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A B S T R A C T  

   

This paper deals with the effect of the intrinsic material length-scale parameter on the stability and 
natural frequency of a rectangular micro-plate for two different cases; fully clamped and fully simply 
supported. A variation formulation based on Hamilton’s principle and the modified couple stress 
theory is used to obtain the nonlinear governing equation of a micro-plate incorporating the stretching 
effect. In the static case, the nonlinear governing equation is solved using the step-by-step linearization 
method (SSLM) and in the dynamic case, is integrated using fourth-ordered Runge-Kutta method. The 
static and dynamic pull-in parameters, limiting the stability regions of capacitive MEMS devices, are 
calculated and compared to those obtained by the classical theory. The numerical results reveal that the 
intrinsic size dependence of materials is more significant for smaller thicknesses and in this case, the 
stretching effect can be neglected. 
 
 

doi: 10.5829/idosi.ije.2014.27.03c.04 
 

1. INTRODUCTION1 
 
Micro-electro-mechanical-systems (MEMS) technology 
has been quickly growing since its beginning in 1980s 
as sensors and actuators. Their light weight, small size 
and low-energy consumption made them even more 
attractive. Mechanical resonators have been widely used 
as transducers in mechanical micro-sensors. RF MEMS 
refers to the application of MEMS technology to high 
frequency circuits (radio frequency (RF), microwave, or 
millimeter wave) in telecommunications, radar systems 
and personal mobiles. 

Electrostatic actuation of conductive flexible 
beams/plates due to their simplicity, as they require few 
mechanical components and small voltage levels for 
actuation are mostly used in many fields [1-3]. 

Electrically actuated beams/plates are influenced to 
instability, which is known as pull-in phenomenon in 
MEMS literature. In pull in voltage the elastic restoring 
force can no longer resist the opposing electrostatic 
force, thereby leading to the collapse and failure of the 
structure [4, 5]. Thus, pull in instability is a major 
structural safety concern for MEMS structural design. 
                                                        
1*Corresponding Author Email: g.rezazadeh@urmia.ac.ir (G. 
Rezazadeh) 

For its importance in MEMS structural safety, pull in 
instability has been investigated by several researchers 
[6-8]. 

Experimental results have been revealed that the 
behaviors of micro-scale structures are size dependent 
[9]. Therefore, the classical theory (CT) is not capable 
to predict their behaviors properly. During past years, 
some non-classical theories such as couple stress theory 
have been introduced, developed and employed to 
accurately predict the mechanical behavior of micro-
scaled structures. Yang et al. [10] modified the classical 
couple stress theory [11] based on an additional 
equilibrium relation to predict the behavior of the 
couples. According to the Cosserat (micro-polar) theory 
of elasticity [11, 12], there is a torque per unit area, or 
couple stress, as well as the usual force per unit area, or 
stress in classical elasticity. 

Tsiatas [9] derived a new Kirchhoff plate model for 
the static analysis of isotropic micro-plates with 
arbitrary shapes based on the modified couple stress 
theory (MCT) of Yang et al. [10]. It contains only one 
material length scale parameter, which can capture the 
size effect. Talebian et al. [13] investigated the effect of 
temperature, stretching and residual stresses on the 
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static instability and natural frequency of an electro-
statically actuated Kirchhoff micro-plate using CT. 

MCT has been developed for the static bending and 
free vibration problems of a simply supported 
Timoshenko beam [14], the static bending problem of a 
cantilever Bernoulli-Euler beam [15], and free vibration 
of two boundary value problems, one for a simply 
supported and another for a cantilever Bernoulli-Euler 
beam [16] so far. In the mentioned works, majorly, the 
static model of micro beams and micro-plates are 
considered. It is decided to model the static and 
dynamic response of micro-plates based on MCT.  

In a prior related study [17], an isotropic rectangular 
micro-plate was studied statically via MCT without 
considering the effect of the axial stress generated by 
the mid-plane stretching of the micro-plate. 

