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A B S T R A C T  

   

Entropy generation of double diffusive natural convection in a three dimensional differentially heated 
enclosure has been performed numerically. Vertical walls of enclosure are heated differentially and 
remaining walls are adiabatic. The obtained results were presented via iso-concentration, iso-temperatures, 
velocity vector projection, particle trajectories, velocity profiles, iso-entropy, local Nusselt and Sherwood 
numbers, average Nusselt and Sherwood numbers and Bejan numbers at different value of buoyancy ratio 
(-2 ≤ N ≤ 2) and Rayleigh numbers (103 ≤ Ra ≤ 105). The Lewis number is fixed at Le = 2. It is found that 
both Rayleigh number and buoyancy ratio play dominant role on entropy generation and heat and mass 
transfer as well as fluid flow. A special case occurred between -1.5 ≤ N ≤ -1 and complex structure is 
observed. 

  
 

doi: 10.5829/idosi.ije.2014.27.02b.06 

   

NOMENCLATURE   

Be Bejan number Greek Symbols 
C Dimensionless concentration  α  Thermal diffusivity 
D Mass diffusivity β  Expansion coefficient 

Gr Grashof number µ  Dynamic viscosity 
K Thermal conductivity ν  Kinematic viscosity 

Le Lewis Number 0υ  Characteristic speed of fluid (= W/α ) 

N Buoyancy ratio 1ϕ , 2ϕ , 3ϕ  Irreversibilities coefficients 

sN  Local generated entropy 'φ  Dissipation function 

Pr Prandtl number ψ
r

 Dimensionless vector potential  

Ra Rayleigh number ω
r

 Dimensionless vorticity  

Sc Schmidt number Superscripts 
Sh  Sherwood number  x,y,z Cartesian coordinates 

genS'  Generated entropy dif Diffusive 
t Dimensionless time  fr Friction 
T Dimensionless temperature  th Thermal 

cT '  Cold temperature tot Total 

hT '  Hot temperature Subscripts 

V
r

 Dimensionless velocity vector  '
 

Dimensional variable 

W Enclosure width   
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1. INTRODUCTION 
 
The effect of buoyancy ratio on the flow structure is 
investigated numerically for a binary mixture gas in a 
rectangular enclosure by Nishimura et al. [1]. They 
indicated that the key mechanism for oscillatory flow is 
that the unstably stratified region of species shifts from 
the central part of the enclosure to the upper and lower 
parts, and vice versa in a time-periodic sense, due to 
the interaction of heat and mass transfer with different 
diffusivities near the vertical walls.  

The simultaneous heat and mass transfer by natural 
convection in an air-filled cavity of aspect ratio 7.0 is 
investigated numerically and experimentally for both a 
horizontal and vertical cavity by Wee et al. [2]. The 
finite-difference equations are solved by the dynamic 
alternating direction implicit (DADI) method. 
Transient, double diffusive natural convection in a 
horizontal enclosure is investigated in an enclosure 
numerically and analytically by Bennacer et al. [3]. 
Bennacer and Gobin [4, 5] made a study on double 
diffusive natural convection in a binary fluid contained 
in a two-dimensional enclosure where horizontal 
temperature and concentration differences are 
specified. They proposed a general mass transfer 
correlation which is valid over a wide range of 
parameters. A three-dimensional numerical study had 
been performed using vorticity-vector potential 
formulations based on the finite-volume method  to 
investigate the double-diffusive convection in a stack 
of cubic enclosures. Their result showed that the effect 
of heat and mass diffusive walls differs between the 
case of thermally dominated flow and the 
compositionally dominated one. Papanicolaou and 
Belessiotis [6] worked on natural convective heat and 
mass transfer in an asymmetric, trapezoidal enclosure. 
Steady-state thermosolutal convection in a square 
cavity filled with air, submitted to horizontal 
temperature and concentration gradients, is studied 
numerically by Béchein et al. [7]. They obtained 
correlations between heat and mass transfer rates and 
the non-dimensional numbers characterizing the flow 
phenomena. Sezai and Mohamad [8] made a numerical 
study on double diffusive convection in a cubic 
enclosure with opposing temperature and concentration 
gradients. The flow is driven by buoyancy forced due 
to temperature and solutal gradients. They stated that 
the double diffusive flow in enclosures with opposing 
buoyancy forces is strictly three dimensional for a 
certain range of parameters. Hyun and Lee [9] studied 
the double-diffusive convection in a rectangular cavity, 
numerically. They presented the mean Sherwood and 
mean Nusselt number for different value of buoyancy 
ratio. Other studies on natural convection of double 
diffusive natural convection problem can be found in 
literature as Goyeau et al. [10]. Murty et al. [11] was 

