
IJE TRANSACTIONS B: Applications   Vol. 27, No. 5, (May 2014)  675-688 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 
Entropy-based Serviceability Assessment of Water Distribution Networks, Subjected 
to Natural and Man-made Hazards 
 
M. Hosseini*, H. Emamjomeh 
 
International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran 

 

 

P A P E R  I N F O   
 

 

Paper history: 
Received 19 August 2013 
Accepted in revised form 07 November 2013 
 

 
 

Keywords:   
Lifelines 
Hydraulic Uncertainties 
Failure Probabilities of Links 
Informational Entropy 

 
 
 
 
 
 

 
A B S T R A C T  

   

In this study a modified entropy-based measure is presented for evaluating the serviceability level of water 
distribution networks in which the hydraulic uncertainties, such as flow rates in pipes, as well as the 
uncertainties due to mechanical parameters, like failure probabilities of links, are considered 
simultaneously. In the proposed entropy calculation method, the connectivity order of the network demand 
nodes is incorporated in the entropy calculations by defining a factor based on the ratio of the nodal 
demand to the total flow rates of all links of the network. The failure probability of the network links has 
been incorporated using a penalty function based on their failure probability in any specified hazard 
scenario. Then, this penalty function is inserted satisfactorily in the existing hydraulic entropy function 
(defined by previous researchers) of the network. In this way, the effect of mechanical behavior of links is 
also taken into account in the hydraulic entropy function of the network, while keeping its simplicity and 
applicability. By calculating the entropy values of some sample networks, it has been shown that the 
proposed entropy-based index is an efficient tool to find the optimum hydraulic layout for designing a new 
system, or to make decision on the best mitigation plan for an existing network subjected to different 
natural and man-made hazards. 
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1. INTRODUCTION1 
 
A water distribution system is a network of source 
nodes, pipes, demand nodes and other hydraulic 
components such as pumps, valves and tanks. The 
objective of the water distribution system is to supply 
water at a sufficient pressure and quantity to all its 
users, including water for the purpose of fire-fighting. 
Quantification of water distribution networks’ 
reliability, as a lifeline system whose failure causes 
serious social, economical and environment 
consequences, has been considered as one of the most 
important research topics in risk management in the past 
decades [1, 2] as well as the water system maintenance 
[3]. Reliability of a water distribution network can be 
defined as the probability that the given demand nodes 
in the system receive sufficient supply with satisfactory 
pressure head [4]. There are several measures of 
reliability for water distribution networks, proposed by 
various researchers [5-9]. But, one of the reasons that 
reliability has not become a common phase in design 
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practice yet is its complexity [10]. 
      Redundancy, on the other hand, in a water 
distribution network implies the reserve capacity of the 
network, and that the demand nodes have alternative 
supply paths in the event if links fail in presenting the 
desired service [11, 12]. Redundancy, which is related 
to reliability, is an aspect of the overall system 
performance that is often neglected. A redundant 
network is inherently very pleased and reliable. Seismic 
performance of lifeline networks during the past 
earthquakes have turned out that a single redundancy 
can provide a remarkable increase in the system 
reliability. In other words, networks with some amount 
of redundancy have much higher capacity to respond to 
partial failure in the network [13]. Thus, redundancy can 
be considered as a surrogate measure for the reliability 
of water distribution networks. Tanyimboh and 
Templeman [14, 15] improved the preliminary idea 
expressed by Awumah and his colleagues [11, 12] and 
proposed a better definition of the entropy function for 
water distribution networks. To find the maximum-
entropy flow distribution, Tanyimboh and Templeman 
developed a non-iterative algorithm for single-source 
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networks. The only known data are assumed to be the 
network topology, the flow directions in each pipe, and 
the supplies and demands at each node. As the 
parameters such as pipe length, diameter and roughness 
are not known, there will be an almost infinite number 
of possible flow distributions unless the network is of 
the branching-tree type. They formulated their non-
iterative algorithm using the path entropy concept and 
Laplace’s principle of insufficient reason. They also 
tried to extend the single-source algorithm to cover 
multiple-source networks using the super-source idea. 
But this extended version of the single-source algorithm 
for multiple-source networks was shown to be 
inconsistent in a discussion presented by Walters [16]. 
Based on the single-source algorithm, Yassin-Kassab et 
al. [17] presented a non-iterative algorithm for 
calculating the maximum-entropy flow distribution in 
multiple source networks. The more delicate definition 
of the entropy function, based on Tanyimboh and 
Templeman, is presented in the next section of the paper 
with a discussion on its interpretation. 
     Later the relationship between the entropy and 
reliability of water distribution network was 
investigated by Tanyimboh and Templeman [18]. That 
study supports the hypothesis that water distribution 
networks, designed to carry the maximum entropy 
flows, will be more reliable. Further studies by 
Tanyimboh and Sheahan [19] explored the possibility of 
optimizing the layout of water distribution systems by 
using a minimum-cost/maximum-entropy design 
concept. In that research they tried on advancing the 
entropy flows in water distribution network to the stage 
where applications are possible, but the actual 
interpretation of the meaning of network entropy has 
never been fully elucidated. 
     Ang and Jowitt [20, 21] investigated the concept of 
network entropy using a simple water distribution 
network. Their investigation was concentrated on the 
relationship between the total power dissipated by the 
water distribution network and the numerical value of 
the network’s entropy. In another article by them [22], 
an alternative method to calculate the network entropy 
of water distribution systems was presented, which 
gives new insights into the concept of network entropy. 
That alternative method, termed the Path Entropy 
Method (PEM), offers a simpler explanation to the 
entropy of branching-tree networks and the maximum 
entropy of water distribution networks. The formulation 
of the PEM was based on the fact that the entropy of the 
water distribution network arises because of the 
different paths available to a water molecule to move 
from a super-source to a super-sink. More explanation 
about PEM is given in the next section of the paper. 
     It should be noted that for a water distribution system 
to be serviceable, only being connected to the source is 
not sufficient, but it is also necessary to ensure that a 
given node can fully supply its corresponding demand. 

