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A B S T R A C T  

   

In this paper, the conjugate gradient (CG) method is employed for identifying the parameters of crack 
in a functionally graded beam from natural frequency measurement. The crack is modeled as a 
massless rotational spring with sectional flexibility. Using the Euler-Bernoulli beam theory on two 
separate beams and applying the compatibility requirements of the crack, the characteristic equation 
can be obtained as a function of natural frequency and location and depth of crack. In direct problem, 
the natural frequency is computed using analytical analysis. Moreover, the location and depth of crack 
are determined by measuring the three natural frequencies of beam in inverse problem. In this study, 
the CG method is utilized in inverse problem to determine the location and depth of crack. The 
obtained results show the efficiency of CG algorithm in terms of accuracy and the convergence speed. 
 
 

doi: 10.5829/idosi.ije.2014.27.03c.03 
 

1. INTRODUCTION1 
 
A crack in a structural member introduces local 
flexibility that would change the dynamic behavior of 
the structure. Changes in overall dynamic of structure 
might be used to indicate the existence, location and 
depth of cracks. Several analytical, numerical and 
experimental methods are studied on the dynamic 
behavior of cracked structures [1-7]. In this field, a 
crack in a beam subjected to various boundary 
conditions is modeled by many researchers [8-11]. In 
their analyses, two categories of crack modeling are: 
open crack model and breathing crack model. The 
model is considered according to the vibration 
amplitude or loading conditions [9].  

Functionally graded materials are inhomogeneous 
composites which have found an increasing application 
in space structures, fusion reactors and so on. Over the 
past few years, many researchers have investigated the 
dynamic response of FGM structures [3, 5, 12, 13]. 
Literature review shows that the dynamic behavior of 
cracked FGM structure has not been considered very 
                                                        
1*Corresponding Author Email: mojtaba.eftekhari59@gmail.com (M. 
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perfectly. In what follows, the related works to the 
analysis of the FGM cracked beams are presented.  

Free vibration and buckling of an FGM beam with 
open edge cracks have been investigated by Yang and 
Chen [14]. The method was based on modeling the 
beam by Euler-Bernoulli beam theory. Critical buckling 
load and natural frequencies were obtained analytically 
by considering the effects of material properties, 
number and location of cracks and boundary conditions. 
Results were showing that the natural frequency ratio 
and buckling load ratio were much lower when the 
crack was located near the position of maximum 
bending moment due to distribution load. Kitipornchai 
et al. [15] studied nonlinear vibration of cracked FGM 
beams using the Timoshenko beam theory and von 
Karman geometric nonlinearity. The governing equation 
has been derived by the Ritz method and then solved by 
a direct iterative method which resulted in to compute 
nonlinear natural frequencies and mode shapes of beam. 
Numerical results were showing the effects of crack 
location, crack depth, length to thickness ratio of beam, 
material property and boundary conditions on the 
nonlinear vibration characteristics of the FGM beam.  
Fernando et al. [16] studied the crack detection in 
structural elements by means of a genetic algorithm 
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optimization method. The methodology was applied to 
beam-like structures and any other arbitrary shaped 3D 
element. The input data in algorithm were obtained with 
a cantilever damaged beam in physical experiments.   

Zhigang and Fulei [17] presented the p-version of 
finite element method to identify position and size of 
the open edge crack in FGM beams. In their study, the 
effects of location and size of crack on natural 
frequencies have been investigated. Experimental 
results were showing the effectiveness of the proposed 
method. Byrd and Birman [18] examined free and 
forced vibration of damaged FGM beam. They extended 
their work to modeling damage to region with degraded 
stiffness adjacent to the fixed point of the beam, a single 
delamination crack and a single crack at the root cross 
section of the beam [19]. Moradi and et al. [20] 
proposed the bees algorithm to detect the crack in 
cantilever beam. Kang et al. [21] was utilized the 
experimental data to detect the parameters of crack by 
an improved particle swarm optimization. A hybrid 
stochastic/deterministic algorithm was used by Miguel 
et al. [22]. Results were showing that the new method 
was more accurate than the other algorithms which were 
presented in pervious works. 

