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A B S T R A C T  

   

In this paper, we study the location routing problem with intermediate replenishment facilities 
(LRPIRF), an extension of the location routing problem (LRP), where the vehicles can replenish at 
some intermediate facilities. Vehicles leave the depot with load on-board, serve customers until out of 
load, may return to an intermediate facility to replenish, and finally return to the depot, completing 
their route. In this paper, we initiate a mathematical mixed integer programming model with new kind 
of subtour elimination constraints for this problem. Moreover, the facility location phase is considered 
besides vehicle routing phase in our problem. The objective of the problem is to find routes for 
vehicles to serve all customers at a minimal cost in terms of total travel cost and total facility location 
cost, without violating the capacity constraint of the vehicles. The solution to the LRPIRF is obtained 
through CPLEX solver in commercial software GAMS 23.5.1 ,Genetic Algorithm and Tabu Search 
algorithm. Computational results are obtained on a set of randomly generated instances and indicate 
the effectiveness of the proposed algorithms in terms of solution time and quality. 
 
 

doi: 10.5829/idosi.ije.2014.27.06c.09 
 

 
1. INTRODUCTION1 
 
Due to the large capital investments on the fleet of 
vehicles and other initial fixed costs in transportation 
systems, companies are intensely interested in 
exploiting effective methods to reduce these kinds of 
costs. The location routing problem with intermediate 
‘replenishment’ facilities (LRPIRF) is the case of a 
transportation company which intends to use short 
number of vehicles (most efficiently one vehicle) 
capable of long-lasting traveling to service all its 
customers. This is the aspect of the problem that we 
investigate which happens when a vehicle is allowed to 
replenish at some intermediate facilities during its route 
before returning to the depot. This, not only reduces 
investment costs, but also leads to saving in fuel 
consumption and less air polution. 
     Due to the context of the problem, real world 
problems are quite different from the basic vehicle 
routing problems [1]. The LRPIRF is a generalization of 
the location routing problem (LRP), a VRP variant, in 
which facility location and vehicle routing decisions are 
                                                        
1  * Corresponding Author Email: setak@kntu.ac.ir (M. Setak) 

made simultaneously [2]. A definition of a location 
routing problem by Nagy and Salhi [2] states that this 
problem involves “location planning with tour planning 
aspects taken into account.” The LRP contains both the 
location-allocation problem (LAP) and the vehicle 
routing problem (VRP). Both the LAP and the VRP are 
NP-Hard in complexity [3]. 
     LRPIRF is a single-vehicle, single depot problem 
with the vehicle located at the depot, which leaves the 
depot with load on-board and delivers the product to a 
set of customers over a period. Upon depletion of the 
vehicle’s load, it visits an intermediate facility 
(excluding the depot) along its route to replenish. This 
process continues until all customers are served. Then, 
the vehicle goes back to the depot. 
     Mathematical programming models are very useful 
in analyzing complex decision-making problems [4]. 
This is probably the first paper that presents a mixed 
integer programming model for the LRPIRF. In other 
words, our problem integrates the phase of facility 
location into the vehicle routing problem with 
intermediate replenishment facilities (VRPIRF) 
introduced by Tarantilis et al. [5]. Several similar 
applications available in the literature where a vehicle 
can stop at intermediate facilities/depots in order to 
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replenish are listed below: 
     1) Crevier et al. [6] introduced the multi-depot 
vehicle routing problem with inter-depot routes 
(MDVRPI), proposed a route-based mathematical 
formulation for it, and solved it by means of a heuristic 
algorithm combining tabu search and integer 
programming. In this problem, a fleet of homogenous 
vehicles is available at depots. Vehicles leave their 
centralized depot and satisfy a set of customers demand, 
then may either visit an intermediate depot or return to 
their centralized depot in order to replenish. The time 
needed for a vehicle to dock at a depot is considered in 
this problem. Each vehicle may cover multiple routes 
with the restriction that the total duration of all routes 
does not exceed a specified value. A route is a vehicle’s 
path between two successive visits to any depot (central 
or replenishment), and a rotation is the set of routes of a 
vehicle starting and ending at the central depot. Jordan 
and Burns [7] and Jordan [8] discuss a less complicated 
version of the problem where customer demands are 
equal to Q and the routes between two depots are 
backwards and forwards. They solve it by a greedy 
algorithm. Tarantilis et al. [5] proposed an alternative 
name for MDVRPI called VRPIRF to highlight both the 
replenishment role of the intermediate facilities and the 
use of a single central depot for vehicles. They also 
presented a hybrid guided local search for this problem 
and solved it with a three-step approach. Kek et al. [9] 
proposed two node-based mathematical formulations for 
two problems where vehicles are allowed to visit 
intermediate depots in order to reload. The first problem, 
DCVRP_Fix is an extension of the traditional Distance-
Constrained VRP (DCVRP), in which each vehicle route 
starts and ends at the same depot and can only pass 
through one depot exactly once. The second problem, 
DCVRP_Flex is a relaxation of DCVRP_Fix, where 
vehicles are free to start and end their tour at different 
depots. 
     2) The vehicle routing problem with ‘satellite’ 
facilities (VRPSF) is a multi-vehicle, single-depot 
problem with vehicles located at the depot, which 
deliver the product to a set of customers. Upon 
depletion of a vehicle’s load, the vehicle may either 
return to the depot for replenishment or visit a satellite 
facility to reload. Satellite facility is an intermediate 
facility with infinite supply used for the replenishment 
by a vehicle. VRPSF has applications in fuels and 
retail items distribution. Bard et al. [10] presented a 
mixed integer linear programming formulation and a 
branch and cut algorithm for solving the VRPSF. In 
[11] a comprehensive decomposition approach and 
three heuristics are developed for the inventory routing 
problem with satellite facilities. 
     3) The vehicle routing problem with intermediate 
facilities (VRPIF) is a multi-vehicle, single-depot 
problem in which vehicles leave the depot with no load 
on-board, visit an intermediate facility to replenish, 