That is why hydraulic calculation has to be included in 
determination of mechanical-hydraulic reliability. 
Previously defined redundancy indices for water 
distribution networks in the literature are generally 
based on only one of hydraulic or mechanical 
characteristics of the network and they do not consider 
both characteristics simultaneously in their calculations. 
This is while the network risk is highly affected by both 
of these characteristics. In this regards, the aim of this 
paper is to explore deficiencies of previous definitions 
for the entropy of water distribution networks and to 
present a new weighted entropy-based measure for 
assessing serviceability of water distribution networks 
considering both aforementioned characteristics of the 
system. 
 
 
2. ENTROPY FUNCTION FOR WATER 
DISTRIBUTION NETWORKS 
 
One of the most appropriate entropy functions for water 
distribution networks was defined by Tanyimboh and 
Templeman [14]. Their formulation of the entropy 
function mainly relied on Shannon’s measure of 
uncertainty, which is the underlying principle of 
information theory. They assumed that the available 
information on the water distribution network were the 
topological layout, the supply and demand at all nodes, 
and the flow direction in each pipe segment. Flow 
direction in each pipe is critical, as there will be a 
maximum-entropy flow distribution for each set of flow 
directions. It is worth mentioning that length, diameter, 
and roughness of pipes are not used directly in their 
formulation. Unless the network has a branching 
structure, there will be a very large number of feasible 
flow patterns. They define network entropy function as: 

∑
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where S is the entropy defined by Shannon, N is the 
total number of nodes, and K is the Boltzman constant 
which is usually set to unity (it will be shown in this 
paper that this can be true only in special cases). The 
entropy of the external inflows, S0, is represented by: 
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where I is the set of all source nodes, 

0
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where q0,i is the external inflow at source node i and T0 
is the total supply or demand. The second term in the 
entropy function consists of the outflow entropy at each 
node, Sn, weighted by the ratio, Pn, of the total inflow of 
each node to the total inflow of the whole network. 
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where Tn is the total inflow at node n. An important 
point in the definition of outflow is that it is inclusive of 
any demand at the node. In Equation (1) the outflow 
entropy at each node Sn is given by: 

∑
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where NDn is the set of all outflows from node n, and 

