات دیفرانسیل معمولی تبدیل شده استگالرکین 

تخمین متغیرهاي حالت براي آن بر اساس روش کالمن فیلتر توسعه یافته طراحی شده و از متغیرهاي تخمین زده شده، در 
ظور کنترل مسیر حرکت نقاط مورد نظر از تیر طراحی شده سیستم کنترل به من. سیستم کنترل مورد بحث استفاده شده است

کننده مسیر  در پایان با استفاده از کنترل. و اثر مودهاي منتخب براي کنترل بر روي این کنترل کننده مورد بررسی قرار گرفت
سازي عددي  از شبیه ها با استفاده مجموعه این الگوریتم. طراحی شده، یک الگوریتم کنترل شکل براي تیر پیشنهاد گردید

  .اند گذاري شده و نتایج مورد بحث قرار گرفته صحه
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