serve customers until out of load, and then either return 
to an intermediate facility to reload or return to the 
depot, completing their route. The applications of 
VRPIF appear in distribution problems, collection 
problems such as waste collection, and reverse logistics. 
Angelelli and Speranza [12] proposed a tabu search 
heuristic for solving the VRPIF. A version of this 
problem with time windows was introduced by Sevilla 
and de Blas [13] who solved it based on the neural 
network and the ant colony system. Ghiani et al. [14] 
introduced an ant colony optimization for the arc 
routing problem with intermediate facilities under 
capacity and length restrictions. 
     In the literature, there are several other variants of 
VRP similar to the LRPIRF. Angelelli and Speranza 
[12], Benjamin and Beasley [15], Liu et al. [16] and 
Kim et al. [17] present applications of the problem in 
the waste collection. AmiriFard and Setak [18] proposed 
and compared two approaches for multi-depot vehicle 
routing problem with inventory transfer between depots 
in a three-echelon supply chain. First approach is a 
constructive two-phase heuristic and the second 
approach is a tabu search algorithm with different 
neighborhood structures that solve the model integrally, 
not in two phases. The location routing problem with 
intermediate storage facilities (LRPIF) is a product 
distribution problem inspired by a large magazine 
publisher and distributor in the southeastern United 
States [19]. In this problem, product is shipped from a 
central distribution facility to holding locations called 
‘receptacles’. First, the receptacles are located and the 
amount of the product shipped to them is determined 
during the solution procedure. Then, a fleet of vehicles 
collect product from the receptacles and deliver it to the 
customers. 
     A summary of reviewed papers is presented in Table 
1, according to which, LRPIRF has not received 
attention from researchers in terms of considering 
facility location phase. 
     Our aim in this paper is to initiate a node-based 
mixed integer linear programming model with a new 
kind of subtour elimination constraints to the LRPIRF, 
to consider facility location phase in this problem for 
the first time, and to solve the problem with genetic 
algorithm and tabu search approaches. 
     The paper is organized as follows: In section 2, we 
describe the problem. In section 3, we present the model 
formulation. In section 4, two solution approaches are 
discussed and finally in section 5, we discuss the results 
obtained when the algorithms are run on random 
instances and the sensitivity analysis is provided. 
 
