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Entropy generation of double diffusive natural convection in a three dimensional differentially heated
enclosure has been performed numerically. Vertical walls of enclosure are heated differentially and
remaining walls are adiabatic. The obtained results were presented via iso-concentration, iso-temperatures,
velocity vector projection, particle trajectories, velocity profiles, iso-entropy, local Nusselt and Sherwood
numbers, average Nusselt and Sherwood numbers and Bejan numbers at different value of buoyancy ratio
(-2 <N <2) and Rayleigh numbers (10° < Ra < 10°). The Lewis number is fixed at Le = 2. It is found that
both Rayleigh number and buoyancy ratio play dominant role on entropy generation and heat and mass
transfer as well as fluid flow. A special case occurred between -1.5 < N < -1 and complex structure is
observed.
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NOMENCLATURE
Be Bejan number Greek Symbols
C Dimensionless concentration a Thermal diffusivity
D Mass diffusivity B Expansion coefficient
Gr Grashof number H Dynamic viscosity
K Thermal conductivity \% Kinematic viscosity
Le Lewis Number v, Characteristic speed of fluid (=¢, / W)
N Buoyancy ratio (08 ’902 , ?; Irreversibilities coefficients
N Local generated entropy @' Dissipation function
Pr Prandtl number 4 Dimensionless vector potential
Ra Rayleigh number @ Dimensionless vorticity
Sc Schmidt number Superscripts
Sh Sherwood number X,y,Z Cartesian coordinates
S en Generated entropy dif Diffusive
t Dimensionless time fr Friction
T Dimensionless temperature th Thermal
T, Cold temperature tot Total
T, Hot temperature Subscripts
v Dimensionless velocity vector ' Dimensional variable
W Enclosure width
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1. INTRODUCTION

The effect of buoyancy ratio on the flow structure is
investigated numerically for a binary mixture gas in a
rectangular enclosure by Nishimura et al. [1]. They
indicated that the key mechanism for oscillatory flow is
that the unstably stratified region of species shifts from
the central part of the enclosure to the upper and lower
parts, and vice versa in a time-periodic sense, due to
the interaction of heat and mass transfer with different
diffusivities near the vertical walls.

The simultaneous heat and mass transfer by natural
convection in an air-filled cavity of aspect ratio 7.0 is
investigated numerically and experimentally for both a
horizontal and vertical cavity by Wee et al. [2]. The
finite-difference equations are solved by the dynamic
alternating  direction implicit (DADI) method.
Transient, double diffusive natural convection in a
horizontal enclosure is investigated in an enclosure
numerically and analytically by Bennacer et al. [3].
Bennacer and Gobin [4, 5] made a study on double
diffusive natural convection in a binary fluid contained
in a two-dimensional enclosure where horizontal
temperature and concentration differences are
specified. They proposed a general mass transfer
correlation which is valid over a wide range of
parameters. A three-dimensional numerical study had
been performed using vorticity-vector potential
formulations based on the finite-volume method to
investigate the double-diffusive convection in a stack
of cubic enclosures. Their result showed that the effect
of heat and mass diffusive walls differs between the
case of thermally dominated flow and the
compositionally dominated one. Papanicolaou and
Belessiotis [6] worked on natural convective heat and
mass transfer in an asymmetric, trapezoidal enclosure.
Steady-state thermosolutal convection in a square
cavity filled with air, submitted to horizontal
temperature and concentration gradients, is studied
numerically by Béchein et al. [7]. They obtained
correlations between heat and mass transfer rates and
the non-dimensional numbers characterizing the flow
phenomena. Sezai and Mohamad [8] made a numerical
study on double diffusive convection in a cubic
enclosure with opposing temperature and concentration
gradients. The flow is driven by buoyancy forced due
to temperature and solutal gradients. They stated that
the double diffusive flow in enclosures with opposing
buoyancy forces is strictly three dimensional for a
certain range of parameters. Hyun and Lee [9] studied
the double-diffusive convection in a rectangular cavity,
numerically. They presented the mean Sherwood and
mean Nusselt number for different value of buoyancy
ratio. Other studies on natural convection of double
diffusive natural convection problem can be found in
literature as Goyeau et al. [10]. Murty et al. [11] was

used to finite element method to solve double diffusive
convection problem. Other studies related with double
diffusion problem can be found in literature as Chen
and Du [12] and Han and Kuehn [13], Reena and Rana
[14], Borjini et al. [15] and Jaimal et al. [16].