n

j,n
j,n T

q
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where qn,j is the flow from node n to node j. 
   Entropy function, given by Equation (1) shows that 
the entropy of a water distribution network has two 
components. The first part is the amount of entropy in 
the external inflows and the second part consists of the 
weighted entropy values at every demand node. 
Informational entropy measures the amount of 
uncertainty in a situation or system. For a water 
distribution network, the uncertainty can be imagined 
from the viewpoint of a water molecule. Now it is tried 
to illustrate the concept of entropy function using the 
simple example of water distribution network, shown in 
Figure 1. The water distribution network, shown in 
Figure 1, has a single source node and three demand 
nodes and the flows are assigned to the links in such a 
way that the entropy value of the network becomes 
maximum. The entropy of the external inflows S0 is in 
fact the uncertainty faced by a water molecule moving 
from the super-source to the individual supply nodes. 
For all nodes, the entropy would be non-zero only if 
there are two or more paths for the water molecule to 
take at each node. However, the entropy Sn, calculated 
for each node n, is the probability of entering each of 
the pipes connected to that node for the water molecule 
arriving at that node, which is expressed by the Pn term 
in Equation (1). Details of entropy calculation of the 
sample network with its tree diagram are shown in 
Figure 2. From the above-mentioned definition, it is 
clear that the entropy of a water distribution network 
can be represented by the number of paths available for 
a water molecule moving from the super-source to the 
super-sink (see Figure 3). Based on this observation, an 
alternative way of calculating network entropy is the 
path entropy method (PEM) [22]. The diagram of 
applying PEM to the sample network and its entropy 
calculation are shown in Figure 3. In Figure 3, the 
number of paths from the super-source to the super-sink 
and the amount of flow in each path are shown. 
Development of the PEM diagram includes two main 
steps. The first step is to establish the number of paths 
from the source nodes to each demand node and 
drawing the PEM diagram with all nodes and links. The 

second step involves determining the flow carried by 
each link, which is performed by an inspection of the 
flow rates in all of the network links. Once the PEM 
diagram is developed, the calculation of the network 
entropy is relatively straightforward, as compared to the 
network entropy equations by Tanyimboh and 
Templeman [14].  
 
 

 
Figure 1. Schematic diagram of the physical system sample, 
fully–connected network with maximum network entropy 
based on Equation (1). 
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Figure 2. Tree diagram of sample network, shown in Figure 1, 
with entropy calculation. 
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Figure 3. PEM diagram of sample network with entropy 
calculation.
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However, it must be noted that the less complicated 
entropy calculation is a result of the efforts spent in 
organizing the data into a PEM diagram. The true 
strength of the PEM lies in its ability to give new 
insights into the meaning of the network entropy, such 
as the entropy of branching-tree networks and the 
maximum-entropy flows of a single-source network 
with given flow directions, which will be discussed in 
the next section. 
 
 
3. DISCUSSION ON TANYIMBOH AND 
TEMPLEMAN’S DEFENITION OF ENTROPY 
FUNCTION 
 
In a discussion presented by Walters [16], it has been 
stated that all of the trees, each of which connects all of 
the demand nodes to the source in a network, have the 
same minimum entropy value. Afterwards, Ang and 
Jowitt [22] showed this fact by path entropy method. 
Figure 4 shows all different layouts of branching-tree 
networks, related to the sample network, shown in 
Figure 1. As it is seen in Figure 4, in all of the shown 
layouts there is only one path from the source node to 

each demand node, and therefore, from the 
informational point of view, all of them have essentially 
the same entropy. The PEM diagram for the branching-
tree sample network is shown in Figure 5, which can be 
used for representing any of the different layouts.  
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Figure 5. PEM diagram of the tree-branching networks
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Figure 4. Various branching-tree networks of the sample fully-connected network shown in Figure 1 
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Figure 6. Different supply-demand connectivity states of the branching-tree networks shown in Figure 4. 
 
 
     In all of these networks, a water molecule moving 
from the super-source to the super-sink is only uncertain 
about the demand node it would arrive. However, when 
there is just one arriving link to a demand node, which 
is the case for a branching-tree network, the uncertainty 
disappears. Thus, Tanyimboh and Templeman’s 
definition of entropy function cannot consider any 
difference between branching-tree networks with 
different layouts, but same number of supply and 
demand nodes (like networks shown in Figure 4), which 
all have the same PEM diagram as shown in Figure 5. 
However, with a cursory look at these networks, it can 
be easily seen that some of them are more sensitive than 
the others which damages their links.  

For instance, if the link 1-3 in networks (f), (c) and 
(d) in Figure 4 gets damaged due to any hazards like 
earthquake, the amount of loss would be different, that 
is 30, 10 and 5 l/s, respectively. Therefore, the amount 
of loss of service in a network depends not only on its 
main configuration as parallel or series, but also on the 
connectivity order of different demand nodes to the 
supply node. Consideration of this factor can improve 
evaluation of networks’ reliability. For better 
recognition of the main difference between the 
sensitivity states of various branching-tree networks, the 
networks shown in Figure 4 are looked at more deeply. 
These networks can be divided into four major 
categories based on their connectivity state as shown in 
Figure 6. 
     As it is seen in Figure 4, in network (a) each of the 
demand nodes is connected to the supply node by a 
direct or independent link, while in networks (b), (c) 
and (d) two demand nodes are directly connected to the 
supply node, and the third one is connected indirectly, 
via two links in series. In (e) and (f) networks just one 

demand node is directly connected to the supply node, 
and the other two nodes are connected indirectly via two 
links.  