 
2. PROBLEM DESCRIPTION 
 
Figure 1 shows an example of an LRPIRF with two 
intermediate replenishment facilities and six customers. 
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Figure 1. An example of the LRPIRF with two intermediate replenishment facilities and six customers 

 
 

TABLE 1. Review of some papers in the location routing problem with intermediate replenishment facilities 

Author(s) 

Type of problem Solution approach Type of model Facility 
location 

MDVRPI (P)VRPIF VRPSF Meta-heuristic Heuristic Mathematical Node-
based 

Route-
based 

Bard et al. [10]   ü  ü ü ü   
Bard et al. [11]   ü  ü     
Angelelli and  
Speranza [12] 

 ü   ü     

Sevilla and  
Blas [13] 

 ü   ü     

Crevier et al. [5] ü    ü ü  ü  
Tarantilis [5] ü    ü     
Kek et al. [9] ü    ü ü ü   
Ghiani et al. [14]  ü   ü     
Presented paper ü   ü  ü ü  ü 
 
 
The route of the vehicle in this instance is (0 1 2 A 3 4 5 
B 6 0). So, three sub-routes are required to serve all six 
customers. The first sub-route starts from the depot at 0, 
continues to customers 1 and 2 and then the vehicle 
goes to intermediate facility A to replenish. After 
replenishment, second sub-route continues to customers 
3, 4 and 5 and then the vehicle visits intermediate 
facility B. Similarly, the third sub-route continues to 
customer 6 and then the vehicle returns to the depot, 
completing its route. 
 
 
3. MATHEMATICAL MODELING 

 
The LRPIRF can be formulated as follows. Let 

( )AVG ,=  be a directed graph where 
{ }110 ,...,, ++= rnvvvV  is the set of vertices in which the 

vertices 0v  and 1++rnv  correspond to the start depot and 
the final depot, respectively (their locations are the 
same), { }nc vvV ,...,1=  is the customer set, 

{ }rnnnr vvvV +++= ,...,, 21  is the set of r intermediate 
replenishment facilities and  ( ){ }jiVvvvvA jiji ≠∈= ,,:,  is 
the arc set. Each arc Vji ∈),(  has a traveling cost per 

time unit, ijc , and a traveling time, ijt , which tight 
triangular inequality holds (i.e., ikjkij ttt >+ ). The origin 
depot and all intermediate replenishment facilities have 
infinite supply. There is a single vehicle of capacity 
CAP located at the origin depot. A demand id  is 
associated with each customer. At first decision, 
variables used in formulation are introduced: 








=

0

1

ijx
 If the vehicle travels from node i to node j 

Otherwise 

,...2,1,0=rf  The number of times intermediate facility r 
is used for replenishment 

iu  the load of the vehicle after visiting node i 
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with these notations, we formulate the mathematical 
model: 

r
rVrVi

ij
Vj

ijijij fCFctxMin ∑∑∑
∈∈

≠
∈

+  
 (1) 

1=∑
≠
∈

ij
Vj

ijx  
cVi ∈∀  (2) 

∑
∈

=
cVj

jvx 1,0
 

 (3) 

∑
∈

++
=

cVi
rnvix 11,

 
 (4) 

∑
∈

=
cVj

rrj fx  
rVr ∈∀  (5) 

0=− ∑∑
≠
∈

≠
∈

ji
Vi

ji

ji
Vi

ij xx  
Vj∈∀  (6) 

0
}1,{},0{

=− ∑ ∑∑ ∑
++∈ ∈∈ ∈ rnvrVi cVj

ji
rVvi cVj

ij xx  
(7) 

ii du ≥  cVi ∈∀  (8) 

CAPui ≤  cVi ∈∀  (9) 

jiii xCAPdCAPu )( −+≤  
},{

,

0 r

c

Vvj
Vi

∈∀
∈∀  (10) 

jiij

ijjij

xddCAP
CAPxCAPduu

)( −−+

+−+≥  
c

c

Vj
Vi

∈∀
∈∀ ,  (11) 

0,1
=

++ jv rn
x  Vj ∈∀  (12) 

00, =vix  cVi∈∀  (13) 

0=iu  cVVi \∈∀  (14) 

{ }1,0∈ijx  jiVji ≠∈∀ ,,  (15) 