In this work, a Kirchhoff plate model is derived for 
the dynamic analysis of a rectangular micro-plate using 
MCT considering stretching effect. To this end, 
Hamilton’s principle is applied and the results are 
presented for two different boundary conditions. The 
time histories and phase trajectories of the micro-plate 
response to a step DC voltage are given. Including the 
length-scale parameter, the static and dynamic pull-in 
voltages of the micro-plate are calculated for different 
thicknesses and compared to the results obtained from 
CT.  

 
 

2. MATHEMATICAL MODEL 
 
Electrically actuated micro-plates are the main 
component in micropumps, microphones and many 
micro-sensors [18, 19]. A schematic view of a 
capacitive rectangular micro-plate suspended over a 
stationary conductive plate as a RF MEMS device with 
length a , width b , gap d , uniform thickness h , 
density ρ , shear modulus G and Young’s modulus E
is illustrated in Figure 1. The movable rectangular 
micro-plate is modeled using Kirchhoff plate theory. 
When a voltage is applied to these plates, the movable 
micro-plate is deflected under the effect of the 
distributed transverse electrostatic load toward the 
stationary electrode [20]. The space between the plates 
(gap) is filled with a dielectric like air. 

According to MCT [9, 10], the strain energy density 
in an isotropic linearly elastic material occupying a 
volume V bounded by the surface Ω is given as 

( )1 ,
2

σ ε χ= +∫ ij ij ij ij
V

U m dV  (1) 

where, ijσ is the Cauchy (classical) stress tensor, ijm is 
the deviatoric part of the couple stress tensor and [9] 

( ), ,
1 ,
2

ε = +i j i j j iu u  (2) 

 

 Figure 1. Schematic 3D view of the rectangular 
electrostatically actuated micro-plate 

 
 

and 

( ), ,
1 ,
2

χ θ θ= +ij i j j i  (3) 

are the strain tensor and the symmetric part of the 
curvature tensor, respectively. iu is the displacement 
vector and iθ is the rotation vector defined as [10] 

,2
,1θ =i ijk k je u  (4) 

in which, ijke is the permutation symbol. The 
constitutive equations are [10] 

2 ,σ λε δ µε= +ij kk ij ij  (5) 

22 ,µ χ=ij ijm l  (6) 

where, λ and µ are Lamé ’s constants, ijδ is the 
Kronecker delta and l is a material length-scale 
parameter measuring the couple stress effect. 

In a Cartesian coordinate system, where the xy −
plane is coincident with the geometrical mid-plane of 
the un-deformed plate, the relationship between the 
displacement components ( , , , )u x y z t , ( , , , )v x y z t  

and ( ), , ,  w x y z t  along the x , y  and z  directions, 
respectively, based on Kirchhoff thin plate theory can 
be expressed as [21]  

( ) ( )

( ) ( )

( ) ( )

, ,
, , , ,

, ,
, , , ,

, , , , , .

w x y t
u x y z t z

x
w x y t

v x y z t z
y

w x y z t w x y t

∂
= −

∂
∂

= −
∂

=

 
(7) 

Considering the mid-plane displacements, the 
nonlinear strain components are stated as [22] 

221 1 1 ., ,
2 2 2

ε ε ε
 ∂ ∂ ∂ ∂ = = =  ∂ ∂ ∂ ∂   

s s s
xx yy xy

w w w w
x y x y  (8) 

Assuming a two-dimensional formulation with plane 
stress condition, described by the conjugated pair of the 
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stress (Equation (5)) and couple stress tensors (Equation 
(6)), the bending moments including the components of 
the classic stress tensor [21] are obtained as follow 

( )

/2 2 2

2 2
/2

/2 2 2

2 2
/2

/2 2

/2

,

,

1 ,

h

xx xx
h

h

yy yy
h

h

xy xy
h

w wM zdz D
x y

w wM zdz D
y x

wM zdz D
x y

σ

σ

σ

σ ν

σ ν

σ ν

−

−

−

 ∂ ∂
= = − + 

∂ ∂ 
 ∂ ∂

= = − + ∂ ∂ 

∂
= = − −

∂ ∂

∫

∫

∫

 (9) 

and those bending moments including the components 
of the couple stress tensor are 

