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A B S T R A C T  

   

One of the primary concerns in any system design problem is to prepare a highly reliable system with 
minimum cost. One way to increase the reliability of systems is to use redundancy in different forms 
such as active or standby. In this paper, a new nonlinear multi- objective integer programming model 
with the choice of redundancy strategy and component type is developed where standby strategy is of 
cold type. In the proposed model, system’s reliability is maximized along with minimizing system’s 
cost and weight. The proposed model contributes to the literature by determining the redundancy 
strategies concurrently with determining redundancy levels and component types. The multi-objective 
model is solved using the mathematical compromise programming technique for different Lp metrics 
and produces different Pareto solutions. 
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1. INTRODUCTION1 
 
Reliability optimization is an important field in system 
engineering which has gained more attentions in recent 
years. One way to increase systems’ reliabilities is to 
use redundant units using active or standby strategies. 
Standby electric generators in hospitals and other public 
facilities are a typical example of redundancy. As 
another normal example we can refer to use of 
electronic gyroscope and mechanical gyroscope in 
aircrafts [1]. Redundancy allocation is a field through 
which optimal number of redundant components is 
determined such that the system’s reliability is 
maximized. In this paper the redundancy allocation 
problem (RAP) in systems with serial parallel structures 
and with choices of redundancy strategy and component 
type is studied where standby strategy is of cold type. 
Production system is an example of serial systems [2]. 
Space exploration and satellite systems achieve high 
reliability using cold standby redundancy for non-
repairable systems [3]. Space inertial reference units are 
required to accurately monitor critical information for 
extended mission times without opportunities for repair. 
                                                        
* Corresponding Author Email: tofigh@merc.ac.ir (A. A. Tofigh) 

Examples of non-repairable cold standby redundancy in 
spacecrafts can be found in [4, 5]. Many other systems 
use cold standby redundancy as an effective strategy to 
achieve high reliability including textile manufacturing 
systems [6], carbon recovery systems used in fertilizer 
plants [7] and active and passive safety systems in road 
vehicles [8], just to name a few.  As an example for 
active strategy we can mention the serial parallel water 
desalination system which consists of filters, pumps, 
reverse osmosis membranes and power commutation 
equipment blocks in series for each of which there is an 
option to add redundancy in the form of parallel 
components.  

To show the place of the proposed model, the 
literature is reviewed and classified into two main 
categories, where each one consists of single objective 
or multi-objective models. Note that the main focus is 
on models which were proposed for each category and 
less attention is paid to existing solution approaches.  

In the area of single objective models with active 
strategy, Fyffe et al. [9] were the first who proposed a 
model for RAP where system’s reliability is maximized 
subject to constraints on cost and weight. Ramirez-
Marquez et al. [10] modeled the RAP using max-min 
approach, where the reliability of the subsystem with 
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minimum reliability is maximized subject to constraints 
on cost and weight. Sun and Ruan [11] formulated the 
RAP such that system’s cost is minimized subject to the 
requirement of meeting the minimum system’s 
reliability. They presented an exact algorithm to solve 
the model.  

In the field of multi-objective models with active 
strategy, Coit and Konak [12] considered a multi-
objective RAP where the reliabilities of subsystems are 
maximized, simultaneously subject to constraints on 
cost and weight. They presented a multiple weighted 
objective heuristic to solve the model. Salazar et al. [13] 
studied three types of reliability optimization problems 
including redundancy allocation, reliability allocation 
and reliability-redundancy allocation. Their proposed 
multi-objective RAP maximizes system’s reliability at 
the same time of minimizing system’s cost and solved it 
through NSGAII. Taboada and Coit [14] considered a 
multi-objective model, which maximizes system’s 
reliability concurrently with minimizing system’s cost 
and weight and solved it using NSGA. Taboada and 
Coit [15] proposed a multiple objective evolutionary 
algorithm to solve a multi- objective redundancy 
allocation problem where the objectives were 
maximizing system’s reliability and minimizing 
system’s cost and weight. Wang et al. [16] considered a 
multi-objective RAP to maximize system’s reliability 
and minimize system’s cost with nonlinear cost and 
weight and solved the resulted model using NSGAII.  
Mahapatra [17] presented a bi-objective model, which 
simultaneously maximized the system’s reliability and 
entropy considering nonlinear cost constraint. They 
solved the resulted model using global criterion method. 
Soylu and Ulusoy [18] considered the problem of 
maximizing the minimum subsystem reliability 
concurrently with minimizing the overall system cost 
and found the Pareto solutions of this problem by the 
augmented epsilon-constraint approach for small and 
moderate sized instances. Then they applied a well-
known sorting procedure, UTADIS, to categorize the 
solutions into preference ordered classes. Khalili-
Damghani and Amiri [19] considered an existing multi-
objective RAP which involved maximizing system’s 
reliability and minimizing system’s cost and weight and 
solved it through a method based on epsilon-constraint 
and data envelopment analysis.  