Calculation of entropy generation in an energetical
system is important to find the energy losses and
enhances the energy efficiency in the system. Bejan
[17-20] proposed the entropy generation minimization
technique and it may apply for many systems such as
high velocity pipe flow [21], natural convection under
magnetic field [22], binary gas mixture of mixed
convection [23], natural convection in different shaped
cavities [24-26], porous medium [27, 28]. Some review
[29] and fundamental studies [30, 31] are performed on
this subject. However, entropy generation on double
diffusive natural convection heat transfer is very
limited. In this context, Chen and Du [12] investigated
the effects of thermal Rayleigh number, ratio of
buoyancy forces and aspect ratio on entropy generation
of turbulent double-diffusive natural convection in a
rectangle cavity. They found that total entropy
generation increases with Rayleigh number, aspect
ratio and values of N>1.

The main objective of the present work is to
examine the entropy generation in a three dimensional
double diffusive natural convection. Based on literature
survey, there is no study on entropy generation due to
natural convection in three dimensional cavities.

2. PROBLEM FORMULATION

Studied model is presented in Figure 1. It is three
dimensional models for an enclosure under different
temperature of vertical walls and remaining walls are
adiabatic. Gravity acts in vertical y direction. It is filled
with binary fluid mixture and Prandtl number is chosen
a 0.7 for whole work.
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Figure 1. Schematic diagram of the physical system
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The equations describing the double diffusive natural
convection are the equations of continuity Equation
(1), of momentum Equation (2), of energy Equation (3)
and species diffusion Equation (4):

V.V'=0 (1
WV e oo s P
E+(V‘,V)V':—;VP+VAV‘+[3X(T—TO)g+ﬁC(C—CO)g 2)
M yvT=avT 3)
or

%+X7‘.VC:DVZC 4)

As numerical method, we had recourse to the vorticity-
vector potential formalism(y — ) which allows, in a
three dimensional configuration, the elimination of the
pressure, which is a delicate term to treat. To eliminate
this term, one applies the rotational to the equation of
momentum. The vector potential and the vorticity are
defined by the two following relations:

@'=VxV and V'=V xy' (3)

In the Equations (1) to (4), time ', velocity V', the
vector potential /', the vorticity &' are put in their

adimensional forms by w2/¢, a /W, oo and W? /¢,
respectively. The dimensional temperature and
concentration are defined by:

T= (T’_T’c) and C= (C'_C'l) .
(T’h_T’c) (C'h_c'l)

After application of the (y —@) formalism and

adimensionalisation, the system of equations
controlling the phenomenon becomes:

-6 =V (6)
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Dimensionless variables are :

_gBW(T,-T)

_Y> Ra
Pr—a ayv
. . (10)
_PACmC), e S
B..(T,-T.) D Pr

The control volume finite difference method [32] is
used to discretize Equations (6) to (9). The central-
difference scheme for treating convective terms and the
fully implicit procedure to discretize the temporal
derivatives are retained. The grid is uniform in all
directions with additional nodes on boundaries. The
successive relaxation iterating scheme [32] is used to
solve the resulting non-linear algebraic equations.

The boundary conditions are given as:

e Temperature
T=1 atx=1, T=0 at x=0;

1mn
9T _, on other walls (adiabatic).
on
e Concentration
C=1 at x=1, C=0 at x=0; (12)
9C _, on other walls (impermeable).
on
e Vorticity
0,=0,q __9v,, o _9%, atx=0and 1
7 ox ° 0x
0.=Ye0,=0,4 -V aty=0and1 (13)
¥ oy ’ oy
® :_8VY,Q) _ oV, ,o,=0 atz=0and I
¥ 0z 7 0z
e  Vector potential
oy =0and 1
Yy _y =y =0 a x=0an
ox V,=V,
v :5l//y =y =o0at y=0andl (14)
X 8y z
v, =y :al’/Z =0 at z=0and 1
* 7 0z
e Velocity
(15)

V,=V,=V,=0 on all walls

Local Nusselt and Sherwood numbers are given as
follows :

Nu =8_T
ox

(16)
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The average values of Nusselt and Sherwood
numbers, on the isothermal walls are expressed by:

Nu-|
0

ot—

11
Nu.dydz Sh= J J Shoyoz W)
00

The local entropy generation rate in a three-
dimensional flow with single diffusing specie of
concentration (C) can be written [30] as Equation (18);
where, Cy and T, are the reference concentration and
temperature, respectively. After adimensionalisation,
we obtain the dimensionless local generated entropy as
[30] Equation (19). The first term of N represents the
thermal irreversibility which is noted Ng4. The second
term represents the viscous irreversibility which is
noted Ny and the third term represents the diffusive
irreversibility which is noted Ns.gix Ns give a good idea
on the profile and the distribution of the generated

local  dimensionless  entropy. The  average
dimensionless generated entropy is written:

1 1
S,=—[Ndv=—[(N_, +N_, +N_, Mv

B A ; ; (20)

Stot = Sth + Sfi + Sdif

Dimensionless irreversibilities distribution ratios (,

P,
and , ), are given by:
2 " "
_pa’T :RDR[AC} _RD| AC
= CKAT? PTKG AT g O = | ar @1
Mean Bejan number is defined as :
S, +S,
Be — th dif (22)
Slh + Sdif + Sﬁ

3. RESULTS AND DISCUSSIONS

Heat and fluid flow and entropy generation of double
diffusive natural convection in a three dimensional
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differentially heated enclosures were investigated
numerically for different parameters. Results will be
presented in this part of the study via isocontcentration,
iso-temperatures, velocity vector projection, particle
trajectories, velocity profiles, iso-entropy, local Nusselt
and Sherwood numbers, average Nusselt and
Sherwood numbers and Bejan numbers. Results are
presented in two different subtitles as thermal and flow
field and also entropy generation.
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Figure 2. Comparison of the isotherm, isoconcentration and
z-vector potential plots in the X-Y plan by Nishimura et al.
[1]at Ra= 10, N=0.8 and AR = 2.0, (a) Nishimura, et al. [1]
and (b) Present Code
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3. 1. Grid Sensitivity Check and Code Validation
The first simulations are carried for N= -0.5, Le=2, Pr
= 0.7, and Ra = 10’ in order to choose adequate spatial
meshes. A dimensionless time step equal to 107 is
retained. Results justifies quantitatively the use of
51x51x51 spatial meshes, at least for Ra=10°. A
validation has been performed between present study
and studies of Nishimura et al. [1]. In this context,
Figure 2 illustrates the isotherm, iso-concentration and
z-vector potential by comparing present results (on the
right column) and Nishimura’s results (on the left). As
seen from the figure, obtained results show good
agreement with literature.

3. 2. Flow and Thermal Fields As indicated in
the literature, when buoyancy ratio less than unity, the
flow is primarily dominated by the thermal buoyancy
force and for buoyancy ratio greater than 1, the
compositional buoyancy force rather than the thermal
buoyancy force dominates the flow. Figure 3 shows
isotherms for six different values of buoyancy ratio at
different Rayleigh numbers. On the left side, values are
given for positive and right column negative. As seen
from the figure, variation of buoyancy values is not
effective near vertical walls for all values of Rayleigh
numbers. For Ra = 10°, conductive mode of heat
transfer becomes dominant. Intersection point among
buoyancy ratio goes down and show diagonal variation
for positive values. However, intersection points
become almost same along a line. When N = -1,
isotherms are almost constant. In other words, they
exhibit a parallel distribution to the vertical walls. As
an interesting result, there are no huge differences on
isotherms for positive values of buoyancy ratios. On
the other hand, negative values of buoyancy ratio are
more effective on isotherms.

(b)

(c)
Figure 3. Iso-temperature for different Rayleigh number in
(x-y) planes a) Ra = 10%, b) Ra=10% ¢) Ra =10

(b)

Figure 4. Iso-concentration for different Rayleigh number
for in (x-y) planes, a) Ra = 10°, b) Ra=10* ¢) Ra= 10’

For N = -1.5, isotherms present a completely
different distributions than others. For the same studied
parameters, iso-concentration plots are given in Figure
4. Iso-concentration contours show regular distribution
for low Rayleigh number even at core region.
However, the concentration contours are furthermore
distorted in the core especially at higher value of
Rayleigh number. This result is supported by
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Nishimura et al. [1]. This is clearly seen from three-
dimensional visualizations as given in Figure 5 at N = -
1. In this case, species diffusivity is being half the
thermal diffusivity. Again, as seen from Figure 5,
regular distribution on iso-concentration occurs for N =
1l and N=-1.5.