/2 2

/2
/2 2

/2

/2 2 2

2 2
/2

2 ,

2 ,

,

h
m l
xx xx

h
h

m l
yy yy

h

h
m l
xy xy

h

wM m dz D
x y

wM m dz D
x y

w wM m dz D
y x

−

−

−

∂
= =

∂ ∂

∂
= = −

∂ ∂

 ∂ ∂
= = − 

∂ ∂ 

∫

∫

∫

 (10) 

where, 

( )
3

2
,

12 1
EhD

ν
=

−  (11) 

is the bending rigidity of the plate and 

( )
2

2 ,
2 1

l El hD l Gh
ν

= =
+  (12) 

is the contribution of rotation gradients to the bending 
rigidity. The ratio of the total rigidity lD D+  over the 
bending rigidity is 

( )
2

21 1 6 1 .
l lD D D l

D D h
ν

+
= + = + −  (13) 

According to Hamilton’s principle, the actual motion 
minimizes the difference of the kinetic energy and total 
potential energy for a system with prescribed 
configurations at 0t = and  T  [23]. That is,  

( )
0

0.
T

K U W dtδ  − − = ∫  (14) 

The first variations of the kinetic energy of the plate 
is given by 

2

2
0 0 Ω

 Ω   .δ ρ δ
∂

= −
∂∫ ∫ ∫

T T wK dt h w d d t
t  (15) 

The variation of the strain energy of the micro-plate 
considering the strain energy due to mid-plane 
displacement on the time interval [0, ] T is obtained as 

/ 2

/2
0 0 Ω

2
d Ω ,

2

2

xx xx yy yyh
T T

xy xy xx xx
h

yy yy xy xy

s s s
xx xx yy yy xy xy

σ δε σ δε
σ δε m δχ dz

δ U t d dt
m δχ m δχ

N δε N δε N δε

−

  + +
  

+  
=    +  

 + + +  

+∫∫ ∫∫  (16) 

where, ( ), ,xx yy xyN N N are the mid-plane forces per unit 
length, which are given as 

( )

22

2
0 0

2 2

2
0 0

0 0

1 1 ,
1 2 2

1 1 ,
1 2 2

1 ,
2 1 2

a b
s

xx xx

b a
s

yy yy

b a
s

xy xy

Eh w wN σ h dx ν dy
ν a x b y

Eh w wN σ h dy ν dx
ν b y a x

Eh w wN σ h dxdy
ν ab x y

  ∂ ∂  = = +    − ∂ ∂    
  ∂ ∂  = = +    − ∂ ∂   

  ∂ ∂ = =     + ∂ ∂   

∫ ∫

∫ ∫

∫∫

 (17) 

in which ( ), ,s s s
xx yy xyσ σ σ are the stretching stresses. The 

first variation of the work, which is done by a 
distributed loading ( ),q x y on the time interval [0, ] T , 
is 

0 0 Ω

Ω .=∫ ∫ ∫
T T

δ W  d t q δ w d  d t
 (18) 

Substitution of Equations (9), (10), (15), (16) and 
(18) into Equation (14) and after some mathematical 
manipulations, yields the following differential equation 
governing transverse motion of a rectangular micro-
plate 

2 22

2 2

2 2 22

2 2

2 2 2 2

2 2 2

2

2 .

σ σσ
yy xyxx

m m mm
yy xy xyxx

xx xy yy

M MM
x yx y

M M MM
x y x y x y

w w w wN N N q ρh
x yx y t

∂ ∂∂
+ + −

∂ ∂∂ ∂

∂ ∂ ∂∂
+ + − +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂ ∂

 (19) 

The governing equation of the micro-plate in terms of 
the deflection is obtained by substitution of Equations 
(9) and (10) into Equation (19) as 

( )
2 2

4
2

2 2

2 2

2

,

l
xx xy

yy

w wD D w N N
x yx

w wN ρh q
y t

∂ ∂
+ ∇ − − −

∂ ∂∂

∂ ∂
+ =

∂ ∂

 (20) 

where, 4∇ is the biharmonic operator in the Cartesian 
coordinate system. 