used to finite element method to solve double diffusive 
convection problem. Other studies related with double 
diffusion problem can be found in literature as Chen 
and Du [12] and Han and Kuehn [13], Reena and Rana 
[14], Borjini et al. [15] and Jaimal et al. [16].  

Calculation of entropy generation in an energetical 
system is important to find the energy losses and 
enhances the energy efficiency in the system. Bejan 
[17-20] proposed the entropy generation minimization 
technique and it may apply for many systems such as 
high velocity pipe flow [21], natural convection under 
magnetic field [22], binary gas mixture of mixed 
convection [23], natural convection in different shaped 
cavities [24-26], porous medium [27, 28]. Some review 
[29] and fundamental studies [30, 31] are performed on 
this subject. However, entropy generation on double 
diffusive natural convection heat transfer is very 
limited. In this context, Chen and Du [12] investigated 
the effects of thermal Rayleigh number, ratio of 
buoyancy forces and aspect ratio on entropy generation 
of turbulent double-diffusive natural convection in a 
rectangle cavity. They found that total entropy 
generation increases with Rayleigh number, aspect 
ratio and values of N>1.  

The main objective of the present work is to 
examine the entropy generation in a three dimensional 
double diffusive natural convection. Based on literature 
survey, there is no study on entropy generation due to 
natural convection in three dimensional cavities. 
 
 
2. PROBLEM FORMULATION 
 
Studied model is presented in Figure 1. It is three 
dimensional models for an enclosure under different 
temperature of vertical walls and remaining walls are 
adiabatic. Gravity acts in vertical y direction. It is filled 
with binary fluid mixture and Prandtl number is chosen 
a 0.7 for whole work. 
 
 

 
Figure 1. Schematic diagram of the physical system 
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The equations describing the double diffusive natural 
convection are the equations of continuity Equation 
(1), of momentum Equation (2), of energy Equation (3) 
and species diffusion Equation (4):   
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As numerical method, we had recourse to the vorticity-
vector potential formalism )( ωψ

rr
− which allows, in a 

three dimensional configuration, the elimination of the 
pressure, which is a delicate term to treat. To eliminate 
this term, one applies the rotational to the equation of 
momentum. The vector potential and the vorticity are 
defined by the two following relations: 
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In the Equations (1) to (4), time 't , velocity 'V
r

, the 
vector potential 'ψ

r , the vorticity 'ω
r  are put in their 

adimensional forms by α/2W , W/α , α  and α/2W , 
respectively. The dimensional temperature and 
concentration are defined by: 
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After application of the  )( ωψ
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−  formalism and 
adimensionalisation, the system of equations 
controlling the phenomenon becomes:   
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Dimensionless variables are :  
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The control volume finite difference method [32] is 
used to discretize Equations (6) to (9). The central-
difference scheme for treating convective terms and the 
fully implicit procedure to discretize the temporal 
derivatives are retained. The grid is uniform in all 
directions with additional nodes on boundaries. The 
successive relaxation iterating scheme [32] is used to 
solve the resulting non-linear algebraic equations.  
The boundary conditions are given as: 

• Temperature 

1=T   at 1=x ,  0=T   at 0=x ; 

0=
∂
∂

n
T   on other walls (adiabatic).  

(11) 

• Concentration 

1=C   at 1=x ,  0=C   at 0=x ; 

0=
∂
∂

n
C  on other walls (impermeable).        