Finally, in networks (g), (h), (i) one demand node is 
directly connected to the supply node, the second one is 
connected via two links, and the third one is connected 
via three links. It is obvious that the first connectivity 
state has the greatest redundancy, or the least sensitivity, 
because of independent paths between each demand 
node to the supply node, which means that failure of 
any link, affects only the serviceability of one demand 
node. Conversely, the fourth connectivity state is the 
most vulnerable state, with no redundancy, since the 
serviceability levels of its various demand nodes are 
highly dependent. 
     Furthermore, it should be noted that although all 
networks falling in each of the connectivity state 
categories shown in Figure 4 have the same connectivity 
dependency, their reliability levels, are not the same 
because of the different connectivity orders of their 
demand nodes to the supply node. For example, 
refereeing to Figure 4, if the link between demand nodes 
2 and 4 in network (b) is cut, the network loss of service 
will be only 5 l/s, while the same cut in network (d), 
which has the same sensitivity state as network (b), will 
result in 20 l/s loss of service. 
     The last point which should be taken into 
consideration for serviceability evaluation of water 
supply networks subjected to any kind of natural or 
man-made hazard is the vulnerability of its components 
subjected to that hazard. This has not been addressed in 
the previous studies on the serviceability evaluation of 
networks based on the entropy concept. In the next 
sections of the paper some modifications are proposed 
for resolving the mentioned shortcomings. 

 Source Node 

Demand Node 
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4. INCORPORATING THE CONNECTIVITY STATE 
AND ORDER IN THE NETWORK SERVICEABILITY 
EVALUATION 
 
To add the effect of connectivity state and order which 
in fact determines the sensitivity state of a network, the 
authors have defined a penalty factor (Tp) for each link 
as the total amount of loss, if that link is cut. The value 
of this factor for each link shows, in some way, the 
sensitivity of the network to the cut of that link. Based 
on that definition a new weighting factor ( '

nP ) has been 
introduced as: 

0

'

p

n
n T

TP =  (7) 

where Tp0 is the summation of penalty factors for all 
links in the network. This weighting factor has been 
used instead of the previous one, Pn in Equation (1), in 
the calculation of networks’ entropy values. These 
penalty factors could be modified by some other factors 
like the importance of demand nodes (for example, the 
existence of a fire fighting valve).  
     The mentioned modification can make a distinction 
between the networks with different patterns but the 
same entropy values, however, the network’s links 
failure probabilities are not included yet in the entropy 
calculation, and consequently, the network reliability 
evaluation. For example, two different networks with 
the same patterns (like pattern (b) in Figure 6) but 
different link failure probability have identical entropy 
values, while they do not have the same reliabilities. 
The entropy values, calculated by the modified formula, 
based on Equation (7), for all of the branching-tree 
networks, shown in Figure 4, are given in Table 1. 
     As it can be seen in Table 1, only network (a) has a 
similar value with the former definition of entropy and 
it is because in this network each of the demand nodes 
has an independent link to the supply node. The entropy 
value decreases by reduction in path independency for 
different demand nodes while connection of the nodes 
with higher demand to the supply node by more 
intermediate links can decrease entropy drastically (like 
networks (e) and (f)). The other interesting point here is 
that network (g) has higher entropy value than networks 
(f) and (d), in spite of the fact that demand nodes of 
network (g) are completely in series, while in networks 
(f) and (d) the demand nodes are partially in series. 
These results show that the network vulnerability 
depends not only on the network pattern as series or 
parallel, but also on the connectivity order of its demand 
nodes. 
     It can be shown, mathematically (see Appendix 1), 
that the suggested weighting factor, given by Equation 
(7), behaves like a new Boltzman's constant for a single 
supply network which is obtained from the following 
equation: 

TABLE 1. Entropy values for branching-tree networks shown 
in Figure 4 using new weighting factor (Equation (7))   
Network a b c 

Entropy value 0.8676 0.7436 0.7436 

Network d e f 

Entropy value 0.5206 0.6507 0.4732 

Network g h i 

Entropy value 0.5784 0.4338 0.3470 

 
 

0p

o

T
TK =  

(8) 

     For example, entropy of network (c) using pass 
entropy method is obtained as follows: 
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     The Boltzman's constant, given by Equation (8), is 
equal to unity only when the total supply (T0) is equal to 
sum of penalty numbers (Tp0). It means that the unit 
Boltzman's constant can be used only when all demand 
nodes are connected to the supply node independently, 
and this constant decreases with growth of penalty 
factors. The new Boltzman's constant gives a better 
illustration for serviceability of the network. 
 