Among the sparse works of cracked FGM beams, 
the objective of this paper is to estimate the location and 
size of crack in FGM beam by conjugate gradient 
method. No previous works have been done regarding 
to the crack identification by this method in FGM 
beams. The open crack is modeled by a massless 
rotational spring. The governing equation and boundary 
conditions is obtained using the extended Hamilton’s 
principle on two separate Euler-Bernoulli beams. By 
employing the boundary conditions, the characteristic 
equation is obtained as a function of position ratio of 
crack, depth ratio of crack and Young modulus ratio. 
Three natural frequencies of beam are evaluated from 
analytic solution for a considered Young modulus once 
the location and depth of crack are determined. 
Conjugate gradient method can be utilized for 
computing the parameters of crack (position and depth) 
given the natural frequencies of FGM beam as inputs. 

 
 

2. MATHEMATICAL MODELING AND 
FORMULATION 
 
1. 2. The Rotational Spring FGM Beam Model     A 
cantilever FGM beam of length L and thickness h, 
containing an edge crack of depth a located at position 

1L  from the clamped end is shown in Figure 1. Young 
modulus and density of beam follow exponential 
distribution as  
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where, 111 ,, νρE  are Young’s modulus, density and 
Poisson’s ratio at 2/hz −=   respectively and 2E  is the 
Young’s modulus at 2/hz = . Moreover, k  is defined 
as  12 / EEk =  . A number of researchers has previously 
used the exponential law of the material properties and 
this law is more common in fracture studies of FGM 
materials [23, 24]. The material distribution in the 
thickness direction of the E-FGM beams is depicted in 
Figure 1 for three values k  equal to 0.2, 1 and 5. As 
shown in Figure 1, the property changes ascending for

1>k , and changes descending for 1<k  and is constant 
for 1=k . Note that material properties are 
homogeneous and isotropic when 1=k . Figure 2 shows 
a FGM cantilevered beam with the crack model. As 
shown in Figure 2(b), the crack section is modeled as a 
massless rotational spring. Based on this model, the 
entire beam is divided in two sub-beams which are 
connected by the rotational spring whose bending 
stiffness of the cracked section, TK ,  is given as 

,1
G

KT =  (2) 

where, G  is the flexibility due to the crack and can be 
derived from the Broke assumption [25] as 
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where, )(, aEM I  is the bending moment at the cracked 
section and Young’s modulus at the crack tip 
respectively and IK   is the stress intensity factor (SIF) 
under mode-I loading. The SIF parameter is a function 
of the geometry, the loading, and the material 
properties. 
 
 
 

 
Figure 1. The variation of material properties in an E-FGM 
beam. 
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a) An FGM beam with an open edge crack 

 
TK  

 
b) Rotational spring model 

Figure 2. Schematic of cantilever beam and crack model 
 
 
 
Through the Lagrange interpolation technique, the 
formulas for the SIF can be obtained from the data 
given by Erdogan and Wu [26] as follows 
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where, the crack depth ratio )(ζ  is in interval 0.0 to 0.7 
and )(ζF  is expressed in Equations (5) to (7) as 
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Substituting Equation (4) into Equation (3) leads to 

ζ
ζ
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d
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By substituting Equation (8) in Equation (2), the 
bending stiffness of the cracked section )( TK  is 
obtained. 
 
2. 2. Governing Equations     Based on Euler-
Bernoulli beam theory, displacement of an arbitrary 
point in the beam along the x and z axis are 
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where, ),(),,( 00 txwtxu  are displacement components in 
mid-plane. The strain-displacement relation is given as 
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where, 10 , xxxx εε are strains due to mid-plane and bending, 
respectively. The normal stress xxσ  is related to the 
strain through the linear constitutive law as 
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From Equations (9) to (12), variation of kinetic energy 
and potential energy for the cracked FGM beam are 
obtained as 
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By substituting Equations (13), (14) in to the extended 
Hamilton’s principle given in Equation (15), and noting 
the fact that 00 , wu δδ  are arbitrary, the governing 
equation of motion for ith segment ( 2,1=i ) are 
obtained in Equations (16) and (17) 
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where, subscript 2,1=i    refer to the left sub-beam and 
the right sub-beam, respectively, which is divided with 
crack. 

