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A B S T R A C T  

   

The aim of this study is to optimize the performance functions of turbofan engines. In this way, the 
multi-objective genetic algorithm is employed to optimal design of turbofan with considering the off-
design model of engine. The design variables are high-pressure compressor pressure ratio, low-
pressure compressor pressure ratio, fan pressure ratio and bypass ratio. They are calculated in such a 
way that the performance functions are at their best conditions simultaneously. The performance 
functions are specific thrust at take-off, and thrust specific fuel consumption, propulsive, thermal, and 
overall efficiencies at cruise. The optimization is carried out using the modified NSGA II which is 
among the best multi-objective genetic algorithm methods. The results of this optimization will be a set 
of vectors which the designer may choose one of those according to the problem conditions. 
 
 

doi: 10.5829/idosi.ije.2014.27.06c.15  

 
 

NOMENCLATURE 
0a  Velocity of sound at inlet (m/s) π  Pressure ratio 

PC  Specific heat at constant pressure (kJ/kg K) τ  Temperature ratio 

F  Thrust (N) fπ  Density (kg/m3) 

0m&  Mass flow rate (kg/s) τ  Fan pressure ratio 

fm&  Mass fuel rate (kg/s) α  Bypass ratio 

0M  Flight Mach number e  Polytropic efficiency 

h  Flight altitude (Km) mHη  High pressure spool mechanical efficiency 

PRh  Heating value (kJ/kg) mLη  Low pressure spool mechanical efficiency 

R  Gas constant (J/kg/s) Subscripts 
0mF &  Specific thrust (N/kg/s) cH  High pressure compressor 

S  Thrust specific fuel consumption (mg/s)/N cL  Low pressure compressor 

4tT  Turbine inlet temperature (K) tH  High pressure turbine 

T  Temperature (K) tL  Low pressure turbine 

V  Velocity (m/s) f  Fan 

γ  Ratio of specific heats b  Burner 

Tη  Thermal efficiency n  Nozzle 

Pη  Propulsive efficiency fn  Fan nozzle 

oη  Overall efficiency d  Diffuser 
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1. INTRODUCTION 
 
Optimization is playing the main role in many 
engineering problems. Principally, optimization process 
is defined to find a set of values for a vector of design 
variables which yields an optimal value for an objective 
function. In such single-objective optimization 
problems, constraining functions may or may not exist. 
Therefore, they are commonly known as constrained or 
unconstrained optimization problems, respectively. 
There are numerous calculus-based methods including 
gradient approaches which search for local optimal 
solutions. These methods are well documented in [1, 2]. 

Due to some inherent difficulties of gradient approaches 
such as their heavy dependence on initial guesses, a 
local optimal solution may be found instead of a global 
one [1]. This led to the use of other heuristic 
optimization methods especially genetic algorithm 
which has been widely used during the past decade. 

Such algorithms which have been derived from 
nature [3, 4], are different from other traditional 
calculus-based methods. The significant difference 
between these methods is that, unlike the traditional 
methods, genetic algorithms do not use a single point 
within the search space. Instead, they use a population 
of selected solutions. This feature may significantly 

reduce the risk of being trapped in local optimal 
solutions [5]. 

In multi-objective optimization problems, there are 
number of objective functions which have to be 
simultaneously optimized. These objectives are usually 
in conflict with each other. Improving one objective 
function will lead to decline in another. Therefore, there 
is no single optimal solution which can be the best 
according to all the objective functions. Instead, there is 
a set of optimal solutions known as Pareto optimal 
solutions which make a significant difference between 
single-objective and multi-objective optimization 
problems [6-9]. 

Vilfredo Pareto was an Italian sociologist and 
economist who introduced multi-objective optimization 
in Economics for the first time [10]. A Pareto front 
within objective functions space in multi-objective 
optimization refers to a set of solutions which are not 
dominant to each other, but are of higher order in 
comparison with the other solutions within the search 
space. Rosenberg was the first to report the early uses of 
evolutionary searches in 1960 [11]. Since then, the 
interest toward using evolutionary algorithms for multi-
objective problems has been on the rise. Among these 
algorithms, VEGA proposed by Schaffer [12], Fonseca 
and Fleming’s Genetic Algorithm (FFGA) [7], Non-
Dominated Sorting Genetic Algorithm (NSGA) 
proposed by Srinivas and Deb, Strength Pareto 
Evolutionary Algorithm (SPEA) proposed by Zitzler 
and Thiele [13], and Pareto Archive Evolution Strategy 
(PAES) proposed by Knowles and Corne [14] are the 