In addition, variation of buoyancy ratio is effective
on velocities as seen from Figure 6. The figure also
shows the vector velocity projection in the central plan
(z=0.5)at Ra= 10°. For most cases (N=05,1,1.5, -
0.5 and -1.5), two cells were formed near right top and
left bottom sides. Furthermore, another cell appears at
the middle for N = -2 and 2. It is an interesting result
that N = 1 shows different distribution on flow.
Number of cell decreases with decreasing of Rayleigh
number for each values of buoyancy ratio as seen from
Figures 7 and 8. Velocity shows special variations at N
= -1 for each values. Locations of corner cells change
with Ra = 10* and four different cells were observed at
Ra=10".

(a)

(b)

N=1 N=-1 N=-1.5
Figure 5. (a) Iso-surfaces of concentration (on the top row),
(b) Iso-surfaces of temperature (on the bottom wall) for
Ra=10° and buoyancy ratio

Figure 6. Vector velocity projection in the central plan (z=0.5)
for Ra=10" and different buoyancy ratio

Figure 7. Vector velocity projection in the central plan
(z=0.5) for Ra=10* and different buoyancy ratio
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N=-1.5 N=-=2

Figure 8. Vector velocity projection in the central plan (z=0.5)
for Ra=10° and different buoyancy parameter

quasi-bidimensional
vortex

(b) Ra=10*
A complex three dimensional (¢) Ra=10°
flow
Figure 9. Some Particles trajectories for N=-1, a) Ra = 10°,
b) Ra=10% ¢)Ra=10°

Figure 10. Some Particles trajectories for N = 1, a) Ra = 10°,
b) Ra=10% ¢)Ra=10°

Figure 11. Some Particles trajectories for N =2, a) Ra = 103,
b) Ra=10% ¢)Ra=10°

25

20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
N

Figure 12. Velocity component V, as function of N at
Ra=10’

The complexity for N = -1 can be explained via three
dimensional visualization of some particle trajectories
as shown in Figure 9 for different Rayleigh numbers.
To compare and see the effects of buoyancy ratio on
particle trajectories, two different cases are plotted for
N = 1 (Figure 10) and N = 2 (Figure 11). For Ra = 10,
velocity profiles are plotted versus buoyancy ratio in
Figure 12. As seen from the figure, velocity value
becomes maximum for N = -1 and it increases linearly
with increasing of N values.

3. 3. Heat and Mass Transfer Characteristics
Heat transfer results are presented via local and
average Nusselt numbers and mass transfer is given by
Sherwood numbers. Variation of local Nusselt numbers
are given by contours in Figure 13 for Ra = 10° and
N=1, -0.5, -1 and -2. Nusselt number values are
decreased with decreasing of buoyancy ratio. For N = 1
and -0.5, local Nusselt number decreases from bottom
to top and a complex distribution is formed.
Distribution of Sherwood numbers exhibit opposite
variation as seen in Figure 14 for Ra = 10°. Sherwood
numbers are decreased from top to bottom for N = 1
and N = -0.5. An opposite distribution is occurred for
the case of N = -2. A closed chamber is located near
the top wall. Figure 15 (a) and (b) illustrate the mean
Nusselt and mean Sherwood numbers, respectively.
For Ra = 10°, both mean Nu and mean Sh are almost
unity for all values of N due to domination of
conduction mode of heat transfer. A minimum values
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are formed around N = -1 for both calculations and it
increases with increasing of N values. Both figures
show that heat and mass transfer increase with N
values.

3. 4. Entropy Generation Entropy generation is
calculated from its definition after calculations of
velocities, concentrations and temperatures. The
irreversibilities coefficients are fixed atg, =107,

,=0.5and ¢, =107 respectively for all studied

cases. In convective heat and mass transfer and for a
non reactive mixture, irreversibility arises due to the
heat transfer, the viscous effects and the mass transfer.
The entropy generation rate is expressed as the sum of
contributions due to thermal, viscous and diffusive
effects. Thus, it depends functionally on the local
values of temperature, velocity and concentration in the
domain of interest [17]. In other words, the local
entropy generation rate is a function of temperature and
velocity gradients in the x and y directions in the entire
calculation. Hence, it is a good indicator of grid
dependence.

/—/1'5ﬁ

/’J\aﬁ 3

N=1 N=-0.5

— : ﬁﬂ
AN N | ' ﬁ
N—1 N=22

Figure 14. Local Sherwood number for Ra=10°
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Figure 15. a) Average Nusselt number as function of N, b)
Average Sherwood number as function of N
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In this part of the study, entropy results are presented
via entropy generation due to temperature, entropy
generation due to diffusion, entropy generation due to
friction and total entropy generation. For N = 1 and
Ra = 10°, entropy contours are plotted in Figure 16.
The heat transfer irreversibilities and the diffusive
irreversibilities are found similar and mainly confined
to the lower and the upper corners of the heated and the
cooled walls. This result is supported by Maghrebi et
al. [30]. Entropy generation due to fluid friction is
effective on vertical walls and half of horizontal walls.