Moreover, it is assumed that in Equations (16) and 
(17) the in-plane inertia and rotary inertial effects are 
negligible. The parameters 1111111 ,,, DBAI are defined as  
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And the boundary conditions are 
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where, the stress resultant xxN  (force per unit length) 
and the stress moment xxM  (moment per unit length), 
are defined as the following integral expressions 
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2. 3. Direct Solution    In direct problem, eigen 
solutions for the cantilevered boundary conditions are 
derived using the following separable solutions 
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where, ω  is the natural frequency of the cracked FGM 
beam. Substituting Equation (23) in to Equations (16) 
and (17), the displacement fields for each segment are 
obtained as 
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By substituting Equations (24) and (25) in to the 
boundary conditions given by Equations (19) to (21), 
we can express them in matrix form as 
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where, H is a square matrix as Equations (28) and (29).  
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Thus, the characteristic equation which ensures the non-
trivial solution is 

0)()])(det([ == λλ HH  (30) 

Natural frequencies are obtained by solving Equation 
(30). Note that the natural frequency now depends not 
only on the crack depth and location, but also on the 
material. This equation can be solved analytically for 
certain values of location and depth of crack. 
 
2. 4. Inverse Solution    In inverse problem of the 
cracked system, the location and depth of crack are 
computed when the value of natural frequencies are 
known. By substituting the measured natural 
frequencies in to characteristic equation (Equation (30)), 
there are only unknown parameters hall /,/1  which are 
the non-dimensional position and depth of crack, 
respectively. Several non-linear equation solving 
algorithms can be used for this problem. In this paper, 
these unknown parameters are solved using the 
conjugate gradient method [27]. 

In crack detection process, a location and depth of 
crack are considered as reference location and depth and 
the first three natural frequencies are obtained 
analytically from the characteristic equation. The 
natural frequencies are named as analytical natural 
frequencies. Then, for simulation of experimental data, 
the percent of error is added to these analytical values 
and they are entered as input to the inverse algorithm. 
The conjugate gradient algorithm is evaluated the 
location and depth of crack which are compared to the 
values of references. The ratio of reference natural 

frequency ))(( *
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where , ε   is a random number at interval [-0.5, 0.5],  
err is the magnitude  rate of error which is considered 

as 0% 1% or 2% in this paper and c

oi

ci )(
ω
ω  is the rate of 

analytical natural frequency. 

2. 5. Conjugate Gradient Method   The conjugate 
gradient algorithm is an iterative algorithm for solving 
linear and nonlinear problems [27]. This method is used 
to minimize the summation of quadratic form in 
estimation problems. The algorithm selects the 
successive direction vectors based on the gradients such 
that at each step of iteration the process makes the good 
uniform progress to the solution. At each step the 
current negative gradient vector is computed and is 
added to a linear combination of the previous direction 

vectors to obtain a new conjugate direction vector. In 
conjugate gradient formulation, the minimization of 
quadratic norm is introduced as 
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where, in Equation (30), )(PS is the summation of 

quadratic errors (objective function), ],...,,[ 21 N
T PPPP =  

is unknown parameters vector, N  is number of 
parameters, I is number of sampling and  ii YPT ),(  are 
estimated and sampled quantity for i-th measured point, 
respectively. By expanding the tailor series for 
estimated values P, we get 

)()()( kkk PPXPTPT −+=  (33) 

where, ]/[ jiij PTX ∂∂=  is the sensitivity matrix. The 
matrix is computed in the given algorithm in Table 1 
from finite difference method. By substituting Equation 
(33) in to Equation (32) and minimizing the error 
function, resulting to the following iteration formula 
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k
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where, kd  is the  new conjugate gradient direction 
which is obtained from linear combination of gradient 
vector in the k and k-1 steps as 

( ) 1dPd −γ+∇= kkkk S  (35) 

From the several choices for kγ , the Fletcher-Reeves 
[28] expression is considered in the given algorithm in 
Table 1. This algorithm terminates when ε<+ )( 1kPS   
for a CG error tolerance 1<ε . The conjugate gradient 
algorithm is presented in Table 1. 
 