most significant ones. An excellent comprehensive 
review of these methods has been presented in [15-17]. 
In addition, Coello coello has gathered a comprehensive 
internet-based collection of papers. Basically, both 
NSGA and FFGA methods are Pareto-based approaches 
which utilize non-dominated sorting process which was 
first proposed by Goldberg [3]. The lack of elitism in 
NSGA algorithm led to the modified version of NSGA-
II [18] in which the sharing method has been replaced 
by a direct elitist method in order to preserve the 
population convergence. This modified algorithm is the 
manifestation of the latest developments in multi-
objective evolutionary problems[19]. In reference [18], 
NSGA-II has been compared with SPEA as well as 
PAES and its superiority and better Pareto distribution 
has been depicted. Some other studies, included in [20], 
show that the elitist version of NSGA (NSGA-II) and 
SPEA are of equal performance. Despite its popularity 
and effectiveness, NSGA-II suffers the limitation that it 
can only optimize with two objective functions. In [21], 
Atashkari et al. modified this algorithm making it 
capable of optimizing with more than two objective 
functions while preserving population convergence.  

In real-world engineering design, there exist 
complex optimization problems which are naturally 
multi-objective. The objectives in these systems are 
usually in conflict and disagreement. Therefore, Pareto 
solutions provide a better understanding of conflicting 
objectives. Toffolo and Lazareto conducted a thermal-
economic analysis in which energy and economy were 
the conflicting objectives in a power plant [22]. A 
similar approach was considered by Wright et al. in 
multi-objective optimization of a building thermal 
design problem [23]. Roosen et al. studied the multi-
objective optimization of combined cycle power plant 
[24]. Oyama and Liou employed multi-objective genetic 
algorithm in order to optimize the engine pump of a 
rocket [25]. Their purpose was to yield those design 
parameters which maximize the pump head and 
minimize the inlet power. Another application of 
genetic algorithm in optimization of turbofan engines 
has been demonstrated by Homaei Fard, Lai, and 
McCormick [26] in which they studied the design point 
model of turbofan engines. The considered objective 
functions include specific thrust, and overall efficiency. 
First, single-objective optimization is done for each 
objective functions. Then, the two objective functions 
are combined and single-objective optimization is once 
again done for the new function. Optimization is done 
single-objectively and in multi-objective mode, the two 
functions got merged by assigned specific weights. 
Assigning the weights are of crucial importance since 
they may significantly change the responses. Whereas in 
multi-objective optimization, guessing or assigning 
weights is not necessary. Another downfall of this study 
is that it only considers the design point model. Silva, 
Fleming et al. also studied a gas turbine engine using 
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genetic algorithm [27]. The purpose of this single-
objective optimization is minimizing fuel consumption 
while maintaining nominal thrust output, maximizing 
thrust for the same fuel consumption and minimizing 
turbine blade temperature. To do this, a PI controller is 
used to control the engine which uses the three variables 
of the exit nozzle area, fuel flow, and the angle of inlet 
flow to stabilize the system. The calculations have been 
done at zero altitude and zero Mach number. The same 
group designed a non-linear controller for a specific 
engine using Multi-variable regression, multi-objective 
genetic algorithm, and experimental data [28]. Atashkari 
et al. achieved an optimal group of design variables in 
turbo jet engines including inlet Mach number, 
compressor pressure ratio, and turbine inlet temperature 
using Pareto approach in multi-objective optimization 
[21]. In their study, pairs of conflicting objectives in an 
ideal subsonic turbojet engine have been chosen to be 
optimized. These pairs include thermal efficiency and 
thrust efficiency along with specific fuel consumption 
and specific thrust. To do this, a so-called ε-elimination 
algorithm has been suggested to improve the 

performance of NSGA-II in terms of population 
convergence and Pareto fronts. This method is generally 
known as Modified NSGA-II. This algorithm can be 
used in multi-objective optimization with more than two 
objective functions. Subsequently, four-objective 
optimization of turbojet engine considering all the 
above-mentioned objectives has been done. This paper 
just used the design point thermodynamic model of an 
ideal turbojet to find the optimized values of the 
objective functions. They also modeled the optimized 
model using neural networks and evolutionary 
algorithms [29]. Noori et al. investigated a similar study 
on an ideal turbojet engine with afterburner using 
Modified NSGA-II [30]. They determined the design 
parameters of turbojet engine in such a way that the 
considered objective functions will be at their best 
performance conditions. The design parameters include 
turbine inlet temperature, afterburner exit temperature, 
compressor pressure ratio, and inlet Mach number. The 
objective functions include thermal efficiency, 
propulsive efficiency, thrust specific fuel consumption, 
and specific thrust. First, the optimization has been 
performed for two by two and then has been done for all 
the objective functions. In [30], the performance of 
Modified NSGA-II is compared to other commonly 
used algorithms.  