,...2,1,0=rf  rVr ∈∀  (16) 

0≥iu  cVi ∈∀  (17) 

The objective (1) of this problem is to minimize the 
total service cost of customers including: 

a)  The cost of travelling: ∑∑
∈

≠
∈Vi

ij
Vj

ijijij ctx  

b)  The cost of using intermediate replenishment 
facilities: 

r
rVr

fCF∑
∈

 

Equation (2) ensures that each customer has exactly one 
successor that might be another customer, an 
intermediate facility, or the origin depot. Constraints (3) 
and (4) ensure that the vehicle passes through the depot 
exactly once. Constraints (5) ensure that the vehicle 
passes through any facility the number of times it is 
used for replenishment. Constraints (6) ensure 
conservation of flow at nodes. Constraints (7) ensure 
conservation of flow through the depot and facilities by 

forcing the vehicle leaving the depot node to return to it. 
Constraints (8) to (11) are subtour elimination and 
capacity constraints [20]. The amount iu  must be at 
least as large as the demand of customer i (8) and 
smaller than the capacity CAP of the vehicle (9). If 
customer i is the first of a tour, iu is equal to the 
demand of this customer. This is expressed through the 
three constraints (8), (9), and (10). Indeed, if i is the first 
customer of a tour, jix  is 1, so the constraint (10) is 
equivalent to the constraint (18). 

ii du ≤  (18) 

     From (18), (8), and (9) we conclude that iu  is equal 
to the demand of customer i. If i is not the first of a tour, 
then jix  is 0 and the constraint (10) is equivalent to the 
constraint (19), which is an extra constraint since 
constraints (8) and (9) include it. 

CAPui ≤  (19) 

     Suppose that i is not the first customer of the tour. 
Then, iu  must equal the sum of demands served 
between either the depot or facilities and customer i, i.e. 
if customer j succeeds customer i in a tour, ju  must be 
equal to the demand served on the tour from the depot 
to i, plus the amount ordered by j. This lies in the 
constraint (11). Indeed, if j comes immediately after i in 
a tour, ijx  is 1 and jix  is 0, and the constraint (11) is 
equivalent to the constraint (20). 

jij duu +≥  (20) 

     When j is not the immediate successor of i, 
constraint (11) remains valid. If j immediately precedes 
i, the constraint (11) becomes equal to (21). 

iij duu −≥  (21) 

     This constraint means that the demand served from 
the depot to j is not smaller than the demand served 
between the depot and the successor i of j on the tour. 
Therefore, in addition to (21), the constraint (22) is 
obtained. 

iji duu +≥  (22) 

     The combination of constraints (21) and (22) is 
equivalent to equation (23). 

iji duu +=  (23) 

     The constraint (24) is obtained when i and j are not 
next to each other. This constraint is redundant, since it 
is expressed by the constraints (8) and (9). 

CAPduu jij −−≥  (24) 
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     Constraints (12) and (13) complete the flow 
characterization by stemming the flow of the vehicle 
from the final depot and initiating it from the start 
depot, respectively. Constraints (14) initialize the load 
variables, iu  to zero at the depot and all facilities. 
Constraints (15), (16) and (17) indicate that ijx  are 

binary variables, rf  are integer variables and the 

variables iu  are non-negative. 
 
 
4. SOLUTION APPROACHES 
 
4. 1. Genetic Algorithm       It is quite time-
consuming to solve the LRP on large scale due to our 
initial test using CPLEX. To solve the LRPIRF on a 
large scale, a Genetic Algorithm is proposed in this 
paper. GA is based on a parallel search mechanism that 
makes it more efficient than other optimization 
techniques [21]. It has been stated that the GA is 
capable to optimize globally in solving LRPs and VRPs 
[21-24]. 
     Our GA approach begins by generating an initial 
chromosome set, each member of which corresponds to 
a feasible solution of the LRPIRF. A fitness function is 
used to rank chromosomes. In each generation, using an 
elite retaining approach, we choose fitter chromosomes 
from the population to be parents. This process iterates 
until a termination criterion is reached. 
     In summary, our methodology consists of seven 
components successively: (1) chromosome 
representation; (2) generation of the initial population; 
(3) fitness function; (4) selection process; (5) crossover 
operation; (6) mutation operation; and (7) termination 
criterion. The pseudocode for the genetic algorithm 
developed in this paper is presented in Table 2. The rest 
of this section describes these seven components. 
 
