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A B S T R A C T  
 

In this paper, an optimal iterative decision rule for minimizing total cost in designing a sampling plan 
for machine replacement problem is presented using the approach of dynamic programming and 
Bayesian inferences. Cost of replacing the machine and cost of produced defectives have been 
considered in model. Concept of control threshold policy has been applied for decision making. If the 
probability of producing a defective was more than a control threshold then the machine is replaced 
otherwise its performenace will be accepted and continues its production. A numerical example along 
with sensitivity analysis is performed to show the application of proposed methodology. 
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1. INTRODUCTION 
1 
Machine replacement problem is an important topic in 
maintenance problems which can considerably 
influence on profit of companies. Many optimization 
models based on cost objective function are developed 
for machine replacement problem but not considering 
quality of items produced by machine in such models 
can lead to wrong decisions. Decision making about 
quality of machine based on inspecting the produced 
items usually results in application of sampling 
methods. Two approaches are often used to design an 
acceptance sampling design. First one is to design a 
sampling system which fulfills the constraints of first 
and second and type errors. For example, Aslam et al. 
proposed a new sampling system based on the 
constraints of first and second and type errors [1]. In 
addition, Chun and Rinks assumed the Beta distribution 
for proportion defective and they modified producer and 
consumer risks based on Bayes producer and consumer 
risks [2]. Fallahnezhad et al. presented a model of 
Markov chain approach in acceptance sampling plans 
                                                        
*Corresponding Author Email: Fallahnezhad@yazd.ac.ir (MS. 
Fallahnezhad) 

based on the cumulative sum of the number of 
successive conforming items [3]. Fallahnezhad analyzed 
the acceptance sampling design by using minimum 
angle method [4]. Aslam et al. proposed repetitive 
acceptance sampling plan with new decision rule [5]. 
The other approach is to design a sampling system 
which minimizes the total cost of decision making. 
Niaki and Fallahnezhad proposed a stochastic dynamic 
programming and Bayesian inferences concept to design 
an optimum sampling plan [6]. Fallahnezhad and Niaki 
proposed an economically optimal acceptance sampling 
policy based on number of successive conforming items 
[7]. Fallahnezhad and Hosseininasab proposed a single 
stage acceptance sampling plan by minimizing total cost 
of the system [8]. Fallahnezhad et al. proposed Bayesian 
acceptance sampling plan based on cost objective 
function [9].  

In this research, it is tried to design a cost optimal 
sampling plan for machine replacement problem which 
fulfills the constraint of first and second type errors. A 
heuristic approach along with dynamic programming is 
used to design this sampling system. Decision variable 
in the model is the control threshold for acceptance of 
machine which is determined using dynamic 
programming approach. The Dynamic programming is 
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used as an optimization technique in many industrial 
applications. Atkeson et al. had described a Random 
sampling plan based on Dynamic Programming for 
solving robot problem [10]. Furthermore, the Bayesian 
approach is used in order to design a sequential 
sampling system where the parameters of the model are 
updated in each stage. Chun and Sumichrast proposed 
Bayesian inspection models for certain item with some 
prior knowledge about the number of defects [11]. The 
inspection error is not considered in this model. Kotz 
and Johnson have considered a number of distributions 
arising from inspection sampling, when inspection error 
exists [12].  

Many approaches have been proposed for the 
problem of machine replacement but analyzing the 
machine based on quality of produced items is not 
widely addressed [13]. In a paper, Fallahnezhad and 
Niaki employed control threshold policy and dynamic 
programming approach to design a decision-making 
framework in production environment. However, they 
did not consider the state of machine in next decision 
making stages after the decisions of accepting or 
replacing the machine [13]. Fallahnezhad proposed a 
dynamic programming approach for production and 
repair decisions. The state variable in his model was the 
rate of producing defectives. In addition, since his 
dynamic model was complicated, he could not obtain 
the optimal policy and he solved his model numerically 
[14]. In this research, it is tried to develop a cost optimal 
sampling plan for machine replacement problem subject 
to the constraints for first and second type errors that are 
basic concepts in acceptance sampling models. 
Analyzing quality of produced items in machine 
replacement problem usually leads to application of 
sampling plans approach. Two concepts which usually 
used in designing sampling plans are first and second 
type errors. In machine replacement problem, first type 
error is classifying a good machine as bad one and 
second type error is classifying a bad machine as good 
one. Therefore, the inspector may replace some good 
machines and accepts other bad machines. The 
classification of the machine to good or bad is based on 
the quality of produced items. The proportion of 
defectives produced by a good machine is less than 
acceptable quality level and the proportion of defectives 
produced by a bad machine is more than the limiting 
quality level.  