(12) 

• Vorticity 
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• Vector potential 
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• Velocity 

0=== zyx VVV  on all walls 
(15) 

Local Nusselt and Sherwood numbers are given as 
follows : 
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The average values of Nusselt and Sherwood 

numbers, on the isothermal walls are expressed by: 
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The local entropy generation rate in a three-
dimensional flow with single diffusing specie of 
concentration (C) can be written [30] as Equation (18); 
where, C0 and T0 are the reference concentration and 
temperature, respectively. After adimensionalisation, 
we obtain the dimensionless local generated entropy as 
[30] Equation (19). The first term of Ns represents the 
thermal irreversibility which is noted NS-th. The second 
term represents the viscous irreversibility which is 
noted NS-fr and the third term represents the diffusive 
irreversibility which is noted NS-dif. NS give a good idea 
on the profile and the distribution of the generated 
local dimensionless entropy. The average 
dimensionless generated entropy is written:  
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Dimensionless irreversibilities distribution ratios (
1ϕ ,
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and 3ϕ ), are given by: 
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Mean Bejan number is defined as : 
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3. RESULTS AND DISCUSSIONS 
 
Heat and fluid flow and entropy generation of double 
diffusive natural convection in a three dimensional 

differentially heated enclosures were investigated 
numerically for different parameters. Results will be 
presented in this part of the study via isocontcentration, 
iso-temperatures, velocity vector projection, particle 
trajectories, velocity profiles, iso-entropy, local Nusselt 
and Sherwood numbers, average Nusselt and 
Sherwood numbers and Bejan numbers. Results are 
presented in two different subtitles as thermal and flow 
field and also entropy generation.  
 
 

  

  

  
(a)  (b) Figure 2. Comparison of the isotherm, isoconcentration and 

z-vector potential plots in the X-Y plan  by Nishimura et al. 
[1] at Ra = 105, N=0.8 and AR =  2.0, (a) Nishimura, et al. [1] 
and (b) Present Code 
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3. 1. Grid Sensitivity Check and Code Validation   
The first simulations are carried for N= -0.5, Le=2, Pr 
= 0.7, and Ra = 105 in order to choose adequate spatial 
meshes. A dimensionless time step equal to 10-4 is 
retained. Results justifies quantitatively the use of 
51x51x51 spatial meshes, at least for Ra=105. A 
validation has been performed between present study 
and studies of Nishimura et al. [1]. In this context, 
Figure 2 illustrates the isotherm, iso-concentration and 
z-vector potential by comparing present results (on the 
right column) and Nishimura’s results (on the left). As 
seen from the figure, obtained results show good 
agreement with literature.  

 
3. 2. Flow and Thermal Fields      As indicated in 
the literature, when buoyancy ratio less than unity, the 
flow is primarily dominated by the thermal buoyancy 
force and for buoyancy ratio greater than 1, the 
compositional buoyancy force rather than the thermal 
buoyancy force dominates the flow. Figure 3 shows 
isotherms for six different values of buoyancy ratio at 
different Rayleigh numbers. On the left side, values are 
given for positive and right column negative. As seen 
from the figure, variation of buoyancy values is not 
effective near vertical walls for all values of Rayleigh 
numbers. For Ra = 103, conductive mode of heat 
transfer becomes dominant. Intersection point among 
buoyancy ratio goes down and show diagonal variation 
for positive values. However, intersection points 
become almost same along a line. When N = -1, 
isotherms are almost constant. In other words, they 
exhibit a parallel distribution to the vertical walls. As 
an interesting result, there are no huge differences on 
isotherms for positive values of buoyancy ratios. On 
the other hand, negative values of buoyancy ratio are 
more effective on isotherms. 

  
 

  
(a) 

 

  
(b) 

  
(c) 

Figure 3. Iso-temperature for different Rayleigh number in 
(x-y) planes a) Ra = 103, b) Ra = 104, c) Ra = 105 
 
 

  
(a) 

 

  
(b) 

 

  
(c) 

 
Figure 4. Iso-concentration for different Rayleigh number 
for in (x-y) planes, a) Ra = 103, b) Ra = 104, c) Ra = 105 

 
 

For N = -1.5, isotherms present a completely 
different distributions than others. For the same studied 
parameters, iso-concentration plots are given in Figure 
4. Iso-concentration contours show regular distribution 
for low Rayleigh number even at core region. 
However, the concentration contours are furthermore 
distorted in the core especially at higher value of 
Rayleigh number. This result is supported by 
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Nishimura et al. [1]. This is clearly seen from three-
dimensional visualizations as given in Figure 5 at N = -
1. In this case, species diffusivity is being half the 
thermal diffusivity. Again, as seen from Figure 5, 
regular distribution on iso-concentration occurs for N = 
1 and N = -1.5.  