   According to Figure 1, it is assumed that the 
potential of the micro-plates is imposed by a voltage 
supply. The energy stored eW by a parallel plate 
capacitor C and applied voltage V across its terminals 
is given by 

2
21 1 ,

2 2e
k abVW CV

d
ε

= − = −  (21) 

where, d is the separation distance between the plates 
(gap), k the dielectric constant (for air it is assumed 

1k = ), andε the permittivity of free space (for air 
0k ε ε= ). Taking the derivative of eW with respect tod  
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yields the electrostatic force between the plates due to 
the applied voltage 

2
0

2

d 1
.

d 2
e

e
W abV

F
d d

ε
= =  (22) 

This equation states that the force versus separation 
distance and the force versus voltage relationships are 
nonlinear. It must be noted that in the dynamic case 
phase delay in voltage propagation on the plate is 
possible. Consequently, the dynamic pull-in voltage, 
switching time and other dynamic characteristics of 
such a plate resonator may be affected. This effect is 
quite less appearing in usual MEM devices unless the 
resistance is intentionally designed to be high [24]. 
Therefore, Equation (21) can be used for the dynamic 
case as well as for the static case.  Defining ( , )q w V as 
the electrostatic nonlinear pressure of the micro-plate, 
Equation (22) be expressed as [13] 

( )
( )( )

2
0

2
0

, ,
2 ,

eF V
q w V

ab g w x y

ε
= =

−
 (23) 

where, 0g is the initial gap between the movable and 
fixed or ground plates ( 0d g w= − ). 

The boundary conditions for a rectangular micro-
plate with all edges clamped (CCCC) are 

0,

0,

∂
= =

∂
∂

= =
∂

ww
x
ww
y

       
at

at
   

0, ,

0, ,

=

=

x a

y b
 (24) 

and those for the case with all edges simply supported 
(SSSS) are 

 

2

2

2

2

0,

0,

∂
= =

∂
∂

= =
∂

ww
x
ww
y

     
at

at
  

0, ,

0, .

=

=

x a

y b
 (25) 

For convenience, the following dimensionless 
parameters are defined to transform Equations (20) and 
(23) into non-dimensional forms 

0

4
ˆ ˆ ˆ ˆ, , , * .

*
, ρ

= = = = =
w x y t aw x y t

a a
h

t
t

Dg  (26) 

Substitution of Equations (13), (23) and (26) into 
Equation (20) yields the following non-dimensional 
deflection equation  

( )

2 2

4 4 4 2

4 4 2

2 2 2 2

2 22

ˆ ˆ ˆ ˆˆ2
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ2 ,ˆˆ ˆ ˆ ˆ1

l

xx

xy yy

D D w w w wN
D x x y y x

w w w VN N
x y y t w

α

 + ∂ ∂ ∂ ∂
+ + − − 
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∂ ∂ ∂

− + =
∂ ∂ ∂ ∂ −

 (27) 

where, 

4

0
3
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2
ε

α =
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a
D
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222
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  ∂ ∂  = −     ∂ ∂    

∫ ∫

∫ ∫

∫ ∫ .


 
  



 

(28) 

  
 
 

3. NUMERICAL APPROACH 
 
3. 1. Static Analysis     In order to solve the static 
equation, step-by-step linearization method (SSLM) is 
employed similarly to Talebian et al. [13] and Rashvand 
et al. [17]. Then, the static deflections of the micro-plate 
due to the applied voltages are obtained.  
 
3. 2. Dynamic Analysis     Due to the nonlinear nature 
of Equation (27), creating a Galerkin based reduced-
order model is complicated. Hence, the existing 
nonlinear term is considered as a forcing term and the 
integration of this term is repeated at each time step 
over the micro-plate domain.  