The objective of this paper is to design a decision 
making framework for finite-horizon production and 
replacement problem. The rest of the paper is organized 
as follows. The problem statement and the presented 
model are in section 2. The solution algorithm along 
with numerical demonstration on the application of the 
proposed methodology comes in section 3 and a 
sensitivity analysis of proposed methodology comes in 
section 4. We conclude the paper in section 5. 

2. THE MODEL 
 
The dynamic programming is most applied technique to 
optimize multi stage decision-making problems [15]. 
Following definitions and notations are used in rest of 
the paper. 

2. 1. Notations and Definitions      Variable p  is 
selected as the state variable of the system that is the: 
probability of producing a defective. Referring to Jeffrey’s 
prior [16], for the defective proportion p , a Beta prior 
distribution with parameters 0.5 and 0.5 is considered. Using 
of the Bayesian inference, one can easily show that the 
posterior probability density function of p  is, 

0.5

0.5

( 1)( )
( 0.5) ( 0.5)

(1 ) ,

n n

n n

f p p

p

α
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α β
α β

−
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Γ + +
=

Γ + Γ +
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where, nα  is the number of defectives and nβ  is the 
number of conforming items when n  decision making 
stages are remained. 
Other parameters and notations of the model are as 
follows: 
N : The total number of items produced by the machine 
in each stage. 
R : The cost of replacing the machine. 
C : The cost of having one defective. 

( )nV p : Total cost associated with p when there are n  
remaining stages to make the decision. 

nd :The threshold for p . If the probability of producing 

a defective is more than nd , then machine is replaced 
otherwise the machine continues to produce items. 
AQL :Acceptable quality level. 

LQL : Limiting quality level.  

1ε :The size of first type error probability in making a 

decision. 

2ε :The size of second type error probability in making 

a decision. 

nm :The number of inspected items when n  stages are 

remained. 
 
2. 2. Derivation   Sequential analysis is statistical 
analysis where the sample size is not fixed in advance. 
Instead, data are analyzed when they are collected, and 
further sampling is stopped in accordance with a pre-
determined stopping rule as soon as significant results 
are obtained. Some authors have developed sequential 
analysis inference in combination with optimal stopping 
problem to determine the probability of making correct 
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decision. One of these researches is a new approach in 
probability distribution fitting of a given statistical data 
that Eshragh and Modarres named it Decision on Belief 
(DOB) [17]. In this decision-making method, a 
sequential analysis approach is employed to find the 
best underlying probability distribution of the observed 
data.  

It is tried to present a model for acceptance sampling 
plan by considering any stage of problem as a dynamic 
programming problem. It is assumed that ( ) n  decision 
making stages exist and the objective is to obtain 
optimal policy for each stage. A sample from machine is 
taken and appropriate decision is selected based on 
obtained information from sample. In this policy, after 
determining the optimal decision for stage ( ) n  based 
on the stages 1 ... ( -1) n then we move to s ( -1) n stage
( -1) n . The same approach will be applied in stage 
( -1) n so that a sample is gathered and the state variable 
of the system is determined then based on the cost in 
stages 1 ... ( - 2),  n  the optimal policy for stage ( -1) n is 
determined and so on. Decisions are as follows: 
 1- Accept the machine and continue the production in 
current stage 
 2- Replace the machine in current stage and continue to 
the next stage. 