 
5. INCORPORATING THE PROBABILITY OF 
FAILURE IN THE NETWORK SERVICEABILITY 
EVALUATION 
 
As mentioned in the preceding section, although 
Tanyimboh and Templeman’s entropy function for 
water distribution networks has its benefits and 
simplicity, but it cannot identify different patterns as 
well as link-failure probability. This is while the 
network’s risk is highly affected by both hydraulic and 
mechanical characteristics of a system. Thus, a new 
weighted entropy function is presented here which can 
consider both aforementioned characteristics of the 
system in its formulation, while keeping simplicity of 
the pervious definition. For this purpose, a failure 
penalty function is defined for different links of the 
network based on their probability of failure in the 
specified hazard scenario. This failure penalty function 
is incorporated in the hydraulic entropy function of the 
network in an appropriate manner so that the effect of 
mechanical behaviour of links is considered in the 
network’s entropy. In this manner the amount of supply 
loss due to absence of each link in the network is taken 
into account by corresponding failure penalty function. 
The modified entropy function for water distribution 
network is defined as: 
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where SN is the new entropy value, and the other parameters 
are same as in Equation (1), except Sn which is calculated by 
the following equation: 

( )( )∑
∈

−−=
nNDj

j,nj,nj,nn Pf1/PlnPS  
(10) 

where Pn,j is obtained from Equation (6). Pfn,j is the 
failure probability of the link between node n and node 
j, which can be obtained using analytical failure 
estimation of a specified scenario or using expert 
judgement. The term -ln(ɛ) in Equation (10) has been 
considered to prevent creation of negative entropy 
values. In fact, the failure probability of links cannot be 
considered equal to 1 in Equation (10) since the 
denominator will be zero in that case. Therefore, it is 
assumed that the failure probability of a definitely 
damaged link is equal to 1-ɛ instead of 1; ɛ being a 
small value between zero and one, such as 0.01. It 
should be noted that adding this biased value to the 
proposed entropy function does not affect its concept, 
because the entropy function is a comparative index. It 
can be shown that the minimum value of Sn will be 
equal to zero (see Appendix 2). Moreover, in the 
proposed entropy function it is assumed, like the 
previous studies that when a link is in failure state, it is 
completely nonoperational and no water molecule can 
reach the demand node from that link. In the other 
words, leakage state is not considered here. 
     In order to investigate the behaviour of the proposed 
entropy function, a simple network is considered with 
one supply and one demand node and two parallel links 
in which failure probability of links are Pf1 and Pf2. In 
this network a water molecule has only two choices, P1 
is probability of selecting the first link and P2 is 
probability of selecting the second one. This network is 
shown schematically in Figure 7a and its Venn’s 
diagram is shown in Figure 7b. 
     The behavior of the proposed entropy function of 
this network in shown in Figure 8 in two different 
states: a) when all links of the network have the same 
failure probability, and b) when the network links have 
different failure probabilities. 
     As it is seen in Figure 8a, behaviour of the proposed 
entropy function is quite similar to Tanyimboh and 
Templeman’s function (the dashed curve in the figure), 
when failure probability of all links is maximum (0.99). 
If the network’s links have the same failure probability, 
but less than maximum, the proposed entropy function 
behaves as before, and its maximum point does not 
change, but its values are shifted up in over its whole 
range by some value which depends on the failure 
probability of its links. However, if the network’s links 
have different failure probabilities the proposed entropy 

function will not behave as before, and its maximum 
will occur when the link with lower failure probability 
have more flow than the link with higher failure 
probability. Mathematically, the probability of link i 
being operational which is defined as follow: 

)Pf1(Po ii −=  (11) 

the maximum entropy of the network with two parallel 
links and one demand node will be obtained when the 
ratio of flow in link 1 to the total network inflow is: 

21

1
max PoPo

Pox
+

=  (12) 

     Equation (12) shows that when the failure 
probabilities of the two links of the network are the 
same, the maximum entropy will be achieved when both 
links carry the same amount of flow, but unequal failure 
probabilities of links will result in other flow ratios. For 
example, Figure 8b compares the state of equal failure 
probabilities of links (the solid curve) with two other 
states of failure probabilities, which results in unequal 
flow ratios in the network’s links (dashed and dotted 
curves) for achieving the maximum entropy. 
 