In the area of single objective RAP with cold 
standby strategy, Coit [20] studied cold standby 
redundancy optimization for non-repairable systems and 
developed a zero-one linear programming model to 
solve the problem. Coit [21] studied the same 
redundancy allocation problem where there were 
redundancy strategy choices for subsystems. In their 
approach the redundancy strategies were determined 
prior to redundancy levels. In application of meta-
heuristics, Tavakkoli-Moghaddam et al. [22] developed 
a genetic algorithm to solve the same problem proposed 

by Coit [21]. Later, bi or multi-objective version of the 
mentioned problem was studied by some scholars. 
Safari [23] and Chambari et al. [24] separately 
considered a bi-objective model for RAP to optimize 
reliability and cost of system with choice of redundancy 
strategy and solved the resulted model through NSGAII. 
Azizmohammadi et al. [25] considered a multi-objective 
RAP where the system reliability is maximized while 
minimizing the system’s cost and volume. They 
proposed a hybrid multi-objective imperialist 
competition algorithm to solve the model. 

In this paper, a new nonlinear multi-objective 
integer programming model for redundancy allocation 
with the choice of redundancy strategy is presented with 
three contradictory objectives including system’s 
reliability, cost and weight. As mentioned previously, 
the first model for RAP with choice of redundancy 
strategy was proposed by Coit [20] and since then 
researchers have focused on solution approaches mostly 
in forms of meta-heuristics. In Coit’s approach, 
redundancy levels are determined after deciding about 
redundancy strategies. In this paper, we present a new 
mathematical model to decide about redundancy 
strategies concurrently with redundancy levels and 
component type and it can be directly solved using 
typical optimization packages. In addition, the 
mathematical compromise programming approach is 
implemented for the first time to deal with the proposed 
multi-objective model. 

The rest of the paper is organized as follows. In 
section 2 the studying problem is described and the 
proposed mathematical model is presented. 
Compromise programming technique as a solution 
procedure is presented in section 3. Experimental results 
are presented in section 4. Finally, conclusion is 
presented in section 5 along with some future research 
directions. 
 
 
2. PROBLEM DEFINITION AND FORMULATION 
 
The studying issue of this paper deals with designing 
highly reliable systems or products, which have serial 
parallel structure as illustrated in Figure 1. In this 
system, a number of subsystems are connected in series 
which each of its components work in parallel to 
enhance the system’s reliability. The redundancy 
strategy of each subsystem can be in active or standby 
forms. In active redundancy, all components are 
simultaneously ready to use, whereas in standby 
redundancy just one component is in use and the others 
respectively begin to work only when the operating 
component fails. Standby redundancy is in three forms 
of cold, hot and warm standby. In this paper, we 
consider cold standby redundancy strategy along with 
active redundancy. Also, some subsystem may use no 
redundant component and just one component works therein.  



547                                                     S. J. Sadjadi  et al. / IJE TRANSACTIONS A: Basics   Vol. 27, No. 4, (April 2014)  545-552 

 
Figure 1. General serial parallel redundancy system 
 
 

It is apparent that use of redundant component 
increases system’s cost and weight which is not 
desirable. Therefore, designers try to minimize system’s 
cost and weight together with maximizing systems’ 
reliability. In this section, we propose a multi-objective 
model involving these objectives, which determines the 
suitable redundancy strategy, component type and 
redundancy level in each subsystem.  
 
Assumptions 
• The components are in two states of functioning or 

non-functioning, i.e. binary state. 
• Components’ time to failures follow Erlang 

distribution.  
• The standby strategy is of cold type and the standby 

units do not fail before they are put into operation. 
• The switch reliability to cold standby component is 

assumed to be imperfect.  
• There are different component types with different 

specifications. 
• Just one component type can be allocated in each 

subsystem. 
• There is no repair or preventive maintenance. 
• The replacement time is negligible. 
 
Decision Variables:  

kjin ,,
 Number of components of type j used in subsystem i 

under strategy k ( NS,A,k ∈ ). 

kjiZ ,,
 A binary variable which is one if the component of 

type j is used in subsystem i under strategy k and 
zero otherwise. 

jiqX ,,
 A binary variable which is one if q of the component 

of type j is used in subsystem i under standby 
strategy.  