The proportion of defectives produced by machine is 
selected as state variable of the model. Its value is not 
known and it is tired to obtain its probability 
distribution by gathering data from machine. Niaki and 
Fallahnezhad [6], used Bayesian inference in their 
model to obtain a Beta distribution with parameters

, n nα β  for proportion of defectives produced by 
machine. In this article, Bayesian concept is used to 
determine the probability distribution function of the 
defective proportion ( )p  modeled as a Beta distribution 
with parameters 0.5  , 0.5

n n

α β+ + [18]. Therefore, the 
probability of replacing a machine is ( )nP p d≥  and 
probability of accepting a machine is ( )nP p d≤ where 

nd  is the threshold for accepting or replacing the 

machine. ( ) n is defined as the number of decision-
making stages remained and ( )p as state variable which 
denotes the probability of producing defectives then

( )( )1 1nR V pλ −+ is the expected cost of machine 

replacement where R  is the cost of replacing the 
machine in the current stage and ( )1 1nV pλ −

 is the cost of 

next stage when the machine is replaced where 1p  is 
the probability of producing defective by a new 
machine. Also, ( ) ( )( )1n nCNE p p d V pλ γ−< +  shows 

the expected cost of continuing the production process 

when the machine is accepted. Since ( )nE p p d<  is the 

conditional expectation of probability of producing a 
defective by an accepted machine, thus ( )nCNE p p d<  

shows the cost of produced defective items. ( )1nV pλ γ−
 

represents the cost of next stage when the decision of 
continuing the production is chosen where 1γ > is the 
degradation coefficient of machine state in each stage of 
production. In the other words, if the decision of 
continuing the production is selected, then proportion of 
defectives increases to pγ and λ  is the discount factor 
for evaluating the cost of the next stage in the current 
stage (according to the approach of stochastic dynamic 
programming) . Thus, the stochastic dynamic equation 
for total cost of the system is defined as, 

( ) ( ) ( )
( ) ( )
cos cos Reject Reject

cos Accept Accept .

E t E t P

E t P

=

+
 (2) 

Therefore, cost objective function is determined as 
follows: 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }
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(3)

 

Equation  (3) is the optimality equation which must be 
minimized to optimize the total cost of production 
environment. 

( ) ( )n n

n

H p MinV p
d

=  
(4) 

In order to determine the boundary limits of nd , a 
heuristic approach is used based on the concepts of the 
first and the second type errors. Two acceptable level 
and unacceptable level are defined for the proportion of 
defective produced by machine. Using the concepts of 
quality control, a machine is acceptable if the 
probability of producing a defective is less than or equal 
AQL  and if the probability of producing a defective by 
machine was equal or more than LQL  then the machine 
is unacceptable. Thus, two hypothesizes 0 :H p AQL≤  
and 1 :H p LQL≥  are defined. If the hypothesis 0H  is 
true then it means that the machine is acceptable and if 
the hypothesis 1H  is true then it means that the machine 
is not acceptable. Now, using the concepts of statistical 
analysis, first type errors shows the probability of 
rejecting the hypothesis 

0H  when the hypothesis 0H    is 
true and second type error is the probability of accepting 
the hypothesis 0H when the hypothesis 0H   is wrong. 
Equivalently in our machine replacement problem, first 
type error shows the probability of replacing the 
machine when the proportion of defectives produced by 



MS. Fallahnezhad et al. / IJE TRANSACTIONS A: Basics  Vol. 27, No. 7, (July 2014)   1099-1106                              1102 
   

 

machine is acceptable and second type error is the 
probability of accepting the machine when the 
proportion of defectives produced by machine is not 
acceptable. Then, in one hand if p AQL= , the 
probability of replacing the machine will be smaller 
than 1ε  and in the other hand, in cases where p LQL= , 
the probability of accepting the machine will be smaller 
than 2ε [19]. A heuristic approach is used to apply the 
concepts of first and second type error in the model. 
First, it is assumed that the expected proportion of 
defectives produced by machine is equal toAQL