The dynamic response of the micro-plate is 
approximated with linear combinations of a finite 
number of suitable shape functions with time dependent 
coefficients as follow 

( ) ( ) ( ) ( )
n 1 m 1

N M

mn m n
ˆˆ ˆ ˆw x, y ˆ ˆq y, t t .xφ ϕ

= =

= ∑∑  (29) 

Substituting Equation (29) into Equation (27) and 
multiplying by ( ) ( )m nˆ ˆx yφ ϕ  as a weight of Galerkin’s 
method and integrating the outcome in non-dimensional 
domain yield the reduced-order model. The response of 
the micro-plate to a step DC voltage can be calculated 
by integrating the ordinary-differential equation of the 
reduced-order model over time as 

( )
1 1 1 1

,s
klmn klmn klmn

n m n m

N M N M
e

mn mn klM q K K q F
= = = =

+ =−∑∑ ∑∑&&  

1, 2, ..., , 1, 2, ...,= =k M l N
 

(30) 

where 
1 1

0 0
k lm n k l m nM φ φ d x d y,φ φ= ∫ ∫  (31) 
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( )

1 1

2
0 0

2

1 mn

e
kl k l

m n

αVF φ dxdy.
q φ

φ
φ

=
−∫∫  

 Calculating mnq in Equation (30), then substituting 

back into Equation (29) to compute ( )ˆˆ ˆ, ,w x y t . 
 
 

4. RESULTS AND DISCUSSIONS 
 

The following admissible shape functions, are used for 
CCCC 

( ) ( )m n
2 2ˆ ˆsin (m x)sin (n yˆ )x̂ ,yφ ϕ π π=  (32) 

and for SSSS 
( ) ( )m n ˆ ˆsin(m x)sin(n yˆ ˆ .x )yφ ϕ π π=  (33) 

In order to verify the numerical results of CCCC 
boundary conditions, the static pull-in voltage of a 
micro-plate with the same geometry and properties of 
that studied by Talebian et al. [13] is obtained and 
compared with experimental results of Francais and 
Dufour [25]. As illustrated in Figure 2, by plotting non-
dimensional center gap ( ˆ1 w− ) versus non-dimensional 
voltage, the results are in good agreement with each 
other. 

 
 

 Figure 2. Comparison of computed non-dimensional pull-in 
voltage with the experimental results [26] for the CCCC 
micro-plate 

To verify the numerical results of SSSS boundary 
conditions, the natural frequency is obtained and 
compared with the analytical fundamental frequency 
obtained by Reddy [26]. The obtained natural frequency 
(2.59 MHz for a given voltage 0V) was found to be in 
good agreement with the analytical one presented by 
Reddy (2.51 MHz) [26].  

One of the purposes of this work is to study the effect 
of the length-scale parameter on the response of the 
micro-plate and compare the differences between the 
results obtained from the classical and modified couple 
stress theories. However, silicon has a small material 
length-scale parameter and the differences between the 
results of these theories are not considerable. Therefore, 
we used gold properties instead of silicon. 

Table 1 shows length-scale values of gold [27] for 
different thicknesses. As shown in Table 1, these values 
are considerable in comparison to the thickness. The 
material [28] and geometrical properties of the 
considered micro-plate are listed in Table 2. 

Figures 3 and 4 show non-dimensional center gap (
ˆ1 w− ) versus the applied DC voltage in which the 

positions of the stable centers and unstable saddle are 
pointed by solid and dashed curves, respectively. As 
shown in Figures 3 and 4, applying MCT shifts the 
saddle-node bifurcation point to the right, and 
consequently the value of the calculated pull-in voltage 
increases. These calculated pull-in voltages are brought 
in Table 3. 