All the above-mentioned researches, have used the 
on-design model of turbofan engine. Using the on-
design model causes the designer to be limited in a 
specific Altitude.   

In this study with considering the off-design model 
of turbofan engine, the design parameters are selected in 
such a way that all of the performance functions 
simultaneously are at their best conditions. The 
performance functions are the specific thrust at take-off 

and thrust specific fuel consumption and propulsive, 
thermal and overall efficiencies at cruise.  

 
 

2. THERMODYNAMIC ANALYSIS OF TURBOFAN 
ENGINE 

 
Thermodynamic analysis of turbofan engine which 
includes the study of thermodynamic changes in 
working fluid while passing through engine is divided 
into two entirely distinct categories: on-design analysis 
(parametric cycle analysis) and off-design analysis 
(engine performance analysis). In on-design analysis, 
the engine geometry is not considered and in the 
analysis of performance curves, each point represents a 
different engine. It is often said that the on-design 
analysis studies a rubber engine [31]. In order to 
estimate the performance of the engine at different 
conditions, a model is needed which is capable of 
describing the behavior of the engine components at 
conditions other than those of design point. At the late 
sixties, the on-design optimization was considered 
sufficient. However, today, mostly due to economic 
reasons, an off-design model seems to be essential at 
early design stages [32]. The main objective of all the 
off-design models is to calculate the working fluid state 
at different sections of main stream within the engine. 
Using these results it would be possible to derive thrust, 
fuel consumption, and all fundamental parameters of 
engine components. The series of books have 
considered the off-design study of turbofan engines 
including Cohen et al. in [33], Oates in [34], Walsh in 
[35], Mattingly in [36]. Mattingly analysis the 
performance of the engine by replacing the constant 
values yielded at engine pressure and temperature ratio 
function with those of the same function in on-design 
mode. This study employs the latter analysis to calculate 
the engine performance in the off-design condition. It 
also uses a zero-dimensional model, which is of 
frequent application due to its simplicity and 
independence from the accurate description of engine 
geometry [33]. 

 
 

3. ASSUMPTIONS 
 

Figure 1 illustrates a turbofan engine. Turbine and 
compressor are divided into Low Pressure and High 
Pressure sections. The High Pressure turbine turns the 
High Pressure compressor via High Pressure spool. As 
well, the Low Pressure turbine turns the Low Pressure 
compressor via Low pressure spool. The mass flow 
passing through the engine core and fan are Cm& and Fm&

respectively. The ratio of mass flow through fan to mass 
flow through engine core is introduced as bypass ratio 
and is shown by α.  
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Figure 1. Turbofan engine [39]. 

 
 

The Sea-Level static conditions are considered as the 
design point conditions for gas turbine variables [31] 
and [36]. The assumed condition in turbofan engine is 
the one in which the entrance nozzles at High-Pressure 
turbine as well as Low-Pressure turbine experience 
choking. In addition, the nozzle areas are considered 
constant at these sections. This type of turbines is 
known as Fixed Area Turbine (FAT). This assumption 
is valid within a wide performance range of a gas 
turbine engine [33, 36]. It is assumed that, the turbine 
cooling and leakage effects are neglected and the 
turbine power is not used to run the side components. 
Gas is also considered perfect at both upstream and 
downstream of combustion chamber. 

All the governing equations have been achieved and 
fully solved in [37] and performance curves of turbofan 
engine have been thoroughly studied. 

 
 

4. INPUT AND OUTPUT PARAMETERS AND 
CONSTRAINTS 

 
Input parameters are assumed to be those variables of 
independent nature. Applying any change in the value 
of each input parameter may change all or some 
objective functions. In fact, all input parameters affect 
the optimization of objective functions. However, just 
some input parameters, due to physical, chemical, and 
ambient limitations, can be considered as design 
parameters. Among the input parameters, four 
parameters of high-pressure compressor pressure ratio

)( cHπ , low-pressure compressor pressure ratio )( cLπ , fan 
pressure ratio )( fπ , and bypass ratio )(α  are considered 
as design variables. The most important output 
parameters which are considered as objective functions 
in the turbofan engine are Specific thrust, Thrust 
specific fuel consumption, propulsive efficiency, 
thermal efficiency, and overall efficiency. The presented 
functions in turbofan engine come in the form of 
Equations (1) to (5) [36]: 
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The control system of the engine must operate in 
such a way that pressure ratio and mass flow rate to the 
compressor and fan are kept under the maximum design 
levels. Otherwise, the exit temperature of combustion 
chamber decreases in order to control the above-
mentioned values at design values. This issue has been 
fully dealt with in [40]. 