( ) '
'  + '

E p AQLα
α β

 
= = 

 

 also second one can use this fact 

that the number of gathered samples is fixed
( )'  + '

n

mα β = . It is obvious that ' , 'α β  are different from 

, n nα β  that are obtained using sample information.  The 
values ' , 'α β  are the number of defective and non-
defectives, respectively that are expected to be sampled 
from a lot produced by an acceptable machine. Now, 
one will be able to determine the parameters of Beta 
distribution for a proportion of defective items produced 
by an acceptable machine as follows: 

( )
( )
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'  + ' .

' 1
'  + '

n

n
n
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m

α α
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β
α β
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 (5) 

And the probability of replacing the machine is obtained 
by:
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1t is defined as lower boundary limit of nd , since

( )'p nF d is an increasing function of nd  and 

( ) 1' 1p nF d ε≥ − , thus:
 

( )' 1
1 11 .n pd F tε−≥ − =

 
(7) 

First, it is assumed that the expected proportion of 
defectives produced by machine is equal to LQL

( ) ''
''  + ''

E p LQLα
α β

 
= = 

 
. The values '' , ''α β  are the 

number of defective and non-defectives that are 
expected to be sampled from a lot produced by an 
unacceptable machine, respectively. Therefore, when

( )E p LQL= , following is obtained:
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The probability of accepting the machine is obtained as: 
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If 2t is defined as an upper boundary limit of nd since

( )"p nF d is an increasing function of nd and ( ) 2"p nF d ε≤ , 
thus:

 
( )" 1

2 2 .n pd F tε−≤ =
 (10) 

Now, the Theorem 1 is used to determine the optimal 
value of control threshold nd . 
 
2. 3. Theorem 1          The optimal value of  

n

d in 
Equation (3) is in one of these points, 1nd t=  or 

2nd t=  or ( ) ( )1 1 1
3

n n
n

R V p V p
d t

CN
λ λ γ− −+ −

= = . The 

point 3t can be optimal if its value was within the 
boundary limits ( )1 2,t t  . The optimal value of nd is the 
point which minimizes the total cost of the system. The 
proof is given in Appendix A. 

As can be seen in flowchart (Figure 1), the solution 
algorithm of the proposed approach is like a decision 
tree. As performed in decision trees, it starts from 
terminal nodes and using recursive approach; a decision 
is made in initial node. In this approach, first the value 
of  0 (.)V  is obtained then using 0 (.)V  values, the value 

of 1(.)V are obtained Continuing this recursive 
approach, one can determine the values of ( )nV p  . After 
obtaining the optimal value of ( )nV p , the optimal value 
of control threshold will be determined. The suitable 
decision is made by comparing the mean value of 
proportion defective produced by the machine and the 
control threshold while if the mean value of Beta 
distribution obtained from sampled data was more than 
the control threshold then the machine is replaced 
otherwise it will continue its production in the next 
decision making stage. 

To illustrate the application of the proposed 
methodology, a numerical example is given in the next 
section. 
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Figure 1. The iterative approach of proposed model 

 
 

3. NUMERICAL EXAMPLE  
 
To illustrate the application of the proposed model in 
designing a single machine replacement strategy, a 
numerical example with two stages is solved. Assume 
that (n =2) decision making stages are remained. 
Assume that five items have been produced ( )2 5m =  so 
that one of them has been defective ( )2 21, 4α β= = . 
Therefore, using the probability distribution defined in 
Equation (1), it is concluded that expected mean of the 
probability of producing a defective is as follows: 

2

2 2

0.5 0.25
1

α
α β

+
=

+ +
 (11) 

Assume that the cost of replacing machine is 100$R= . 
In addition, a lot of 100N =  items are produced in 
each stage. Assume that proportion of defectives 
produced by new machine is 1 0.05p =  and cost of 
producing each defective item is 1$C = . The value of 
degradation coefficient is determined equal to 1.1γ =  
and the discount factor is equal to 0.9λ = . Other 
parameters of sampling system are as follows:  