 
 
 

TABLE 1. Material length-scale of gold [27] 
Thickness of Au ( mµ ) Length-scale parameter ( mµ ) 

0.5 0.47 

1 0.73 

2 1.05 

 
TABLE 2. Material [28] and geometrical properties of the 
micro-plate 
Symbol Quantity Value 

a  length 250µm  

b  width 250µm  

h  thickness 0.5µm  

E Young’s modulus 79GPa  

ν   Poisson’s ratio 0.43  

ρ   density 319300 kg m  

0ε   permittivity of air 128.8541878*10 F m−  

0g   initial gap 1 mµ  
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 Figure 3. Equilibrium-Positions of the CCCC micro-plate 
versus applied voltages based on CT (red lines) and MCT 
(blue lines) 
 
 

 
 Figure 4. Equilibrium-Positions of the SSSS micro-plate 

versus applied voltages based on CT (red lines) and MCT 
(blue lines) 
 
 

 
Figure 5. Variation of the non-dimensional fundamental 
frequency of the CCCC micro-plate versus applied DC 
voltages 

 
 
As seen in Figure 3, similar to the results of lumped 

model of the CCCC micro-plate [17], for a given 
applied voltage ( 0 pull inV V −< < ) three fixed points exist. 
The first is a stable center, the second is a unstable 

saddle node and the third is a mathematically stable 
center but physically impossible. For pull inV V −>  

it 
decreases to a mathematical stable center. However, it is 
physically impossible. The impossibility of the third 
stable solution refers to the existence of the substrate 
beneath, which restricts the amplitude of the micro-plate 
motion. 

The variation of the non-dimensional fundamental 
frequency of the micro-plate versus the applied DC 
voltage from zero to the pull-in voltage for CCCC and 
SSSS are depicted in Figures 5 and 6. As shown, the 
values of the fundamental frequency, for a typical 
micro-plate thickness obtained by MCT are greater than 
those obtained by CT for both types of boundary 
conditions. The experimental results obtained by 
Ballestra et al. [29] and the numerical results obtained 
by Jomehzadeh et al. [30] confirm this realistic trend. 

The dynamic responses and phase portraits of the 
micro-plate for zero initial conditions and different step 
DC voltages based on CT and MCT for CCCC and 
SSSS boundary conditions are plotted in Figures 7 and 
8, respectively. 

 
 
 
 

 Figure 6. Variation of the non-dimensional fundamental 
frequency of the SSSS micro-plate versus applied DC voltages 
 
 

 (a) 
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(b) 

Figure 7. The CCCC micro-plate based on CT (red lines) and 
MCT (blue lines) to different step DC voltages, a) Dynamic 
response, b) Phase portrait 
 
 

 (a) 
 

 
(b) 

Figure 8. The SSSS micro-plate based on CT (red lines) and 
MCT (blue lines) to different step DC voltages, a) Dynamic 
response, b) Phase portrait 
 
 
TABLE 3. Values of Static and Dynamic Pull-in Voltages (V) 
and Natural Frequencies (kHz)  
  CCCC  SSSS 

 CT MCT  CT MCT 

Static pull-in 3.27 6.54  1.77 3.54 

Dynamic pull-in 2.95 5.91 1.60 3.20 

Natural frequency 192.62 386.30 102.15 204.87 

As illustrated in these figures, the system becomes 
unstable for some step DC voltages smaller than the 
value of the static pull-in voltage through a homoclinic 
bifurcation. This phenomenon is called dynamic pull-in 
in MEMS literature, the critical (minimum) step DC 
voltage, in which the dynamic pull-in phenomenon 
happens, is called dynamic pull-in voltage. The dynamic 
pull-in voltages are about 92% of the static pull-in 
voltages [31], which is consistent with the results 
presented here (Table 3). Table 3 shows the numerical 
comparison of mechanical behavior predicted by CT 
and MCT. Figure 9 shows the effect of the stretching 
stress on the static pull-in voltage for a range of 
sufficiently large values of gap for CCCC boundary 
condition based on CT and MCT. As shown in Figure 9, 
the stretching effect is negligible for small gaps, while it 
is significant for bigger gaps. Figure 10 shows the ratio 
of the dynamic pull-in voltage calculated by MCT to the 
one calculated by CT ( M CT CTV V ) versus thickness. 
These results obtained with fix value of length scale for 
all thicknesses [32] and compared with the experimental 
results which are accessible in three thicknesses 
according to Table 1 [27] for CCCC micro-plate.  