 
  
 

5. THE STANDARD FORM OF MULTI-OBJECTIVE 
OPTIMIZATION PROBLEMS 

 
In multi-objective optimization problems, the objective 
is to find design variable vector capable of optimizing 
objective function F(X) vector including P objective 
functions under k equal constraints h(X) and n unequal 
constraints g(X). Generally, it can be described as 
follows: 

n1,2,...,j0(X)g
k1,2,...,i0(X)h

x,...,x,xX

XfXfXfXF
Optimize

j

i

m21

p

=≤

==

=

=

:sconstraintunder
][

)](),...,(),([)( 21

 
(6) 

The results consist of a set of non-dominating optimized 
design points called Pareto points. Some Pareto 
concepts can be defined as follows [9]. In the below 
definitions, it is assumed that all objective functions 
have to be minimized while maintaining the generalize 
ability of the definitions. 

 
5. 1. Pareto Dominance    The vector [ ] k

p21 u,,u,uU ℜ∈= …  
is dominant [ ] k

p21 v,,v,vV ℜ∈= …  (it is shown by VU ≺ ) if 
and only if: 

{ } { } jjii vu:p,1,2,jvu,p,1,2,i <∈∃∧≤∈∀ ……  (7) 

The above phrase means that there is at least one ju  

that is smaller than jv  while the rest of u s are smaller 
than or equal to the corresponding vs. 
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5. 2. Pareto Optimality       A point in Ω∈*X  ( Ω  is 
the acceptable design area as long as it satisfies the 
equal and unequal constraints) is called optimal Pareto 
if and only if )()( * XFXF ≺  . In other words: 

(X)f)(Xf:k}{1,2,...,j(X)f)(Xf

}{XΩXk},{1,2,...,i

j
*

ji
*

i

*

<∈∃∧≤

−∈∀∈∀  (8) 

The above phrase means that the optimal *X is called 
the optimal Pareto as long as another solution is not 
found which dominates *X . 

 
5. 3. Pareto Optimal Set       For a multi-objective 
optimization problem, a Pareto optimal set ∗P includes 
all the optimal Pareto design vectors:  

( ) ( ){ }XFXFXXP ≺′Ω∈′∃/Ω∈=∗ :  (9) 

In other words, there is no X ′ in Ω  set which can 
dominate each ∗∈ PX . 

 
5. 4. Pareto Front        In a multi-objective problem,

∗PF refers to a set of objective functions vector derived 
from design variables vector in Pareto set 

}:))(),...,(),(()({ 21
∗∗ ∈== PXXfXfXfXFPF k  (10) 

 
5. 5. Pareto Optimal Points       A set of optimal 
points is called Pareto optimal points if for each two 
points of A and B of this set, any improvement in the 
status of one of the objective functions leads to an 
impairment in at least one of the other objective 
functions while moving from A to B (or vice versa). In 
other words, no movement from A to B (or vice versa) 
leads to an improvement in the status of an objective 
function unless it leads to an impairment of one of the 
other objective functions. 
 
 
 
6. NON DOMINATED SORTING GA-II (NSGA-II) 

 
The Pareto-based approach of NSGA-II [16] has been 
recently used in many engineering MOPs because of its 
simple yet efficient non-dominance ranking procedure in 
yielding different level of Pareto frontiers .The sketch of 
NSGA-II is shown in Figure 3.  

However, the crowding approach in such state-of-the-
art MOEA is not efficient as a diversity-preserving 
operator, particularly in problems with more than two 
objective functions. As mentioned at introduction in [21] a 
new method has been presented to modify NSGA-II, so it 
can be safely used for any number of objective functions. 
In this study, such a modified MOEA is then used for 
thermodynamic optimization of turbofan engines. 

7. OPTIMAL THERMODYNAMIC DESIGN OF 
TURBOFAN ENGINE 
 
The objective of this section is to determine the input 
parameters of a turbofan engine in order to achieve the 
thermodynamic design of an engine which is capable of 
producing the maximum specific thrust while take-off, 
minimizing thrust specific fuel consumption and 
maintaining maximum efficiencies while cruising. Since 
the performance functions have to be calculated at 
performance points of take-off and cruise, take-off 
conditions and cruising conditions are considered as design 
conditions and off-design conditions, respectively [36]. 
Optimization is done in two and three objective modes 
between specific thrust function at take-off and the other 
functions at cruise condition. The following values have 
been used in the optimization:  
 
7. 1. The Results of Optimization with two 
Objective Functions       Figures 4 to 7 depict two-by-
two Pareto Fronts resulting from the optimization of 
specific thrust at take-off with the other objective functions 
while cruising. The validity of Pareto fronts can be verified 
by comparing the maximum and minimum points of each 
individual objective function which have been yielded 
from performance curves presented in references [31, 36, 
37] and have been presented in Table 1. 
 