1 20 .1, 0.4, 0.2, 0.4AQ L LQ L ε ε= = = =  

By considering these parameter,  to indicating total cost 
of machine replacement strategy, first it is needed to 
evaluate the function 0 (.)V  (the state is p  and stage is 

0n = , it represents the cost at the end of decision 
making process) that is assumed as follows: 

0( ) 1000V p p=  (12)
 

It is obvious that cost of machine maintenance at last 
decision making stage is an increasing function of 
machine state and to evaluate its value, one can use 
linear or non-linear regression for historical data. It 
means that a database containing the state of the 
machine and its corresponding maintenance cost at the 
end of decision making horizon is gathered from past 

data and then one can fit the best regression model to 
data using available software. Using Equation (3) 
following is obtained, 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

2 1 2

2 1 2

0.25 0 .05

0.9 0.275 .

V R V P p d

C N E p p d V P p d

λ= + ≥ +

< + <

 
(13) 

To evaluate above function, first it is needed to 
determine ( )1 0.05V  and ( )1 0.275V  that are obtained as 
follows: 
 
3. 1. First Step       The value of ( )1 0.05V  is 
determined as follows: 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

1 0 1

1 0 1

0 .0 5 0 .0 5

0.9 0 .0 5 5 .

V R V P p d

C N E p p d V P p d

λ= + ≥ +

< + <

 
(14) 

To evaluate above function again the probability density 
function of probability of producing a defective item by 
a machine is needed where the state variable of machine 
is 0.05. Assume the function ( )f p is such probability 
density function. To obtain ( )f p , the heuristic approach 
explained in the last section for obtaining boundary 
limit is used thus ( )f p is a Beta density function with 

parameters ,α β   that are determined using following 
equations, 

( ) 20.05, 5.E p mα α β
α β

= = + = =
+

 
(15) 

After obtaining  ( )f p  , first the possible values of 
thresholds should be obtained in order to determine the 
optimal value of 1d  by substituting these three possible 

values ( ) ( )
1 1 1 2

0 0
1

, ,
0.05 0.055

d t d t
R V V

d
CN

λ λ

= = 
 + − = 
 

 in objective 

functions and selecting one that minimizes the objective 
function. The values 1 0.17 t =  and 2 0.33t =  are 
obtained using Equations (7) and (10). Moreover, the 
value t=0.955 is obtained with considering Equation 
(11). Since the value of 3 0.955t =  is not within ( )1 2,t t

thus this value for 1d is not feasible and is ignored. 
After substituting the possible values for 1d in objective 
function, we can determine the value of ( )1 0.05V  as 
denoted in Table 1. Then, it is seen that minimum 
occurs in and ( )1 0.05 59.7V = . 
 
3. 2. Second Step     The value of ( )1 0.275V  is 
obtained as follows: 
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( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

1 0 1

1 0 1

0.275 0.0 5

0.9 0 .30 25 .

V R V P p d

C N E p p d V P p d

λ= + ≥ +

< + <

 
(16) 

To evaluate above function, it is needed to evaluate the 
probability density function of probability of producing 
a defective item by a machine where the state variable 
of machine is 0.275 . Assume ( )f p is such probability 
density function thus similar to Equation (15), ( )f p is a 
Beta density function with parameters ,α β   that are 
determined using following equation, 

( ) 20.275, 5E p mα α β
α β

= = + = =
+

 
(17)

 

After obtaining
 ( )f p  , first the values of thresholds are 

obtained in order to determine the optimal value of 1d . 
These three possible values 

( ) ( )
1 1 1 2

0 0
1 3

, ,
0.05 0.3025

d t d t
R V V

d t
CN

λ λ

= = 
 + − = = 
 

are substituted in 

objective functions and one that minimizes the objective 
function is selected. After determining the optimal value 
of 1d , the value of V1(0.275) can be obtained. The 
results are shown in Table 2. It is seen that minimum 
occurs in 1 1 0.17d t= = and ( )1 0.275 192V = .  
 