Thermal Diffusive Friction

A~

Total
Figure 17. Iso-Entropy for N=-0.5,Ra=10°, 0, =10"*, ¢,=0.5

and 0, =0.01
JG Z
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E L
~
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Figure 18. Iso-Entropy for N=-1,Ra=10°, 10y =10, 0, =0.5
and ¢,=0.01
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Figure 19. Iso-Entropy for N=-2,Ra=10°, o, =10, ¢,=0.5

and o, =0.01

Finally, total entropy loses show similar behavior
with entropy generation due to fluid friction. As shown
in earlier parts, buoyancy ratio plays important role on
heat transfer, temperature distribution and fluid flow.
As seen from results, the buoyancy ratio is also an
effective parameter on entropy distribution. With
decreasing value of buoyancy ratio, entropy generation
values are also decreased for fixed values of
irreversibility distribution ratio as illustrated in Figure
17. Entropy generation for the special case (N =-1) are
depicted in Figure 18. As given in the figure, especially
very complex structure is obtained for entropy
generation due to friction. For values of N = -2,
entropy generation becomes less effective on corners
as plotted in Figure 19. Effects of fluid friction on
entropy generation become lower than that of other
parameters as temperature and mass. Figure 20 shows
dimensionless entropy generation for different
Rayleigh numbers. The graphics are plotted for
friction, thermal, diffusive and total entropy generation
with different values of buoyancy ratio.

Total entropy generation and entropy generation
due to fluid friction follow similar trend for Ra = 10’
and 10*. Entropy generation due to fluid friction is
almost zero for the lowest value of Rayleigh number
due to low velocities and heat transfer. All parameters
have minimum values between N = -1.5 and -1 and
maximum for N = 1 and 1.5 at Ra = 10°. Moreover,
entropy generation due to fluid friction and total
entropy generation become the lowest value than that
of entropy generation due to thermal and mass. Finally,
Figure 21 illustrates Bejan numbers for studied
parameter. It is calculated from Equation (24) and it is
a measure of magnitude of the heat transfer and fluid
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friction irreversibilities [27-28]. In addition, Be = 1.0
is the limit at which all the irreversibility is due to heat
transfer, Be = 0 is the opposite limit at which all the
irreversibility is due to fluid friction, and Be = 1/2 is
the case in which the heat transfer and fluid friction
entropy generation rates are equal. Be >> 1/2 is the
case where the irreversibility due to heat transfer
dominates, while Be << 1/2 is the case where the
irreversibility due to fluid friction dominates. In Figure
21, Bejan number is obtained as 1.0 for Ra = 10° and
heat transfer irreversibility and fluid friction
irreversibilities are almost the same. It makes a high
value around N = -1.5 due to complex variation of
velocity and others for this value buoyancy ratio. For N
> -1.5, Bejan numbers decrease gradually with
increasing buoyancy ratio.

25
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Figure 20. Dimensionless entropy generation a) Ra=10°, b)
Ra=10% c) Ra=10°
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Figure 21. Bejan Number as function of N and different

Rayleigh numbers

4. CONCLUSION

A three dimensional numerical study has been done to
investigate the heat transfer, mass transfer, fluid flow
and entropy generation in a differentially heated cubic
enclosure. Effects of Rayleigh number and buoyancy
ratio are tested. Important findings can be drawn from
this work as listed below:

e Heat and mass transfers and fluid flow are affected
from both buoyancy ratio (N) and Rayleigh number
(Ra). A specific case is occurred for N values
between -1.5 < N < -1. Among these values, flow
shows complex structure and it affects entropy
generation and heat and mass transfer.

e Entropy generation is good tool to observe energy
losses and control of system efficiency.

e Total entropy generation is affected from the
buoyancy ratio and it increases with increasing of
this value. Entropy generation also increases with
Rayleigh number.

e Entropy generation due to fluid friction becomes
lower than others for low values of Rayleigh
number.

e Bejan number is also calculated in this work. Bejan
number decreases with increasing of Rayleigh
number and decreases for N > -1.5.
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