 
 

 
Figure 2. Pareto optimal points 

 
 

 
Figure 3. The sketch of NSGA-II [19]. 
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TABLE 1. Optimal points achieved from each individual 
performance curve [34],[39-40]. 

1255.25.145.284 ≤≤≤≤≤≤≤≤ απππ fcLcH
 

951.0)max( =Tη  ( )skgNm
F 8375.447)max(

0
=&

 

8708.0)max( =Pη  ( )( )NsmgS 68.71)min( =  

2375.0)max( =oη   

 
 
     The Pareto front of specific thrust and specific fuel 
consumption is presented in Figure 4. The specific thrust 
changes in the range of 296.5973 (N/Kg/s) to 445.525 
(N/Kg/s). The specific fuel consumption changes in the 
range of 17.7019 mg/(N.s) to 20.6929 mg/(N.s). All the 
presented points are optimal design points. As it can be 
seen, these points are non-dominated i.e. if one moves to 
the right side of the curve, as the specific thrust increases 
the specific fuel consumption increases as well. From 
Figure 4, the design parameters are chosen in order to 
minimize fuel consumption for an optimized thrust. Figure 
5 illustrates the Pareto front of specific thrust and thermal 
efficiency. As it can be seen, as the specific thrust 
increases, thermal efficiency decreases. Specific thrust in 
the range of 350 (N/kg/s) to 400 (N/kg/s) which 
corresponds to thermal efficiency in the range of 0.22 to 
0.24 might be an appropriate design range. Figure 6 
illustrates the Pareto front of specific thrust versus 
propulsive efficiency. If the design variables are chosen 
based on the left endpoint of the curve, specific thrust will 
be 296.54 (N/kg/s) and the resulting propulsive efficiency 
will be 0.8685. However, if instead of this point, the first 
break point of the curve which corresponds to specific 
thrust of 399.9453 (N/kg/s) and propulsive efficiency of 
0.8446 is chosen, for a maximum decrease of 3% in 
propulsive efficiency, specific thrust will be 1.35 times 
higher. The mentioned point might be an appropriate 
design point. An analysis similar to that of Figure 5 may be 
presented for Figure 7. 
 
 

 
Figure 4. Pareto Front: Thrust specific fuel consumption & 
Specific Thrust 

 
Figure 5. Pareto Front: Thermal Efficiency & Specific Thrust 

 
 

 
Figure 6. Pareto Front: Propulsive Efficiency & Specific Thrust 

 
 

 
Figure 7. Pareto Front: Overall Efficiency & Specific Thrust 

 
 

7. 2. The Results of Optimization with Three 
Objective Functions       In this section, the three 
functions of specific thrust, thrust specific fuel 
consumption and overall efficiency are considered as 
objective functions. The optimal design variables are 
determined in a way that the turbofan engine maintains the 
maximum overall efficiency and minimum thrust specific 
fuel consumption while cruising for the maximum specific 
thrust at take-off. The results which are presented in Table 
2 are sorted based on specific thrust decrease. The key to 
verifying the correctness of the solutions is to find single-
objective solutions or nearby values. The optimal values of 
objective functions specific thrust, thrust specific fuel 
consumption, and overall efficiency are presented in rows 
1, 107, 111 of Table 2, respectively. The correctness of 
results might be verified by comparing the above-

17

18

19

20

21

250 300 350 400 450 500

SpecificThrust at Take-off [N/(kg/sec)]

 T
hr

us
t s

pe
ci

fic
 fu

el
 c

on
su

m
pt

io
n 

at
 

C
ru

ise
[(m

g/
se

c)
/N

]

0.19

0.21

0.23

0.25

0.27

0.29

0.31

250 300 350 400 450 500

SpecificThrust at Take-off [N/(kg/sec)]

Th
er

m
al

 E
ffi

ci
en

cy
 a

t C
ru

is
e

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

250 300 350 400 450 500

SpecificThrust at Take-off [N/(kg/sec)]

Pr
op

ul
si

ve
 E

ffi
ci

en
cy

 a
t C

ru
is

e

0.14

0.16

0.18

0.2

0.22

0.24

250 300 350 400 450 500

SpecificThrust at Take-off [N/(kg/sec)]

O
ve

ra
ll 

E
ffi

ci
en

cy
 a

t C
ru

ise



967                                                       M. Gorji et al. / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014) 961-970 

mentioned values and the values from Table 1. To use this 
table, the designer, according to the desired range of 
specific thrust, should find the two endpoints of the range 
in the table and reads the remaining objective functions. 
The desighner also chooses the best performance point of 
the engine and derives the values of design variables which 
generate the desired values for objective functions using 
the columns cHπ , cLπ , fπ  and α . According to what 
herein before mentioned, the rows 92 to 107 might be 
appropriate for designing since specific thrust is within the 

range of 300 (N/kg/s) to 330 (N/kg/s), overall efficiency is 
within the range of 0.183 to 0.2238, and thrust specific fuel 
consumption is within the range of 17.7729 mg/(N.s) to 
18.8845 mg/(N.s). However, the designer may use other 
ranges in the table in order to fulfill other purposes such as 
less fuel consumption. The table clearly shows, in the most 
of the cases, the better values of overall efficiency 
correspond to the better values of thrust specific fuel 
consumption. .