3. 3. Third Step.               After determining the values 
of ( )1 0.05V and ( )1 0.275V , the value of ( )2 0.25V  can be 
obtained  as follows:

 ( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

2 1 2

2 1 2

0.25 0.05

0.9 0.275 .

V R V P p d

CNE p p d V P p d

λ= + ≥ +

< + <  (18) 

To evaluate above function, these three possible values

( ) ( )
2 1 2 2

1 1
2 3

, ,
0.05 0.275

d t d t
R V V

d t
CN

λ λ

= = 
 + − = = 
 

are substituted in 

objective functions and select one that minimizes the 
objective function. According to the results of steps 1 
and 2, the optimal solution for ( )2 0.25V  is obtained as 
shown in Table 3. It is clear, that minimum occurred in 

2 1 0.17d t= =  and optimal value of system cost is 168. 
Now, since ( ) 2 10.25 0.17E p d t= ≥ = = ; therefore, the 
machine should be replaced when two decision making 
stages are remained. 

  
 

4. SENSITIVITY ANALYSIS 
 
A sensitivity analysis is performed to analyze the effects 
of changing parameters on the optimal solution and 

cost. All parameters were varied in this production 
system and their effects have been analyzed in this 
section. In each case of sensitivity analysis, one 
parameter of the model is varied in order to analyze its 
effects on the final solution of the model and verify its 
behavior. It is tried to adjust the parameter value in a 
level so that one can easily interpret their effects on the 
model. The results are shown in Table 4. 

It is seen from case one that by decreasing
0.05AQL = , the required quality for the production 

improves. Therefore, the optimal decision would still be 
replacing the machine again. This result is justified due 
to optimality of this decision in the case 0.1AQL = .  In 
the case two, it is seen that the optimal decision remains 
fixed again which implies that the risk of producer will 
be more important in this case.  
 
 
TABLE 1. The values of ( )1 0.05V for two possible values of 1d

 
 1 0.17 t =  

2 0.33t =  

( )1 0.05V  59.7 68.43 
 
 

TABLE 2. The values of ( )1 0.275V for two possible values of 1d  
 1 0.17 t =  2 0.33t =  3 0t <  

( )1 0.275V  192 242 - 

  
 

TABLE 3. The values of ( )2 0.25V for two possible values of 2d  

 1 0.17 t =  
2 0.33t =  

3 0t <  

( )2 0.25V  168 186 - 
  
 

TABLE 4. The results of sensitivity analysis for the proposed 
sampling plan 
No. Cases 2d  Decision Cost 