 
 

Parameters 

ji ,λ , 
jik ,
 Scale and shape parameters of Erlang 

distribution for component j in subsystem i 

)(, tr ji  Reliability of component j available for 
subsystem i at time t 

)(tjδ  Switch reliability of component j at time t 
(imperfect switching) 

jic , , jiw ,
 Cost and weight associated with component j 

available for subsystem i 
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Objective function (1) maximizes the reliability of 
the system, which consists of three terms. The first term 
multiplies the reliability of those subsystems whose 
components are in active redundancy. In cases where no 
component in any subsystem is in active redundancy, 
i.e. all 

AjiZ ,,
are zero, this term is one, which is neutral in 

multiplication.  
The second term multiplies the reliability of those 

subsystems whose components are in cold standby 
redundancy which itself consists of three parts. The first 
part is to ensure that in case no component is selected 
for standby redundancy in a subsystem, the 
multiplication is not zero. In other words, the value of 
this part is zero if a component type is selected in 
standby and it is one otherwise which is neutral in 
calculating the system reliability. The second and third 
parts are considered only if Sj,i,Z is one. The second part 
includes the reliability of the working component and 
the third part considers between one and 1,, −Sjin failures 
regarding the reliability of the switch. The third term 
multiplies the reliability of those subsystems that choose 
no redundancy strategy. When all NjiZ ,, are zero this term 
is also one. Objective function (2) and objective 
function (3) minimizes the system’s cost and weight, 
respectively. Constraint (4) calculates the reliability of 
components considering Erlang’s parameters. 
Constraint set (5) ensures that for each subsystem at 
most one strategy is selected. Constraint set (6) states 
that only one component type and strategy is selected 
for each subsystem. Constraint set (7) declares that for 
cold standby strategy the number of components can 
only be a value between 2 and nmax. Constraint set (8) 
calculates the number of components in subsystems 
with cold standby strategy. This constraint is equivalent 
to constraint

iSjiSjiSji TjmiZnnZ ,...,1,,...,12 ,,max,,,, ==×≤≤× .  
But, for the purpose of calculating the upper limit of the 
summation in the standby term of the objective 
function, constraint set (8) is considered in the model. 
Constraint set (9) indicates that for each subsystem, 
variable Ajin ,,  gets value only when type j and strategy A 
are selected. Its value is at least 2 and at most nmax. 
Constraint set (10) ensures that in case of no 
redundancy the variable Njin ,,  gets one only when NjiZ ,,

 
is one, and it is zero otherwise. Constraint set (11) 
indicates that the number of components in each 
subsystem is at least one and at most nmax. . 
 
 
3. COMPROMISE PROGRAMMING 
 
Compromise programming is a mathematical 
programming technique which was originally developed 
by Zeleny [26, 27]. This method can be used for  
optimization of multi-objective problems to obtain the optimal 

1S
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Figure 2. Graphical illustration of compromise 
programming for two objectives 

 
 
 
solution and also for comparing the performance of 
alternatives in multi-criteria decision making analyses. 
As a matter of fact, the best compromise solution from a 
set of solutions is selected by a measure of distance 
called distance metric through which a discrete set of 
solutions is ranked according to their distance from an 
ideal solution. To understand how this measure works, 
consider a bi-objective problem whose both objectives 
are in maximization form. The ideal solution of this 
problem is the one which simultaneously maximizes the 
two objectives. In practical cases, this solution is 
infeasible due to conflict of objectives. Therefore a 
compromise must be sought. Figure 2 graphically 
illustrates the compromise programming. Where, S1 to 
S4 are four possible solutions and L1>L4>L2>L3 which 
are the distances between each solution and the ideal 
solution. Therefore, according to Figure 2, S3 is the best 
compromise solution where both objectives have equal 
weights.  
Mathematically, compromise programming distance 
metric is presented in Equation (12).  
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where n is the number of objectives, in this paper n=3, p 
is a parameter ( ∞∈ ,2,1p ), iw is the weight of the 
objective i, 

if  is the actual value of the objective 
function i, +

if and −
if  are respectively ideal and nadir 

solutions of the objective function i. For maximization 
problems, the former is achieved through maximizing 
each objective function subject to the constraints whilst 
the latter is determined by minimizing those objectives. 
This procedure is vice versa for minimization problems.  
The parameter p represents the importance of the 
maximal deviation from the ideal solution. If p=1, all 
deviations have equal importance. If p=2, the 
importance of deviations are in proportion to their 
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magnitude. As p increases, the importance of the 
deviations also increases. Similarly, iw ’s are the 
weights for various deviations which identify the 
relative importance of each objective. Apparently, for 
different values of p in Lp metrics and iw , different 
compromise solutions can be obtained. For p = 1, the Lp 
metric, i.e. L1, is called Manhattan metric. L2 is called 
the Euclidean metric and 