 
 

TABLE 2. Optimized objective functions and design variables in Turbofan engines  
No ( )0F m N kg s&  ( )S mg s N  

oη  
cHπ  

cLπ  
fπ  α  

1 447.4036 21.4707 0.145 7.99 3.9324 2.4817 5.0061 
2 445.9262 20.5546 0.1504 7.9899 3.9918 2.499 5.0061 
3 444.3184 20.5165 0.1511 7.9899 3.9918 2.499 5.0502 
4 443.7915 20.5047 0.1513 7.9899 3.9918 2.499 5.0647 
5 443.2117 20.4918 0.1516 7.9899 3.992 2.499 5.0806 
6 440.3643 20.4349 0.1528 7.9899 3.992 2.499 5.1589 
7 439.2339 20.4151 0.1532 7.9899 3.992 2.499 5.19 
8 437.707 20.3563 0.1539 7.9899 3.9918 2.499 5.2319 
9 436.8427 20.3376 0.1543 7.9899 3.992 2.499 5.2557 
10 436.3833 20.328 0.1545 7.9899 3.992 2.499 5.2683 
11 435.2145 20.3043 0.155 7.9899 3.9918 2.499 5.3003 
12 431.8095 20.2403 0.1564 7.9899 3.992 2.497 5.3934 
13 428.3742 20.2039 0.1558 7.9899 3.9918 2.3407 5.4733 
14 427.9417 20.1927 0.156 7.9899 3.9918 2.3407 5.487 
15 425.7409 20.101 0.1582 7.9899 3.9924 2.4189 5.5697 
16 423.7547 20.0636 0.1591 7.9899 3.9924 2.4189 5.6278 
17 421.8795 20.0274 0.1589 7.9899 3.9918 2.3407 5.6791 
18 420.1534 19.986 0.1597 7.9899 3.9918 2.3407 5.7338 
19 419.2892 19.9662 0.1602 7.9899 3.9918 2.3407 5.7611 
20 417.5797 19.929 0.161 7.9899 3.9918 2.3407 5.8151 
21 416.5625 19.9081 0.1615 7.9899 3.9918 2.3407 5.8472 
22 415.8202 19.8935 0.1619 7.9899 3.9918 2.3407 5.8705 
23 415.0082 19.892 0.1612 7.9899 3.9918 2.2781 5.8864 
24 414.5509 19.8802 0.1615 7.9899 3.9918 2.2781 5.9019 
25 413.0902 19.8453 0.1632 7.9899 3.9918 2.3407 5.9559 
26 411.4364 19.8193 0.1631 7.9899 3.9918 2.3407 6.0072 
27 410.6312 19.7868 0.1635 7.9899 3.9918 2.2781 6.0339 
28 407.2934 19.719 0.1652 7.9899 3.9918 2.2781 6.1456 
29 406.9066 19.712 0.1654 7.9899 3.9918 2.2781 6.1584 
30 406.0155 19.6966 0.1659 7.9899 3.9918 2.2781 6.188 
31 404.8674 19.6773 0.1657 7.9899 3.9918 2.2781 6.226 
32 404.037 19.6633 0.1652 7.9899 3.9918 2.2781 6.2533 
33 403.0698 19.6656 0.1656 7.9899 3.9918 2.1773 6.2684 
34 402.1313 19.8086 0.166 7.7396 3.7964 2.2351 6.3491 
35 401.737 19.6291 0.1663 7.9899 3.9918 2.1773 6.3186 
36 400.9705 19.6254 0.1664 7.9899 3.9918 2.1617 6.3394 
37 400.4561 19.6111 0.1667 7.9899 3.9918 2.1617 6.3591 
38 399.5916 19.6789 0.1668 7.9899 3.8168 2.1773 6.4167 
39 399.1257 19.5622 0.1678 7.9899 3.9918 2.1773 6.4167 
40 396.0952 19.6426 0.1686 7.5024 3.9918 2.1773 6.5541 
41 395.4477 19.4801 0.1699 7.9899 3.9918 2.1773 6.5541 
42 394.7113 19.4657 0.1703 7.9899 3.9918 2.1773 6.5815 
43 393.2862 19.4375 0.1708 7.9899 3.9918 2.1617 6.6325 
44 391.7585 19.408 0.1713 7.9899 3.9918 2.1617 6.6901 
45 391.3549 19.4003 0.1711 7.9899 3.9918 2.1617 6.7053 
46 390.9306 19.3922 0.1708 7.9899 3.9918 2.1617 6.7212 
47 390.2812 19.3797 0.1704 7.9899 3.9918 2.1617 6.7455 
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TABLE 2. Optimized objective functions and design variables in Turbofan engines (continued)   