1 0.05AQL =  0.07 Replace  147 

2 0.5LQL =  0.17 Replace  174 

3 1 0.3ε =  0.11 Replace  159 

4 2 0.5ε =  0.17 Replace  167 

5 10$C =  0.17 Replace  212 

6 200N =  0.17 Replace 174 

7 1 0.02p =  0.17 Replace 160 

8 1.5γ =  0.17 Replace 167 

9 300R =  0.28 Replace 360 

10 1000R =  0.32 Continue 842 

11 0.8λ =  0.17 Replace 156 

12 ( )2 21 , 9α β= =  0.16 Continue 123 

13 ( )2 24 , 6α β= =  0.16 Replace 152 

14 ( )2 22 , 3α β= =  0.17 Replace 155 
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Since the producer wants to make a decision about 
its production; so, he mostly considers the risk of 
producer. It is concluded from case three that the 
optimal decision remains fixed by increasing the 
probability of first type error. This result is justified due 
to large value of proportion defective which results in 
defective production. Therefore, replacing the machine 
is needed even for larger values of first type error 
probability. It is concluded from case four that the 
optimal decision remains fixed by increasing the 
probability of second type error. Since the producer 
optimizes its cost, the probability of second type error 
that is risk of consumer has less importance in this case. 
It is seen from case five that the optimal decision 
remains fixed by increasing the cost of non-conforming 
items. Since the cost of continuing the production 
process increases in this case, the optimal decision does 
not change. It is obtained from case six that the optimal 
decision remains fixed by increasing the number of 
items in lot. Since the cost of continuing the production 
process increases in this case; so, the decision of 
replacing the machine will still remain optimal. It is 
obtained from case seven that the optimal decision 
remains fixed by decreasing the proportion defective of 
a new machine. Since the cost of replacing the machine 
decreases in this case, the decision of replacing the 
machine will still remain optimal. It is seen from case 
eight that the optimal decision remains fixed by 
increasing the degradation coefficient. Since the cost of 
continuing the production process increases in this case; 
therefore, the optimal decision does not change. It is 
concluded from case nine that the optimal decision does 
not change by increasing the replacement cost to

300R =  . This result is justified due to large value of 
proportion defective such that increasing replacement 
cost cannot change the optimal decision.  However, it is 
seen form case ten that optimal decision will be to 
continue production process for sufficiently large values 
of replacement cost ( )1000R = . It is obtained in case 
eleven that decreasing the discount factor cannot change 
the optimal decision in this case but it reduces the total 
cost of the system that is reasonable. After improving 
the quality of production in case twelve, it is seen that 
the optimal decision is to continue the production as 
expected. The cases thirteen and fourteen confirm this 
result. In general, the results of sensitivity analysis 
verify the outcome of the proposed model in different 
conditions. 

 
 

5. CONCLUSION 
 
In this article, a control threshold policy is applied to 
design an acceptance sampling system for one machine 
maintenance problem. This model proposes an optimal 

iterative decision rule for minimizing total costin 
designing a sampling plan for machine replacement 
problem based on the methods of dynamic 
programming and Bayesian inferences. In order to 
determine the optimal policy, a cost objective function 
based on the cost of replacement and the cost of 
defectives is considered. The dynamic programming 
concept is used to consider the stochastic state of the 
machine in different stages. The optimal decision is 
determined based on the numerical methods. As shown 
in numerical example, the application of the model is 
quite simple and reasonable. The application of 
proposed model is justified in the production 
environments when machine deterioration can be 
monitored using the quality of produced items. The 
model can be extended to the cases that other decisions 
existed.  
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Appendix A.       Method of obtaining the optimal 
threshold: 

The first derivatives of ( )nV p is taken in Equation (3) 

with respect to nd and set it equal to zero. That is, 
( ) 0.n

n

V p
d

∂
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Since ( ) ( )n nP p d F d≤ = and 

( )
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, thus following is obtained, 
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∂
 thus, it is insured that 

( ) ( )1 1 1n n
n

R V p V p
d

CN
λ λ γ− −+ −

=  minimizes the objective 

functions.  Now, in the solution algorithm, three 
possible values ( ) ( )1 1 1

1 2 3, , n n
n

R V p V p
d t t t

CN
λ λ γ− −+ − 

= 
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 are 

analyzed and one which minimizes the objective 
function ( )nV p is selected.  
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  چکیده
  

 
 يریطرح نمونه گ کی یکل در طراح نهیبه حداقل رساندن هز يبرا بازگشتی نهیبه يریگ میقاعده تصم یکمقاله،  نیدر ا

 نیماش ینیگزیجا نهیهز. ارائه شده است يزیو استنتاج ب ایپو ریزيدستگاه با استفاده از روش برنامه  ضیتعوي مساله برا
 يآستانه کنترل برا استیمفهوم س. توسط دستگاه در مدل در نظر گرفته شده است دهش دیتول يها یخراب نهیآلات و هز

 نیا ریدر غ می شود نیگزیدستگاه جا شود از آستانه کنترل شیب وبیمع دیاگر احتمال تول. شده استاستفاده  يریگ میتصم
نحوه  تیحساس لیتحلو  هیهمراه با تجز يمثال عدد کی. دهد یمه مادا دیتول به شود و یم رفتهیآن پذ کیفیت صورت
  .دهدینشان م ي راشنهادیروش پ عملکرد
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