∞L is the chebychev metric. In 
all cases the corresponding metric needs to be 
minimized according to models 2, 3 and 4, respectively 
for L1, L2 and ∞L . 
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4. COMPUTATIONAL RESULTS 
 
To solve the proposed model using compromise 
programming, data taken from Taboada and Coit [26] 
are considered which represent a serial parallel system 
composed of three subsystems and four or five 
component choices. In that example the reliabilities of 
the components are reported as specific values between 
0 and 1. To make the example compatible with our 
proposed model whose components’ lifetimes follow 
Erlang distribution, the scale and shape parameters are 
determined such that those reliabilities are obtained. The 
scale and shape parameters are shown in Table 1 along 
with components’ costs and weights. Maximum number 
of allowable components is 8, the reliability of switch 
equals 0.99 and the mission time is 100 unit of time. To 
start with compromise programming, ideal and nadir 

solutions need to be calculated. From ideal solution, we 
mean that for a maximization problem the maximum 
value is achieved and for a minimization problem the 
minimum value is obtained. These values are obtained 
through maximizing the reliability objective and 
minimizing the cost and weight objectives. On the other 
side, nadir solutions can be obtained by minimizing the 
problem which is of maximization type and maximizing 
the problem which has a minimization nature. The nadir 
solutions are obtained by minimizing the reliability 
objective and maximizing the cost and weight 
objectives. The model is solved using GAMS (General 
Algebraic Modeling System) version 23.8.2 and the 
nadir and ideal results are presented in Table 2. Solving 
the proposed model using the compromise programming 
technique results in different Pareto solutions which 
depend on the norm of the Lp metric and the weights of 
the objectives. The results are presented in Table 3 and 
Table 4 and also depicted in Figure 3. 
 
 
 

TABLE 1. Experimental data 
Subsystem 1 

Component k λ C W 

1 1 0.000619 9 9 

2 2 0.00499 6 6 

3 2 0.00564 6 4 

4 1 0.00287 3 7 

5 1 0.00328 2 8 

Subsystem 2 

1 3 0.00665 12 5 

2 3 0.01288 3 7 

3 1 0.00356 2 3 

4 1 0.00415 2 4 

5 - - - - 

Subsystem 3 

1 1 0.000408 10 6 

2 2 0.00564 6 8 

3 1 0.00328 4 2 

4 1 0.00342 3 4 

5 1 0.004 2 4 

 
 
 

TABLE 2. Ideal and Nadir local optimum solutions 
  Ideal solution   Nadir solution  

Objective 1 (Reliability)  0.99999922  0.46907069 

Objective 2(Cost)  6  248 

Objective 3 (Weight)  9  192 
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TABLE 3. Experimental results with different Lp metrics and 
weights (R: Reliability, C: Cost, W: Weight, D: Distance) 
Group W1 W2 W3 p Norm R C W D 

1 0.5 0.3 0.2 

1=p  0.9809 32 26 0.069 

2=p  0.9618 30 27 0.086 

∞=p  0.9765 24 29 0.022 

2 0.3 0.5 0.2 

1=p  0.9765 24 29 0.072 

2=p  0.9774 24 38 0.091 

∞=p  0.9477 21 35 0.031 

3 0.4 0.3 0.3 

1=p  0.9803 30 23 0.068 

2=p  0.9803 30 23 0.073 

∞=p  0.9803 30 23 0.030 

4 0.6 0.2 0.2 

1=p  0.9854 32 26 0.057 

2=p  0.9803 30 23 0.063 

∞=p  0.9854 30 28 0.021 

5 0.7 0.2 0.1 

1=p  0.9896 34 30 0.048 

2=p  0.9803 30 23 0.059 

∞=p  0.9887 26 38 0.017 

 
 
 
TABLE 4. The corresponding solutions for the results 
presented in Table 3 
Group p Norm Solution 