  No ( )0F m N kg s&  ( )S mg s N  
oη  

cHπ  
cLπ  

fπ  α  
48 385.833 19.2962 0.1674 7.9899 3.9918 2.1617 6.9096 
49 385.8157 19.293 0.1675 7.9899 3.9973 2.1617 6.9096 
50 384.7135 19.3831 0.1714 7.9899 3.9918 1.997 6.8655 
51 383.7862 19.4093 0.1722 7.9899 3.9918 1.997 6.9089 
52 381.4586 19.3363 0.1737 7.9899 3.9918 1.997 7.0183 
53 379.7038 19.287 0.1749 7.9899 3.9918 1.997 7.101 
54 377.7424 19.2046 0.1762 7.9899 3.9918 1.997 7.1936 
55 376.8229 19.1763 0.1768 7.9899 3.9918 1.997 7.237 
56 375.6642 19.1417 0.1776 7.9899 3.9918 1.997 7.2917 
57 374.9982 19.1225 0.1781 7.9899 3.9918 1.997 7.3231 
58 373.837 19.0903 0.1789 7.9899 3.9918 1.997 7.3778 
59 372.1617 19.0469 0.18 7.9899 3.9918 1.997 7.4565 
60 371.5136 19.0312 0.1805 7.9899 3.9918 1.997 7.4868 
61 366.7805 18.9218 0.1788 7.9899 3.9918 1.997 7.7059 
62 364.5063 19.0061 0.1822 7.9899 3.9918 1.9032 7.733 
63 363.8526 18.9834 0.1827 7.9899 3.9918 1.9032 7.7684 
64 361.2011 18.9989 0.1834 7.9899 3.9914 1.872 7.857 
65 360.0009 18.9619 0.1843 7.9899 3.9914 1.872 7.9253 
66 359.5916 18.95 0.1847 7.9899 3.9914 1.872 7.9487 
67 358.3122 18.8104 0.187 7.9899 3.9918 1.9032 8.0686 
68 357.5064 18.7888 0.1876 7.9899 3.9918 1.9032 8.112 
69 355.6992 18.7568 0.1886 7.9899 3.9918 1.8927 8.1988 
70 355.2722 18.7458 0.189 7.9899 3.9918 1.8927 8.2221 
71 353.9106 18.6958 0.1865 7.9899 3.9918 1.9032 8.3041 
72 352.4465 18.7812 0.189 7.9899 3.9914 1.8407 8.3041 
73 350.2504 18.6029 0.1839 7.9899 3.9918 1.9032 8.4955 
74 348.9241 18.609 0.1892 7.9899 3.9914 1.8716 8.5533 
75 348.122 18.573 0.182 7.9899 3.9918 1.9029 8.6042 
76 346.731 18.7564 0.1919 7.7462 3.9914 1.8091 8.6042 
77 346.4799 18.6774 0.1927 7.9899 3.9914 1.8091 8.6042 
78 346.0071 18.5319 0.187 7.9899 3.9914 1.8716 8.7143 
79 345.609 18.6468 0.1935 7.9899 3.9914 1.8091 8.6596 
80 344.329 18.6036 0.1946 7.9899 3.9914 1.8091 8.7409 
81 343.8982 18.5896 0.195 7.9899 3.9914 1.8091 8.7683 
82 343.3928 18.5736 0.1954 7.9899 3.9914 1.8091 8.8003 
83 339.5605 18.4607 0.1959 7.9899 3.9914 1.8091 9.0417 
84 337.6903 18.405 0.1944 7.929 3.9914 1.8091 9.1624 
85 337.6187 18.3871 0.1945 7.9899 3.9914 1.8091 9.1624 
86 336.4065 18.3625 0.1936 7.9899 3.9914 1.8091 9.2369 
87 336.02 18.3555 0.1933 7.9899 3.9914 1.8091 9.2605 
88 335.108 18.3401 0.1926 7.9899 3.9914 1.8091 9.3159 
89 332.7682 18.2953 0.1905 7.9899 3.9914 1.8091 9.4556 
90 332.3068 18.7251 0.1992 7.9865 3.5487 1.7344 9.4245 
91 331.1081 18.2792 0.1901 7.9899 3.9914 1.8047 9.5538 
92 330.5544 18.6578 0.201 7.9865 3.5487 1.7344 9.5538 
93 329.8003 18.3586 0.2046 7.9899 3.9917 1.7344 9.5538 
94 321.2242 18.5012 0.2048 7.9899 3.9945 1.6207 9.6986 
95 316.9569 18.2714 0.183 7.9282 3.9857 1.7736 10.3934 
96 316.813 18.8845 0.2049 6.1041 3.8581 1.6766 10.4739 
97 315.8614 18.2036 0.1855 7.9899 3.9918 1.7628 10.4749 
98 315.8445 18.2016 0.1855 7.9899 3.9973 1.7628 10.4749 
99 314.7081 18.5677 0.2113 7.9899 3.6445 1.6221 10.3549 
100 314.1896 18.3155 0.2144 7.9899 3.9945 1.6221 10.3549 
101 308.1819 18.0565 0.2223 7.9899 3.9918 1.6238 10.9292 
102 307.0281 18.0193 0.2237 7.9899 3.9945 1.6221 11.0289 
103 306.4735 17.9986 0.224 7.9899 3.9945 1.6221 11.081 
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TABLE 2. Optimized objective functions and design variables in Turbofan engines (continued). 