 

 
(a) 

 

(b) 
Figure 7. The 2-link sample network and its Venn’s diagram 
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(b) 

Figure 8. The proposed entropy function diagrams for the 
sample network with 2 links in two states of (a) the same 
failure probability of links, and (b) different failure 
probabilities of links (ɛ=0.01) 
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Figure 9. The 3-link sample network and its Venn’s diagram 
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(c) (d) 

Figure 10. Variation of the proposed entropy function for the sample network with three parallel links, shown in Figure 9 (ɛ=0.01) 
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As another sample, Figure 9 shows a network with 
one supply and one demand node and three parallel 
links in which failure probability of links are Pf1, Pf2 and 
Pf3. In this network a water molecule has only three 
choices, P1 is probability of selecting the link 1, P2 is 
probability of selecting link 2, and obviously, 
probability of selecting link 3 will be 1-P1-P2. This 
network is shown schematically in Figure 9a and its 
Venn’s diagram in Figure 9b. 
   Figure 10 shows the results of entropy calculations for 
the sample network shown in Figure 9, in which values 
of P1 and P2 are shown in the two horizontal and 
vertical axes, respectively, and variation of the entropy 
values are shown using contours. 
     As it is observed in Figure 10a, when all links have 
the same failure probability the flow ratio in all of them 
is the same as 0.33. But, as shown in Figure 10 b and c, 
when two links have the same failure probability of 
zero, and the third one has the failure probability of 0.99 
(breakage for ε=0.01) the flow ratio for the two intact 
links is 0.5, and that of the fully damaged link is zero. 
Finally, Figure 10d shows the state in which two links 
have the maximum failure probability of 0.99, and the 
third one is intact. Therefore, the maximum entropy is 
achieved when the flow ratio for the first two links is 
zero and that of the intact link is 1. 
     It should be notified that in the above examples due 
to the parallel configuration of the networks Tp0=Tp (see 
Equation (4) and Equation (7)) use of either P or P’ in 
Equation (9) does not affect the entropy values. 
However, if the network has some links in series, then 
Tp0≠Tp, and therefore, use of P in Equation (9) leads to 
different results from those obtained by P’ in that 
equation, as illustrated in the next example. In this 
example, there are two links in series (see Figure 11), 
and two states of connectivity order have been 
considered for it based on the demand ratio in its nodes. 
     Since this network is of branching-tree type, its 
entropy calculated by Tanyimboh and Templeman’s 
formula (Equation (1)) is single value of 0.6365. This is 
while using the proposed formula, in which the total 
flow in all branches of the network as well as the failure 
probability of its links are taken into account (Equation 
(9)), the entropy values are obtained as given in Table 2. 
     As it is observed in Table 2, with increase in the 
failure probability of links the entropy value decreases. 
Also when the node with higher demand is closer to the 
supply node, the entropy value is higher. It is reminded 
that the entropy values obtained by Equation (9) are 
much larger than those obtained by Equation (1) due to 
the existence of term ln(ε). However, as the absolute 
values of entropy are not important in each case, and are 
considered comparatively, this difference does not 
matter. 
 

 
Figure 11. The sample network with two links in series 

 
 

 
Figure 12. Sample water distribution network with one source 
and three demand 
 
 
TABLE 2. Entropy value (Sn) of the sample network shown in 
Figure 11 (ɛ=0.01) 

 D1/D2=2 D1/D2=0.5 

Pf1= Pf2=0 5.0826 4.9871 

Pf1= Pf2=0.50 4.3894 4.2939 

Pf1= Pf2=0.75 3.6963 3.6008 

Pf1=0; Pf2=0.50 4.9093 4.7098 

 
 