 
 
3. RESULTS AND DISCUSSION 
  
3. 1. Direct Solution Veri ication   In order to 
validate the accuracy of analytical solution of direct 
problem. The fundamental frequency ratio 101 /ωω of a 
cracked cantilevered isotropic beam is computed at 
different locations. Moreover, 10ω  is the first natural 
frequency of the intact beam. Table 2 shows the 
fundamental frequency ratio of an isotropic 
homogenous cantilevered beam with the properties

)2.0/,3.0,0.4/( === hahL ν . This example was 
previously analyzed by Yokoyama and Chen [29] using 
the finite element method and Bernoulli–Euler beam 
theory. As shown in Table 2 our analytical solutions are 
in good agreement with the finite element results. 
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TABLE 1. Conjugate Gradient Algorithm 
1- 0⇐k  
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5- End of While 

6- Return kP  
 
 
 
TABLE 2. Fundamental frequency ratio o11 ωω  of an isotropic 
homogenous cantilevered beam )2.0,3.0,0.4( ===
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0.9410 0.9656 0.9667 0.9856 0.9958 0.9964 

 
  

TABLE 3. First three dimensionless natural frequencies of 
intact FGM cantilevered beams  

)/2780,33.0,70( 3
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1ω  2ω  3ω  
Ref. 
17 present Ref. 

17 present Ref. 
17 present 

20 
0.2 
1 
5 

0.83 
0.88 
0.83 

0.83 
0.88 
0.83 

5.18 
5.51 
5.18 

5.18 
5.51 
5.18 

14.49 
15.42 
14.49 

14.49 
15.42 
14.49 

10 
0.2 
1 
5 

3.30 
3.52 
3.30 

3.30 
3.52 
3.30 

20.70 
22.03 
20.70 

20.70 
22.03 
20.70 

57.97 
61.70 
57.97 

57.97 
61.70 
57.97 

In Table 3, the lowest three modal frequencies of the 
intact FGM cantilevered beam are calculated by the 
present method and are compared with those reported 
by Yu and Chu [17]. In their work, the p-FEM was used 
for calculation of frequencies and the modal frequencies 
were normalized as follow: 

oo

n
n Id /

ω
ω =  (36) 

where, 0d  and 0I  are the corresponding values of 0d  
and 0I  of an isotropic homogeneous beam 1/ 12 =EE . 
Table 3 shows that the obtained results are in 
conformity with the results of paper [17]. 
 
 
TABLE 4. Comparison of reference crack parameters with the 
predicted values obtained by inverse algorithm )1( 12 =EE for 
ten simulation 

Reference 
crack  Predicted crack 

ha /  LL /1
 err.% ha /  Rate of 

error 
LL /1

 Rate of 
error 

0.3 

0.2 
0 
1 
2 

0.3000 
0.2987 
0.2966 

0.00 
0.43 
1.13 

0.2001 
0.1995 
0.1981 

0.05 
0.25 
0.95 

0.4 
0 
1 
2 

0.3000 
0.2991 
0.2982 

0.00 
0.30 
0.60 

0.4000 
0.4005 
0.4012 

0.00 
0.12 
0 .30 

0.5 

0.2 
0 
1 
2 

0.5000 
0.4995 
0.4989 

0.00 
0.10 
0.22 

0.2000 
0.1999 
0.1998 

0.00 
0.05 
0.10 

0.4 
0 
1 
2 

0.5000 
0.4996 
0.4991 

0.00 
0.08 
0.18 

0.4000 
0.4002 
0.4004 

0.00 
0.05 
0.10 

 
 
TABLE 5. Comparison of reference crack parameters with the 
predicted values obtained by inverse algorithm )2.0( 12 =EE
for ten simulation 

Reference 
crack  Predicted crack 

ha /  LL /1
 err.% ha /  Rate of 

error 
LL /1

 Rate of 
error 

0.3 

0.2 
0 
1 
2 

0.3000 
0.2991 
0.2979 

0.00 
0.30 
0.70 

0.2001 
0.1997 
0.1990 

0.05 
0.15 
0.50 

0.4 
0 
1 
2 

0.3000 
0.2994 
0.2987 

0.00 
0.20 
0.43 

0.4000 
0.4004 
0.4008 

0.00 
0.10 
0.20 

0.5 

0.2 
0 
1 
2 

0.5000 
0.4997 
0.4992 

0.00 
0.06 
0.16 

0.2000 
0.1999 
0.1998 

0.00 
0.05 
0.10 

0.4 
0 
1 
2 

0.5001 
0.4997 
0.4993 

0.02 
0.06 
0.14 

0.4000 
0.4002 
0.4003 

0.00 
0.05 
0.07 
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TABLE 6. Comparison of reference crack parameters with the 
predicted values obtained by inverse algorithm )5( 12 =EE for 
ten simulation 