4. 1. 1 Chromosome Representation      We use 
route representation to encode the chromosomes for the 
solution of the LRPIRF, in which the customers are 
listed in the order they are visited. In the example 
shown in Figure 2, there are 10 customers numbered 
from 1 to 10. The route representation for this instance 
is (0 4 2 5 1 3 6 9 8 7 10 0). Suppose that three sub-
routes are required to serve all customers. The first sub-
route begins at the depot and continues to customers 4, 
2 and 5, then the vehicle visits facility 11 to replenish. 
After replenishment, second sub-route continues to 
customers 1, 3, 6 and 9, then the vehicle visits 
replenishment facility 12 to replenish. Similarly, the 
third sub-route serves customers 8, 7 and 10, then the 
vehicle goes back to the depot. Solution infeasibility is 
coped with through a function, pseudocode of which is 
presented in Table 3. 

TABLE 2. Pseudocode for the GA 
1 Pi* ← generate the initial population; 
2 Evaluate the chromosomes in Pi; 
3 while the termination criterion is not satisfied do 
4 Po** ← Φ  
5 Repeat 
6 Randomly select two parent chromosomes from Pi; produce two 

offsprings from the parent chromosomes using crossover; and 
insert offsprings into Po; 

7 until Po is full; 
8 for each chromosome in Po do 
9 Perform the mutation operation; 
10 end for 
11 Evaluate the chromosomes in Po; 
12 P ← oi PP ∪ ; 

13 Pi ← Φ  
14 Insert the best chromosome of P into Pi; 
15 By elitist strategy, select chromosomes from P to insert into Pi 

until Pi is full; 
16 end while 
17 Return the best chromosome in Pi. 
* Pi is the initial population. 
** Po is the offspring population. 
 
 

TABLE 3. Pseudocode for the solution fix and feasibility 
1 Exclude the depot and replenishment facilities from solution; 
2 Insert the depot to the beginning of the solution; 
3 While all customers are serviced; 
4 Start summation of customers demands one by one from the 

beginning of the solution; 
5 If the sum of demands exceeds the vehicle capacity;  
6 Add a replenishment facility to the solution; 
7 Set the summation of demands equal to 0; 
8 go to 4; 
9 else if 
10 Continue the summation of demands; 
11 end while 
12 Insert the depot to the end of the solution. 

  
  

 
Figure 2. Chromosome representation 
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4. 1. 2 Initial Population      Initial population is 
created by random permutation of 1 to N, which N is the 
number of customers. 
 
4. 1. 3 Fitness Function      The GA ranks 
chromosomes based on the fitness function value. After 
the crossover and mutation operations, we attempt to 
improve the resultant offsprings in terms of the fitness 
function. At each generation, we use roulette wheel 
selection with fitness-based elite retaining approach 
with a fixed rate ep  called recombination rate to make a 
new population. With considering cp and mp  as 
crossover and mutation rates, respectively, ep  is defined 
as follows: 

1 ( )e c mp p p= − +  
Steps of this approach are presented below: 

1.  The fitness values of individuals are calculated. 
2.  According to the recombination rate, a set of 

fittest individuals is selected for the 
reproduction. 

3.  Elite individuals are retained for the next 
generation. 

Elitism method ensures that the best individual is 
transferred to the next generation and the best solution 
in each generation does not get worse. 
 
4. 1. 4. Selection   In each generation, the GA selects 
parents from the population set for the reproduction, and 
also selects members from the candidate set to form the 
population set for the next generation. We use the elitist 
roulette-wheel selection operator in this paper. 
 
4. 1. 5. Crossover   After selecting two parent 
chromosomes, the GA produces two offsprings using 
crossover operator. The crossover operator used here is 
one-point crossover where the cut point is selected 
randomly. 
 