 
6. APPLICATION TO A SAMPLE LOOP NETWORK 
 
To show how the proposed modifications affect the 
entropy values, they have been applied to the water 
distribution network example presented by Ang and 
Jowitt [20], and the results have been compared with 
those obtained by the conventional Tanyimboh and 
Templeman’s method. The aforementioned example 
network has one supply and three demand nodes, as 
shown in Figure 12, in which one of the nodes has 
greater demand than the other two ones. 
     It is supposed that there is no limitation on the flow 
rate and flow direction in the network’s links, so that all 
possible patterns of the network could be considered. 
However, there are a total of three different sets of flow 
directions for the topological layout of the network (see 
Figure 12). If flow rate of the first link is assumed to be 
“x”, the flow rate in the remaining links can be easily 
determined from the flow equilibrium at each node as 
shown in Figure 12. Thus, regarding the summation of 
all nodal demands and all possible flow directions from 
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the supply node, flow rate of the first and the second 
link vary from zero to 30, the third link from -20 to 10, 
and that of the forth link from -5 to 25 (negative flow 
rate means that the flow direction is inverse to the 
assumed flow direction) (see Table 3). 
     Based on the entropy function proposed by 
Tanyimboh and Templeman (Equation (1)), entropy 
variation of the sample network versus x has been 
shown in Figure 13.  
     As it can be easily seen, the graph has four similar 
minimal values each of which belongs to one of the 
branching-tree sub-systems; and also there are three 
relative maximal values each of which belongs to a 
specific flow direction pattern. As expected, all the 
branching-tree networks have similar minimal entropy 
and all patterns have their relative maximal values, 
while absolute maximum occurs in the pattern in which 
the greater nodal demand has more flow paths to the 
supply node. This example also shows that although the 
flow entropy function proposed by Tanyimboh and 
Templeman is simple and efficient for investigating the 
serviceability of water distribution networks in normal 
conditions, but it cannot make distinction between 
various states of the network in which there are different 
failure probabilities of links, and also the sensitivity of 
the network to its link functionality. Entropy of the 
sample network based on the proposed equation has 
been shown in Figure 14. 
 
 
TABLE 3. Possible flow rates for the links of the sample 
network shown in Figure 12 
Link number Start node End node Flow rate (Qi) 

1 1 2 0 ≤ x ≤ 30 

2 1 3 0 ≤ 30-x ≤ 30 

3 2 4 -20 ≤ x-20 ≤ 10 

4 3 4 -5 ≤ 25-x ≤ 25 

 
 

 
Figure 13. PEM diagram of sample network with entropy 
calculation. Entropy of the sample network versus flow rate at 
first link (x) based on the entropy function proposed by 
Tanyimboh and Templeman [14] 

    In Figure 14, part (a) shows the case in which all links 
have the same failure probability, and part (b) shows the 
case in which the failure probability of one link is 0.99 
(almost cut for ɛ=0.01). As it is seen in Figure 14a, 
when the failure probability of all links is zero, the 
proposed function has a trend similar to that of 
Tanyimboh and Templeman’s function, with some 
minor  differences due to use of P’ instead of P in 
Equation (1) (note that ln(ɛ) has been added to all 
values). For example, by using Tanyimboh and 
Templeman’s formula, the entropy values for case of 
x=5 and x=15 are the same (see Figure 14), while by 
inclusion of connectivity order and failure probability of 
links (using Equation (9)) the entropy in case of x=5 is 
much lower that the case of x=15. Furthermore, the 
branching-tree network with x=0 (absence of link 1) has 
much lower entropy value than the branching-tree 
network with x=20.  
 
 
 

 
(a) 

 
(b) 

Figure 14. Entropy values of the sample network based on 
the proposed entropy function; (a) all links have similar 
failure probability, (b) failure probability of one of the links 
is (1- ɛ), with ɛ=0.01 
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Figure 14a also shows that by using the modified 
formula (Equation (9)), it is possible that some 
branching-tree networks could be more reliable than 
loop networks. For example, consider the case in which 
x=20 (which means the absence of link 3, resulting in a 
branching-tree network with three links) has higher 
entropy value than the case in which x=5 (which means 
having a loop network with four links). 
Sensitivity of the network’s entropy to the damage of 
one of its links has been shown in Figure 14b. Since by 
elimination of a link, the network is converted to a 
branching-tree network, and also it is desired that all 
demand nodes be serviceable, the optimum pattern in 
this case will be a branching-tree pattern. In fact, the 
branching-tree pattern which has not the desired 
vulnerable link is not sensitive to the elimination of that 
link and by distancing from this pattern, network’s 
entropy decrease more. This figure shows the 
importance of connectivity order of demand nodes in 
any given pattern. For example, links 2, 4, 3 and 1 are, 
respectively, the most important links in the pattern with 

x=5, while for pattern with x=15 this order will change 
to links 1 and 2 together, then 4 and finally 3. It is 
notable that both of these two patterns have the same 
T&T entropy value. Also, because of less decrease of 
network’s entropy with elimination of one of links in 
pattern with x=15, this pattern is less vulnerable than 
pattern with x=5 to elimination of one link. In some 
patterns elimination of one link decreases the entropy 
value more considerably than the other links (like 
x=22.5 and 27.5), this represents that these networks 
have high risk to sabotage. 
   If instead of elimination of one link (i.e. the case in 
which the failure probability of that link is 0.99) the 
links are partially damaged (which is the case with 
failure probabilities less than 0.99) the variation of 
entropy values of the sample network will be as shown 
in Figure 15. 
   In cases shown in Figure 15, it is assumed that one of 
the links has a failure probability of 0.5. It is obvious 
that in these cases the maximum entropy is resulted by a 
situation which differs from the fully damaged situation. 