Reference 
crack  Predicted crack 

ha /  LL /1
 err.% ha /  

Rate 
of 

error 
LL /1

 
Rate 

of 
error 

0.3 

0.2 
0 
1 
2 

0.3000 
0.2987 
0.2966 

0.00 
0.43 
1.13 

0.2001 
0.1995 
0.1981 

0.05 
0.25 
0.95 

0.4 
0 
1 
2 

0.3000 
0.2991 
0.2982 

0.00 
0.30 
0.60 

0.4000 
0.4005 
0.4012 

0.00 
0.12 
0 .30 

0.5 

0.2 
0 
1 
2 

0.5000 
0.4995 
0.4989 

0.00 
0.10 
0.22 

0.2000 
0.1999 
0.1998 

0.00 
0.05 
0.10 

0.4 
0 
1 
2 

0.5000 
0.4996 
0.4991 

0.00 
0.08 
0.18 

0.4000 
0.4002 
0.4004 

0.00 
0.05 
0.10 

 
 
 
3. 2. Crack Identification by Conjugate Gradient 
Method     A cantilever FGM beam with dimensions 

mhmL 1.0,2 ==  and material properties 

33.0,/2780,70 3
1 === νρ mkgGpaE  is considered 

in this analysis. 
The conjugate gradient algorithm calculated the 

crack parameters for three cases ,1/ 12 =EE  
5/,2.0/ 1212 == EEEE in Tables 4-6, respectively. In 

these cases, by selecting the reference location and 
depth of crack, the first three natural frequencies are 
obtained from the direct solution. Then, ten reference 
natural frequencies are obtained from Equation (31) by 
estimating random number (ε ) for ten times. 
Subsequently, 10 natural frequencies are entered as 
inputs to the conjugate gradient algorithm. The 
algorithm can compute the location and depth of crack. 
By averaging ten obtained values, the predicted location 
and depth values of crack are presented in Tables 4-6. 
Predicted values are compared with reference values for 
percent errors 0.1 and 2. Results show that when the rate 
of error increased, the accuracy of crack parameters 
decreased. By increasing the position and depth of 
crack, the rate of error decreased. Moreover, the 
obtained depth of crack is more accurate than the 
achieved crack position. 

 
 

4. CONCLUSION 
 
The conjugate gradient (CG) method is presented in this 
article for solving inverse problem of a cantilever FGM 

beam with an open edge crack. The Euler-Bernoulli 
beam theory is considered for the beam modeling and a 
massless rotational spring is represented for crack 
modeling. The characteristic equation of this cracked 
FGM beam is a function of natural frequency, location 
and depth of crack and Young modulus of FGM beam. 
The CG method is employed to solve the characteristic 
equation when the natural frequencies of beam are 
given. In this algorithm, the natural frequencies are 
obtained from analytical solution of equation when the   
references values of location and depth of crack are 
given. The obtained natural frequencies are added to 
percent of error and entered as inputs to inverse 
problem. The CG algorithm can compute the location 
and depth of crack. Ten locations and depths of crack 
are evaluated once the natural frequencies are added 
with the random error values for ten times. Average of 
locations and depths are obtained from the CG method. 
The results obtained, show that when the percent error 
of natural frequencies increase, the algorithm converges 
to more accurate values of locations and depths (that are 
very near to references values). 
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  چکیده

  
در این مقاله روش گرادیان مزدوج جهت تعیین پارامترهاي ترك در تیر با خواص تابعی با استفاده از فرکانس هاي طبیعی 

برنولی و اعمال شرایط -با بکارگیري تئوري تیر اویلر. ترك به صورت فنر پیچشی بدون جرم مدل گردیده است. بکاررفته است
زي و شرط سازگاري در محل ترك، معادله مشخصه به صورت تابعی از فرکانس طبیعی تیر و موقعیت و عمق ترك بدست مر

. آید در حل مستقیم، با مشخص بودن موقعیت و عمق ترك، فرکانس طبیعی از حل تحلیلی معادله مشخصه بدست می.می آید
در این مطالعه از روش گرادیان .و عمق ترك تعیین می گردد در حل معکوس با دانستن سه فرکانس طبیعی از تیر، موقعیت
نتایج نشان دهنده کارایی روش گرادیان مزدوج در تعیین دقت و . مزدوج براي محاسبه موقعیت و عمق ترك استفاده شده است

  .سرعت همگرایی الگوریتم در محاسبه موقعیت و عمق ترك است

doi: 10.5829/idosi.ije.2014.27.03c.03

  

 