In addition, variation of buoyancy ratio is effective 
on velocities as seen from Figure 6. The figure also 
shows the vector velocity projection in the central plan 
(z = 0.5) at Ra = 105. For most cases (N = 0.5, 1, 1.5, -
0.5 and -1.5), two cells were formed near right top and 
left bottom sides. Furthermore, another cell appears at 
the middle for N = -2 and 2. It is an interesting result 
that N = 1 shows different distribution on flow. 
Number of cell decreases with decreasing of Rayleigh 
number for each values of buoyancy ratio as seen from 
Figures 7 and 8. Velocity shows special variations at N 
= -1 for each values. Locations of corner cells change 
with Ra = 104 and four different cells were observed at 
Ra = 103.  

 
 

   
 

(a) 

   

(b) 

N=1 N=-1 N=-1.5  
Figure 5. (a) Iso-surfaces of concentration (on the top row), 
(b) Iso-surfaces of temperature (on the bottom wall) for 
Ra=105 and buoyancy ratio 
 
 
 

 
N=1.5 

 
N=1 N=0.5 

 
N=-1 

 
N=-0.5 N=2 

 

  
 N=-2 

 
N=-1.5 

Figure 6. Vector velocity projection in the central plan (z=0.5) 
for Ra=105 and different buoyancy ratio 

 
 

  
N=1.5 

  
N=1 
  

N=0.5 
  

  
N=-1 

  
N=-0.5 

  
N=2 
  

  

  
  N=-2 

  
N=-1.5 

  
Figure 7. Vector velocity projection in the central plan 
(z=0.5) for Ra=104 and different buoyancy ratio 

  
 

  
N=1.5  

  
N=1  
  

N=0.5 
  

  
N=-1 
  

N=-0.5 
  

N=2 
  



221                                                   CH. Maatki et al. / IJE TRANSACTIONS B: Applications   Vol. 27, No. 2, (February 2014)  215-226 

  

  
  N=-2 

  
N=-1.5 

  
Figure 8. Vector velocity projection in the central plan (z=0.5) 
for Ra=103 and different buoyancy parameter 
 
 
 
 

 
(a) Ra=103 

 

  
(b) Ra=104 

A complex three dimensional 
flow 

 

(c) Ra=105 

Figure 9. Some Particles trajectories for N=-1, a) Ra = 103, 
b) Ra = 104, c) Ra = 105 
 
 
 

      
Ra=105 

  
Ra=104 

  
Ra=103 

 

Figure 10. Some Particles trajectories for N = 1, a) Ra = 103, 
b) Ra = 104, c) Ra = 105 

      
Ra=105 

  
Ra=104 
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Figure 11. Some Particles trajectories for N = 2, a) Ra = 103, 
b) Ra = 104, c) Ra = 105 

  
 

 
Figure 12. Velocity component Vz as function of N at 
Ra=105 

  
  

The complexity for N = -1 can be explained via three 
dimensional visualization of some particle trajectories 
as shown in Figure 9 for different Rayleigh numbers. 
To compare and see the effects of buoyancy ratio on 
particle trajectories, two different cases are plotted for 
N = 1 (Figure 10) and N = 2 (Figure 11). For Ra = 105, 
velocity profiles are plotted versus buoyancy ratio in 
Figure 12. As seen from the figure, velocity value 
becomes maximum for N = -1 and it increases linearly 
with increasing of N values. 
 