 
 

  
(a) 

 
(b) 

 

  
(c) (d) 

Figure 15. Entropy value of the sample network based on the proposed entropy function when only one of the network’s link has 
partial failure probability; (a) only 1st link has partial failure probability, (b) only 2nd link has partial failure probability, (c) only 3rd  
link has partial failure probability and (d) only 4th link has partial failure probability 
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7. CONCLUSIONS 
 
In this study after reviewing the existing method 
proposed by other researchers for calculating the 
entropy of water distribution networks, and using it as a 
serviceability index, two modifications have been 
proposed for improving the entropy-based serviceability 
evaluation of these networks. Based on the discussions 
and numerical calculations presented in the paper, it can 
be concluded that: 
• The Tanyimboh and Templeman’s entropy 

formulation is only based on hydraulic parameters 
of the network, and therefore, cannot take into 
account the  effect of mechanical damages, due to 
either natural or man-made hazards.    

• Incorporating the connectivity order in the entropy 
calculations shows that, as expected, if the demand 
nodes with larger demands are located closer to the 
supply node the serviceability of the network will 
be more reliable. This fact was not considered in 
the previous entropy calculations. 

• Incorporating the failure probability of the network 
links in the entropy calculations again shows that, 
as expected, for achieving the larger serviceability 
level, the links with higher failure probabilities 
should have lower flow rate. This fact was not also 
considered in the previous entropy calculations.  

• The major advantage of the previous entropy 
definition for water distribution networks is its 
simplicity. The proposed modified formula in this 
study, in addition to that advantage, has the 
capability of incorporating connectivity order of the 
network demand nodes as well as the failure 
probability of its links in the entropy calculations 
and serviceability evaluation. Therefore, it is 
recommended that the proposed entropy function is 
used for identifying the most important links of the 
network in different hazard scenarios, and selecting 
the optimum mitigation plan on that basis.  
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APPENDIX 1 
 
 

Mathematical proof that the suggested weighting factor, 
given by Equation (7), behaves like a new Boltzman's 
constant for a single supply network 
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APPENDIX 2 
 
 

Mathematical proof that minimum value of SN is equal 
to zero 
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  چکیده

  
هاي توزیع رسانی شبکهدر این مطالعه یک معیار اصلاح شده بر اساس مفهوم آنتروپی اطلاعات براي ارزیابی سطح خدمت

و ) هامانند میزان جریان در لوله(درولیکی هاي هیگردد؛ به نحوي که در آن به طور همزمان اثر عدم قطعیتآب ارائه می
در روش پیشنهاد شده براي محاسبه . لحاظ شده است) مانند احتمال گسیختگی خطوط جریان(هاي مکانیکی عدم قطعیت

هاي مصرف شبکه، با تعریف ضریبی در رابطه به صورت نسبت نیاز گره مصرف به نرخ آنتروپی شبکه، توالی اتصال گره
ها نیز با تعریف یک تابع جریمه بر اساس احتمال احتمال گسیختگی لینک .هاي شبکه دیده شده استلینکجریان تمام 

ها تحت یک سناریوي خطر مشخص، دیده شده و به شکل مناسب در تابع آنتروپی هیدرولیکی گسیختگی هر یک از لینک
رتیب ضمن در نظر گرفتن اثر رفتار مکانیکی بدین ت. استاعمال گردیده) ارائه شده توسط پژوهشگران پیشین(موجود 
با محاسبه مقادیر آنتروپی براي تعدادي . ها سادگی روش نیز حفظ شده استها در محاسبه آنتروپی هیدرولیکی شبکهلینک

بندي بهینه هیدرولیکی براي یک شبکه جدید و نیز پیکره شبکه آب نمونه، کارایی شاخص پیشنهادي جهت دستیابی به
ریزي براي کاهش خسارت در یک شبکه موجود در برابر خطرات مختلف طبیعی یا ساخته دست انتخاب بهترین برنامه
  .استانسان، نشان داده شده

  
  

doi: 10.5829/idosi.ije.2014.27.05b.02 

  
  
  
  
  
  
  
  
  