4. 1. 6. Mutation   Mutation operations allow GA to 
explore wider in the solution space. In our GA, the 
insertion, swap, and inversion operators are used, which 
perform mutation on the set of offsprings produced by 
the crossover operations. The mutation probability of 
each offspring chromosome is equal to Pm. A substring 
is selected from the parent in a random manner and 
turns to form an offspring. The swap mutation works on 
one and the inversion mutation works on one or two 
chromosomes and both are used to increase the diversity 
of the population. In addition, the insertion mutation is 
not able to enhance routes. 
 
4. 1. 7. Termination Criterion      The GA continues 
until the number of iterations (generations) reaches a 
user-defined value. 

4. 2. Tabu Search Algorithm       In this section, a 
meta-heuristic solution approach for solving the 
LRPIRF model is presented. Tabu search is an iterative 
meta-heuristic for solving combinatorial problems. It 
has been stated that tabu search can find high quality 
solutions for the LRPs and VRPs compared to other 
meta-heuristics [25-29]. In this section, we describe the 
TS algorithm we implemented to solve the LRPIRF 
problem. 
     The basic concept of a TS algorithm is to repeatedly 
move from a current solution to another solution in a 
neighborhood of the current solution. Moving from 
current solution to another one is performed by small 
changes in current solution due to a set of rules in the 
neighborhood structure. The overall approach is to 
avoid cycling and getting trapped in local optimum by 
forbidding or penalizing moves which take the solution 
to the solution space previously visited i.e. tabu list. 
     The difference between tabu search and other 
metaheuristic solution approaches is based on the 
concept of tabu list, a short term memory which is the 
storage place of some attributes of the previously visited 
solutions with prohibited moves. Therefore, it gives no 
permission to the revisited solutions and then avoids 
being trapped in the local optimum. If the forbidden 
move does not satisfy the aspiration criterion, only those 
moves that are not forbidden will be examined during 
the local search. The aspiration criterion used in this 
paper is better fitness, i.e. a move gets rid of the tabu list 
if it produces a solution with better fitness function 
value. TS method is terminated when the number of 
iterations reaches a user-defined value. 
     The pseudo-code for the Tabu Search algorithm 
developed in this paper is presented in Table 4.  

  

 
5. DISCUSSION 

 
The MIP model was programmed with CPLEX solver in 
GAMS 23.5.1 and the GA and TS codes were 
implemented in MATLAB R2012b, both run on AMD 
Phenom II Triple-Core Mobile Processor N830 
(2.1GHz), 4GB RAM PC. In this research, 
computational results are obtained on a set of randomly 
generated instances and are compared in terms of 
solution time and objective function value. Tables 6 and 
7 show the results.  

  
5. 1. Parameter Tuning       In small-size instances 1-
6, we set GA and TS parameters due to the 
computational experiments and trial and error. But in 
medium and large scale instances 7-12,  we tune 
parameters through Response Surface design of 
experiments in Minitab 16.2.4. Table 5 shows the tuned 
parameters.  



917                                                              M. Setak et al. / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014)  911-920 

TABLE 4. Pseudocode for the TS algorithm 
1 Generate the initial solution s; 
2 Develop the Tabu List; 
3 While the set of the candidate solutions S  is not complete; 
4 Generate the candidate solution s  from the current solution s;  
5 Add s  to S  only if s  is not forbidden or if the Aspiration 

Criterion is satisfied; 
6 Choose the best candidate solution s* in S ; 
7 If fitness(s*) > fitness(s) then s = s*; 
8 Update the Tabu List and the Aspiration Criteria; 
9 If the termination condition met finish; 
10 Otherwise go to Step 3. 

 
 

TABLE 5. Tuned parameters of GA and TS 

GA 

Iteration=300 

Population size=50 

Crossover rate=0.7 

Mutation rate=0.2 

Recombination rate=0.1 

TS 
Iteration=50 

Tabu list=number of customers 

  
  

  
Figure 3. Comparison of processing times 

  
  