 
 
 

 Figure 9. Effect of the stretching stress on the static pull-in 
voltage for the CCCC micro-plate based on CTs (red line) and 
MCTs (blue line) in comparison of CT (red dashed) and MCT 
(blue dashed) ignoring stretching effect 
 
 

 (a) 
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(b) 
 

Figure 10. Dynamic pull-in voltage ratio versus thickness of 
the micro-plate with 1.12l mµ= [32], a) for the CCCC micro-
plate and compared with experimental l in three thicknesses 
(Table 1), b) for the SSSS micro-plate 

 
 
 

As can be seen in Figure 10, for smaller values of 
the thickness, the difference between the results 
obtained from the two theories is significant. Of course, 
for larger values of the thickness, the dynamic pull-in 
ratio approaches to 1. It means that the results obtained 
based on MCT are similar to the results obtained from 
CT. 

As experimental results for the CCCC boundary 
conditions for some thickness values are available, 
hence for this case comparison of the numerical results 
obtained by MCT and CT with the experimental one is 
capable. As shown in Figure 10.a, the results of MCT 
for thicknesses about 1 2 mµ− with fix value of the 
length-scale [32] are in agreement with the experimental 
results of the certain thicknesses [27]. 

   
 

5. CONCLUDING REMARKS 
 

In this paper, a rectangular micro-plate was modeled 
based on the modified couple stress theory, considering 
the stretching effect. From a detailed variational 
procedure, the governing equation of the micro-plate 
was derived in terms of the deflection using the 
Hamilton’s principle. The obtained equation was solved 
utilizing the step-by step linearization method and 
applying the Galerkin based weighted residual method, 
and the pull-in voltages were calculated based on MCT 
and CT.  

It was found out that in the case of gradually 
application of the voltage, the micro-plate goes towards 
an unstable condition through a local saddle node 
bifurcation, while in the case of applying a step DC 
voltage, the micro-plate experiences an instability 
through a global homoclinic bifurcation. In the similar 

properties, the pull-in voltages and the natural 
frequencies of the CCCC micro-plate are larger because 
of a larger stiffness than those of the SSSS micro-plate.  

Based on the numerical results, it is concluded that 
for the micro-plate, the effect of material length-scale is 
significant as the thickness becomes smaller, and the 
MCT results are closer to the experimental ones than 
those obtained by CT. In addition, it was showed that 
the stretching effect is negligible for small gaps, while it 
is significant for bigger gaps. The obtained results are 
useful for the MEMS community in the accurate design 
of MEMS devices. 
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  چکیده

  
ي مستطیلی در دو حالت کاملا  این مقاله به بررسی اثرات پارامتر مقیاس طول ماده روي پایداري و فرکانس طبیعی میکروصفحه

اثرات  ي غیرخطی حاکم بر میکروصفحه با در نظرگیري دست آوردن معادله براي به. پردازد گاه ساده می گیردار و کاملا با تکیه
ي غیرخطی حاکم، در حالت استاتیکی با  معادله. شود ي تئوري تنش کوپل پیراسته از اصل همیلتون استفاده می کشیدگی بر پایه

ي چهار حل  کوتاي مرتبه- گیري از روش رانگ سازي گام به گام و در حالت دینامیکی با انتگرال استفاده از روش خطی
خازنی است  MEMSهاي  هاي پایداري دستگاه ي حوزه تیکی و دینامیکی که محدودکنندهاستا pull-inپارامترهاي . گردد می

دهد که وابستگی مواد به  نتایج عددي نشان می. گردد آمده از تئوري کلاسیک مقایسه می  دست محاسبه شده و با مقادیر به
  .پوشی است ی قابل چشمهاي کمتر چشمگیرتر بوده و در این حالت اثرات کشیدگ ي ذاتی در ضخامت اندازه
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