No ( )0F m N kg s&  ( )S mg s N  
oη  

cHπ  
cLπ  

fπ  α  
104 306.0517 17.9825 0.2238 7.9899 3.9945 1.6221 11.1206 
105 301.7555 17.8122 0.2214 7.9899 3.9918 1.6218 11.5185 
106 301.3264 17.799 0.221 7.9899 3.9945 1.6221 11.5581 
107 300.1217 17.7729 0.2202 7.9899 3.9918 1.6218 11.6667 
108 297.3817 18.1166 0.2301 7.6126 3.7865 1.5789 11.8097 
109 297.1528 17.9987 0.2315 7.9782 3.7865 1.5789 11.8097 
110 297.1448 17.9951 0.2315 7.9899 3.7865 1.5789 11.8097 
111 296.8151 17.8654 0.2331 7.9899 3.9916 1.5789 11.8097 

 
  

8. CONCLUSION 
 
The Modified NSGA-II has been employed for 
thermodynamic optimization of turbofan engine. This 
optimization process has been done with two and three 
objective functions. The results have been presented in two 
forms of Pareto Fronts and table. The results enable  the 
designer to derive the desired parameters according to the 
flight objectives. In addition, the off-design model of 
turbofan engine is studied. Thus, it is possible to 
investigate the performance functions of turbofan engines 
in different take-off and cruise heights. The results of this 
paper are concluded as: For the maximum specific thrust at 
take-off simultaneously the minimum thrust specific fuel 
consumption and maximum efficiencies at cruising, the 
optimum design parameters have been chosen. 
Furthermore, the thrust specific fuel consumption and 
overall efficiency functions are not conflicted in large 
domain of performance at cruise and in the range of 300 
(N/kg/s) to 400 (N/kg/s) of the specific thrust at take-off, 
the propulsive efficiencies variation at cruise is negligible. 
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  چکیده
  

 
براي انجام، بهینه سازي چند هدفی  .در این مطالعه بهینه سازي توابع عملکردي موتورهاي توربوفن مورد بررسی قرار می گیرد

ي شامل نسبت فشارها یطراح يهاریمتغ. الگوریتم ژنتیک به مدل خارج از نقطه طراحیِ موتور توربوفن اعمال می شود
توابع که  ندیآی بدست م این متغیرها به گونه اي .باشندی فن ونسبت کنار گذر م فشار، کمکمپرسور پرفشار، کمپرسور

درهنگام  ژهیرانش وتوابع عملکردي عبارتند از . عملکردي موتور توربوفن به طور همزمان در بهترین شرایط خود قرار گیرند
 شده حیتوسط روش تصح يساز نهیبه نیا .در هنگام پرواز یوکل ی، حرارترانش يراندمانها، سوخت ژهیمصرف وو  برخاست

NSGAII یچند هدف يساز نهیحاصل از به جینتا .باشدی م یچند هدف کیژنت تمیالگور يروشها نیکه از بهتر ی گیردانجام م 
. دینما می را انتخاب یطراح ياز بردارها یکی مساله طیکه طراح با توجه به شرا بودهجواب  ياز بردارها يشامل مجموعه ا

انجام بهینه سازي چند هدفی بر روي مدل خارج از نقطه طراحیِ موتور توربوفن از نوآوري هاي این مقاله می باشد که براي 
 .اولین بار مورد مطالعه قرار گرفته است
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