  
Figure 4. Comparison of objective function values 

Table 6 shows that there is very small optimality gap 
between CPLEX and GA solutions such that in half of 
the instances the gap between solutions is zero. Even in 
instances 7-12, the available gap is not considerable. 
This is because the routing costs do not play an 
important role in increasing objective function value. In 
addition, the extreme convergence of GA solutions to 
lower bounds is because of using the same number of 
replenishment facilities. This implies that the proposed 
algorithm is so effective in satisfying the objective of 
the problem by minimizing the routing costs and using 
the optimal number of replenishment facilities i.e. 
minimizing facility location cost, which is obvious in all 
instances. The processing time of 5000 seconds in 
instances 11 and 12 means that their solution process 
has been stopped at that time. Therefore, the OFV 
obtained in that time is presented as the best known 
OFV. Due to Table 7 with the same instances as Table 
6, there is not noticeable optimality gap between 
CPLEX and TS algorithm solutions. Like the GA, the 
convergence of TS algorithm solutions to lower bounds 
is because of minimizing routing costs and using the 
same number of replenishment facilities in all instances. 
This implies that the proposed Tabu Search algorithm is 
effective. 
     In instances 1, 3, 5, 7 and 9, the number of potential 
replenishment facilities is considered deliberately equal 
to the number of used replenishment facilities. But, in 
respectively equal-size instances 2, 4, 6, 8 and 10, the 
number of potential replenishment facilities is more 
than the number of used replenishment facilities, due to 
the location characteristic of the problem. As it is 
obvious, OFVs of equal-size instances in CPLEX 
are equal. This means that considering additional 
numder of replenishment facilities does not increase the 
OFV in CPLEX because CPLEX reaches lower bound 
in both instances. In spite of this, in instances with 
more-than-necessary number of facilities, complexity of 
the solution is high and the processing time is bigger 
than corresponding equal-size instances. In general, we 
conclude that considering more-than-necessary number 
of replenishment facilities increases problem 
complexity and solution time, but does not affect the 
OFV in CPLEX. This issue does not take place always 
in the GA and TS algorithm because they do not 
necessarily reach lower bound in all instances. 
     According to Figure 3, in terms of the processing 
time, the GA and TS algorithm work better than the 
optimality approach, in all instances. Even for large-
scale instances 11 and 12, the processing times in GA 
and TS are lower than 50 seconds; but in order to obtain 
an upper bound of OFV for these intances, the solution 
process has been stopped at 5000 seconds in CPLEX. In 
addition, with increasing in customers number, the 
solution time in CPLEX increases exponentially. This 
implies that CPLEX in not practically able to solve the 
problem in large-scale instances. 
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TABLE 6. Comparison between CPLEX and Genetic Algorithm 

Instance 
number 

Number 
of 
customers 

Number of 
potential 
replenishment 
facilities 

CPLEX GA 
OFV* Processing 

time 
(s) 

Number of 
used 

replenishmnet 
facilities 

OFV Processing 
time 
(s) 

Number of 
used 

replenishment 
facilities 

Optimality 
Gap 
(%) 

1 5 1 441.184 3.391 1 441.184 0.236 1 0 
2 5 4 441.184 3.469 1 441.184 0.426 1 0 
3 6 1 442.974 3.696 1 442.974 0.453 1 0 
4 6 4 442.974 3.811 1 442.974 0.856 1 0 
5 8 2 655.807 16.155 2 655.807 2.170 2 0 
6 8 4 655.807 19.691 2 655.807 2.188 2 0 
7 9 2 666.471 108.737 2 669.884 10.89 2 0.51 
8 9 4 666.471 151.148 2 682.440 11.52 2 2.33 
9 10 2 736.993 619.322 2 742.224 12.26 2 0.7 
10 10 4 736.993 718.563 2 748.770 13.714 2 1.57 
11 11 4 801.385bk 5000 2 757.801 14.072 2 3.86 
12 12 4 826.349bk 5000 2 773.894 14.553 2 5.02 

OFV=Objective Function Value 
bk=best known 
 
 

TABLE 7. Comparison between CPLEX and Tabu Search algorithm 

Instance 
number 

Number 
of 
customers 

Number of 
potential 
replenishment 
facilities 

CPLEX TS 
OFV* Processing 

time 
(s) 

Number of 
used 

replenishment 
facilities 

OFV Processing 
time 
(s) 

Number of 
used 

replenishment 
facilities 

Optimality 
Gap 
(%) 