3. 3. Heat and Mass Transfer Characteristics   
Heat transfer results are presented via local and 
average Nusselt numbers and mass transfer is given by 
Sherwood numbers. Variation of local Nusselt numbers 
are given by contours in Figure 13 for Ra = 105 and     
N=1, -0.5, -1 and -2. Nusselt number values are 
decreased with decreasing of buoyancy ratio. For N = 1 
and -0.5, local Nusselt number decreases from bottom 
to top and a complex distribution is formed. 
Distribution of Sherwood numbers exhibit opposite 
variation as seen in Figure 14 for Ra = 105. Sherwood 
numbers are decreased from top to bottom for N = 1 
and N = -0.5. An opposite distribution is occurred for 
the case of N = -2. A closed chamber is located near 
the top wall. Figure 15 (a) and (b) illustrate the mean 
Nusselt and mean Sherwood numbers, respectively. 
For Ra = 103, both mean Nu and mean Sh are almost 
unity for all values of N due to domination of 
conduction mode of heat transfer. A minimum values 
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are formed around N = -1 for both calculations and it 
increases with increasing of N values. Both figures 
show that heat and mass transfer increase with N 
values. 
 
3. 4. Entropy Generation      Entropy generation is 
calculated from its definition after calculations of 
velocities, concentrations and temperatures. The 
irreversibilities coefficients are fixed at 4

1 10−=ϕ ,
5.02 =ϕ and 2

3 10−=ϕ respectively for all studied 
cases. In convective heat and mass transfer and for a 
non reactive mixture, irreversibility arises due to the 
heat transfer, the viscous effects and the mass transfer. 
The entropy generation rate is expressed as the sum of 
contributions due to thermal, viscous and diffusive 
effects. Thus, it depends functionally on the local 
values of temperature, velocity and concentration in the 
domain of interest [17]. In other words, the local 
entropy generation rate is a function of temperature and 
velocity gradients in the x and y directions in the entire 
calculation. Hence, it is a good indicator of grid 
dependence. 
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N=-2  N=-1 

Figure13. Local Nusselt number for Ra=105  
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Figure 14. Local Sherwood number for Ra=105 

  

 
(a) 

 

 
(b) 

Figure 15. a) Average Nusselt number as function of N, b) 
Average Sherwood number as function of N 
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Figure 16. Iso-Entropy for N=1, Ra=105, 1ϕ =10-4 , 2ϕ =0.5 
and 3ϕ =0.01 
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In this part of the study, entropy results are presented 
via entropy generation due to temperature, entropy 
generation due to diffusion, entropy generation due to 
friction and total entropy generation. For N = 1 and     
Ra = 105, entropy contours are plotted in Figure 16. 
The heat transfer irreversibilities and the diffusive 
irreversibilities are found similar and mainly confined 
to the lower and the upper corners of the heated and the 
cooled walls. This result is supported by Maghrebi et 
al. [30]. Entropy generation due to fluid friction is 
effective on vertical walls and half of horizontal walls.  
 
 

Thermal Diffusive Friction 

 
Total 

Figure 17. Iso-Entropy for N=-0.5,Ra=105, 1ϕ =10-4 , 2ϕ =0.5 
and 3ϕ =0.01 
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Figure 18. Iso-Entropy for N=-1,Ra=105, 1ϕ =10-4 , 2ϕ =0.5 
and 3ϕ =0.01 
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Figure 19. Iso-Entropy for N=-2,Ra=105, 
1ϕ =10-4 , 

2ϕ =0.5           
and 

3ϕ =0.01 
 
 

Finally, total entropy loses show similar behavior 
with entropy generation due to fluid friction. As shown 
in earlier parts, buoyancy ratio plays important role on 
heat transfer, temperature distribution and fluid flow. 
As seen from results, the buoyancy ratio is also an 
effective parameter on entropy distribution. With 
decreasing value of buoyancy ratio, entropy generation 
values are also decreased for fixed values of 
irreversibility distribution ratio as illustrated in Figure 
17. Entropy generation for the special case (N = -1) are 
depicted in Figure 18. As given in the figure, especially 
very complex structure is obtained for entropy 
generation due to friction. For values of N = -2, 
entropy generation becomes less effective on corners 
as plotted in Figure 19. Effects of fluid friction on 
entropy generation become lower than that of other 
parameters as temperature and mass. Figure 20 shows 
dimensionless entropy generation for different 
Rayleigh numbers. The graphics are plotted for 
friction, thermal, diffusive and total entropy generation 
with different values of buoyancy ratio. 