1 

1=p  3,4,2 ,3,3,3,2,3,1 === SAS XXX  

2=p  3,3,2 ,3,3,3,2,2,1 === ASA XXX  

∞=p  3,3,2 ,5,3,3,2,3,1 === SSS XXX  

2 

1=p  3,3,2 ,5,3,3,2,3,1 === SSS XXX  

2=p  3,2,2 ,5,3,2,2,2,1 === SSA XXX  

∞=p  3,3,2 ,4,3,3,2,4,1 === SSS XXX  

3 

1=p  3,3,2 ,3,3,3,2,3,1 === SSS XXX  

2=p  3,3,2 ,3,3,3,2,3,1 === SSS XXX  

∞=p  3,3,2 ,3,3,3,2,3,1 === SSS XXX  

4 

1=p  3,4,2 ,3,3,3,2,3,1 === SSS XXX  

2=p  3,3,2 ,3,3,3,2,3,1 === SSS XXX  

∞=p  3,2,2 ,3,3,2,2,3,1 === SSS XXX  

5 

1=p  4,2,2 ,3,3,2,2,3,1 === SSS XXX  

2=p  3,3,2 ,3,3,3,2,3,1 === SSS XXX  

∞=p  4,2,2 ,5,3,2,2,3,1 === SSS XXX  

 

 
Figure 3. Pareto solutions 

 
 

TABLE 5. L2 norm for Pareto solutions 
Sol. L2 Sol. L2 Sol. L2 

1 1.177 6 0.8 11 1.041 

2 0.814 7 1.041 12 1.183 

3 0.829 8 1.041 13 1.489 

4 0.829 9 1.041 14 1.041 

5 1.248 10 1.252 15 1.451 

 
 

To decide about the best compromise solution 
amongst Pareto solutions, first, the objective functions 
are normalized through Equation (16), where, )(min xfi  
and )(max xfi  are the minimum and maximum values for 

)(xfi  in the Pareto optimal set on condition that all 
objectives are in minimization form. In other words, the 
reliability function is multiplied by -1 to be comparable 
with other objectives. The results for p=2 are shown in 
Table 5. The results show that solution 6 is the best 
compromise solution with the lowest L2 norm. The 
resulted solution indicates that in order to design a 
highly reliable system with minimum cost and weight, 
the designer should set cold standby strategy as 
redundancy strategy for all subsystems. Redundancy 
levels should respectively be set to 2, 3, 3. And finally, 
redundancy types should respectively be considered as 
type 4, 3 and 4.  

ni
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5. CONCLUSION 
 
This paper presents a new nonlinear multi-objective 
model which maximizes system’s reliability 
concurrently with minimizing system’s cost and weight. 
The model involves choices of component types and 
redundancy strategies which can be in the forms of 
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active, cold-standby or no redundancy strategy. The 
main advantage of the proposed model is that the 
redundancy strategies and redundancy levels can be 
determined simultaneously. The multi-objective model 
has been dealt using compromise programming 
technique with different Lp metrics and results in Pareto 
solutions indicating redundancy levels, redundancy 
strategies and component types. For future research, 
other mathematical programming technique can be 
implemented to deal with the proposed model. 
Furthermore, heuristic and meta-heuristic approaches 
can be employed to solve large-sized problems. Also, 
the model can be extended to allow component mixing, 
i.e. different component types can be allowed in a 
subsystem [28]. Considering the failure mode and 
effects analysis for detecting the most trouble making 
components or subsystems and incorporating it in the 
redundancy allocation problem is another research area 
which interested readers can follow [29]. 
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  چکیده

  
  

یکی از روش هاي . یکی از مسائل مهم در طراحی سیستم، طراحی سیستمی با قابلیت اطمینان بالا و با کمترین هزینه است
در این مقاله یک . افزایش قابلیت اطمینان سیستم ها استفاده از سیاست جزء مازاد در حالت هاي فعال یا آماده به کار است

مدل جدید چند هدفه و غیرخطی عدد صحیح با انتخاب استراتژي جزء مازاد و با انتخاب نوع اجزاء توسعه داده شده است 
قابلیت اطمینان سیستم را  ،مدل چند هدفه پیشنهادي. به طوري که استراتژي آماده بکار از نوع آماده بکار سرد است

همچنین در این مدل به طور همزمان سطوح افزونگی، استراتژي . دماکزیمم و وزن و هزینه سیستم را مینی موم می کن
مدل چند هدفه حاصل با روش ریاضی برنامه ریزي تعاملی با نرم هاي مختلف . افزونگی و نوع اجزاء مشخص می شود

  .حل شده و بهترین جواب از بین جواب هاي پارتو ارائه شده است
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