1 5 1 441.184 3.391 1 441.184 0.548 1 0 
2 5 4 441.184 3.469 1 441.184 0.824 1 0 
3 6 1 442.974 3.696 1 442.974 0.938 1 0 
4 6 4 442.974 3.811 1 442.974 1.149 1 0 
5 8 2 655.807 16.155 2 655.807 5.231 2 0 
6 8 4 655.807 19.691 2 680.158 5.867 2 3.58 
7 9 2 666.471 108.737 2 708.593 10.384 2 5.94 
8 9 4 666.471 151.148 2 723.890 11.492 2 7.93 
9 10 2 736.993 619.322 2 764.472 16.430 2 3.59 
10 10 4 736.993 718.563 2 773.573 18.293 2 4.73 
11 11 4 801.385bk 5000 2 786.327 26.235 2 8.51 
12 12 4 826.349bk 5000 2 798.528 33.552 2 8.41 

OFV=Objective Function Value 
bk=best known 
 

 
     According to Figure 4, GA is better at converging to 
lower bounds in comparison with the TS algorithm in 
all instances. In addition, it is clear that there is a 
considerable increase in OFV from instance 4 to 
instance 5 in all solution approaches. This is because of 
the increase in problem size and specifically the need to 
use one more replenishment facility in instance 5. In 
large-size instances 11 and 12, CPLEX has been 
stopped at 5000 seconds and the best known OFV has 
been obtained as upper bound. Therefore, the 
corresponding OFVs in GA and TS are lower than this 
value. 

6. CONCLUSION 
 

This paper develops a mathematical mixed integer 
programming model with a new kind of subtour 
elimination constraints for the location routing problem 
with intermediate replenishment facilities, which 
specifies optimal allocation of customers to the depot 
and facilities and optimal number of routes between the 
depot and facilities and customers simultaneously. In 
addition, the facility location phase is considered 
besides the vehicle routing phase in the problem. 
     LRP is NP-hard and difficult to be solved optimally 
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in a reasonable time. Therefore, we propose a Genetic 
Algorithm and a Tabu Search algorithm to obtain near 
optimum solutions in large size instances and then 
compare them to determine the effectiveness of the 
algorithm. Computational results show that the 
proposed algorithms are efficient in terms of solution 
time and quality. 
     In terms of future research directions, the problem 
formulation can be extended to include the intermediate 
replenishment facilities with inventory costs and limited 
supply capacity. Considering multiple vehicles in the 
depot and facilities could also be examined. 
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  چکیده
  

 
کنیم که توسعه  را بررسی می) LRPIRF(مسیریابی با تسهیلات میانی بارگیري مجدد  -یابی در این مقاله، مساله مکان

میانی، بارگیري مجدد  تسهیلتوانند در چند  است که در آن وسایل نقلیه می) LRP(مسیریابی  -یابی مساله مکانیافته 
توانند  دهند، می کنند، مشتریان را تا اتمام بار سرویس می شروع به حرکت می دپووسایل نقلیه با بار کامل از . انجام دهند

در این مقاله، . گردند باز می دپوکنند، و سرانجام جهت اتمام مسیرشان به  میانی عزیمت  تسهیلبراي بارگیري مجدد به 
هاي حذف  براي این مساله یک مدل ریاضی برنامه ریزي عدد صحیح مختلط مبتنی بر گره با نوع جدیدي از محدودیت

نیز در نظر گرفته  تسهیلاتیابی  علاوه بر این، در کنار فاز مسیریابی وسیله نقلیه، فاز مکان. کنیم معرفی می زیرتور
بدون نقض ست که یا گونه دهی به مشتریان به ه یافتن مسیر براي وسایل نقلیه جهت سرویسهدف مسئل. شود می

توسط  LRPIRFمساله . کمینه شود تسهیلاتیابی  محدودیت ظرفیت وسایل نقلیه، هزینه کل سفر و هزینه کل مکان
نتایج . شود ممنوع حل می و رویکردهاي الگوریتم ژنتیک و جستجوي GAMS 23.5.1افزار  در نرم CPLEXگر  حل

 هاي آیند و کارائی الگوریتم دست میه شوند ب محاسباتی از طریق چندین مسئله نمونه که به صورت تصادفی تولید می
  .دهند پیشنهادشده را  از لحاظ زمان حل و کیفیت جواب نشان می
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