Total entropy generation and entropy generation 
due to fluid friction follow similar trend for Ra = 105 
and 104. Entropy generation due to fluid friction is 
almost zero for the lowest value of Rayleigh number 
due to low velocities and heat transfer. All parameters 
have minimum values between N = -1.5 and -1 and 
maximum for N = 1 and 1.5 at Ra = 105. Moreover, 
entropy generation due to fluid friction and total 
entropy generation become the lowest value than that 
of entropy generation due to thermal and mass. Finally, 
Figure 21 illustrates Bejan numbers for studied 
parameter. It is calculated from Equation (24) and it is 
a measure of magnitude of the heat transfer and fluid 
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friction irreversibilities [27-28].  In addition, Be = 1.0 
is the limit at which all the irreversibility is due to heat 
transfer, Be = 0 is the opposite limit at which all the 
irreversibility is due to fluid friction, and Be = 1/2 is 
the case in which the heat transfer and fluid friction 
entropy generation rates are equal. Be >> 1/2 is the 
case where the irreversibility due to heat transfer 
dominates, while Be << 1/2 is the case where the 
irreversibility due to fluid friction dominates. In Figure 
21, Bejan number is obtained as 1.0 for Ra = 103 and 
heat transfer irreversibility and fluid friction 
irreversibilities are almost the same. It makes a high 
value around N = -1.5 due to complex variation of 
velocity and others for this value buoyancy ratio. For N 
> -1.5, Bejan numbers decrease gradually with 
increasing buoyancy ratio. 
 
 

 
 

(a) 

 
 

(b) 

 

(c) 

Figure 20. Dimensionless entropy generation a) Ra=105, b) 
Ra=104, c) Ra=103 

  
Figure 21. Bejan Number as function of N and different 
Rayleigh numbers 
 

 
4. CONCLUSION 
 
A three dimensional numerical study has been done to 
investigate the heat transfer, mass transfer, fluid flow 
and entropy generation in a differentially heated cubic 
enclosure. Effects of Rayleigh number and buoyancy 
ratio are tested. Important findings can be drawn from 
this work as listed below: 
• Heat and mass transfers and fluid flow are affected 

from both buoyancy ratio (N) and Rayleigh number 
(Ra). A specific case is occurred for N values 
between -1.5 ≤ N ≤ -1. Among these values, flow 
shows complex structure and it affects entropy 
generation and heat and mass transfer. 

•  Entropy generation is good tool to observe energy 
losses and control of system efficiency. 

• Total entropy generation is affected from the 
buoyancy ratio and it increases with increasing of 
this value. Entropy generation also increases with 
Rayleigh number.  

• Entropy generation due to fluid friction becomes 
lower than others for low values of Rayleigh 
number. 

• Bejan number is also calculated in this work. Bejan 
number decreases with increasing of Rayleigh 
number and decreases for N > -1.5.  
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  چکیده

  
 

تولید انتروپی یک جابجایی طبیعی ساطع شده دوبل در یک محفظه گرمایی دیفرانسیلی سه بعدي به صورت تحلیلی انجام 
نتایج بدست . دیوارهاي عمودي محفظه به صورت دیفرانسیلی گرمادهی شد و دیوارهاي دیگر آدیاباتیک هستند. شده است

ق غلظت هاي یکسان، دماهاي یکسان، پروژه بردار سرعت، مسیرهاي ذرات، پروفایل هاي سرعت، انتروپی آمده از طری
یکسان، عددهاي شروود و ناسلت محلی، عددهاي شروود و ناسلت متوسط و عددهاي بجان در مقادیر مختلف نسبت 

ثابت نگه داشته  Le = 2عدد لوییس در  . نشان داده شده است  (Ra ≤ 105 ≥ 103)و عدد رایلی   (N ≤ 2 ≥ 2-)بویانسی 
دریافته شد که هم عدد رایلی و هم نسبت بویانسی نقش مهمی در تولید انتروپی و انتقال گرما و جرم همانند جریان سیال . شد

 .رخ داد و ساختار پیچیده اي مشاهده شد N ≤ -1 ≥ 1.5-یک مورد خاص بین . ایفا می کنند
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