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A B S T R A C T  
   

In this article, element free Galerkin method is used for static analysis of thin orthotropic 
micro/nanoscale plates based on the nonlocal plate theory. Equilibrium equation is obtained based on 
the nonlocal Kirchoff plate theory. Weak form of the equilibrium equation is discretized based on the 
moving least square (MLS) approximation functions. Since MLS approximation functions do not 
satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary 
conditions. Discrete form of the weak form is then solved and the plate deflection is obtained. 
Numerical results show that the number of nodes scattered in the plate domain, support domain radius 
and the number of Gauss quadrature points affect the results. Therefore, before presentation of the final 
results, the method is calibrated using some exact results. Finally, the plate deflection is obtained for 
various boundary conditions and the small scale effect is studied. In addition, as an example bending 
problem of nano graphene sheets is solved for different boundary conditions. 
 
 

doi: 10.5829/idosi.ije.2013.26.07a.14 
 

 
1. INTRODUCTION1 
 
Micro/nano plates (such as graphene) are used 
frequently in micro-electromechanical systems (MEMS) 
and nano-electromechanical systems (NEMS) because 
of their superior electrical, mechanical and thermal 
properties. Thus, they have received considerable 
attention by researchers. Scale parameter plays a 
substantial role in the mechanical behavior of small 
scale structure. As the length scale becomes smaller, 
long-range interatomic and intermolecular cohesive 
forces have more important effects on the mechanical 
behavior of the structures. Further, experimental and 
atomistic simulation results have shown that the size 
parameter affects the mechanical properties when 
dimensions of the structures become smaller [1, 2]. 

Experiments and molecular dynamic simulations are 
appropriate methods for accurate mechanical analysis of 
micro/nano structures. However, controlled experiments 
in nano scale are difficult. On the other hand, molecular 
dynamic simulations are computationally expensive. 
Hence, modified continuum models capturing small 
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scale effects have been introduced for studying 
mechanical behavior of these structures [3-5]. Among 
the continuum models capturing the small scale effects, 
nonlocal elasticity theory [5] has received more 
attention. 

Some researchers studied bending, buckling and 
vibration problems of small scale plates using the 
nonlocal elasticity theory. For example, Lu et al. [6] 
investigated bending and free vibration of simply 
supported rectangular plates. Murmu and Pradhan [7] 
solved buckling problem of orthotropic small scale 
plates under biaxial compression based on the Kirchhoff 
plate theory. Pradhan [8] performed buckling analysis of 
single layer graphene sheet based on higher order shear 
deformation theory. Pradhan and Phadikar [9] carried 
out vibration analysis of multilayered graphene sheets 
embedded in polymer matrix. Based on the third order 
shear deformation plate theory, Aghababaei and Reddy 
[10] investigated effect of nonlocal theory on bending 
and free vibration of simply supported orthotropic 
rectangular plates. Pradhan and Phadikar [11] solved for 
vibration of single and double layered nanoplates based 
on the both Kirchhoff and first order shear deformation 
plate theories. Narendar [12] carried out buckling 
analysis of isotropic nanoplates using the two-variable 
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refined plate theory. All of these works investigated 
simply supported micro/nano plates and solved the 
problems using the Navier’s approach. In addition, there 
are some works solving free vibration and buckling 
problems of nonlocal plates with the other boundary 
conditions [13-16]. However, on bending problem of 
nonlocal plates, researches have been limited to the 
plates with either all edges simply supported or with at 
least two opposite edges simply supported. Since the 
problem with arbitrary boundary conditions cannot be 
solved analytically, numerical methods are required to 
solve the problem. According to our knowledge, this 
issue has not been considered yet. 

In recent years, mesh free methods have been 
developed to structural analysis of plates and shells [18-
26]. A mesh free method is a method used to establish a 
system of algebraic equations for the whole problem 
domain without the use of a predefined mesh for the 
domain discretization [17]. All of the mesh free 
methods use a set of nodes scattered in the problem 
domain without any element connectivity among them. 

Various versions of mesh free methods have been 
applied for structural analysis of plates [18-26].  
Element free Galerkin method (EFGM) is a well-known 
mesh free method using moving least square (MLS) 
approximation function. Since MLS approximation 
functions do not satisfy the Kronecker’s delta property, 
enforcement of the essential boundary conditions 
requires special techniques for example, direct 
collocation methods, Lagrange multipliers method, 
penalty method, coupling with the finite element 
method  (FEM), d’Alembert’s principle, transformation 
method, displacement constraint equations method, etc 
[19]. Some researchers applied the EFGM to solve 
bending and free vibration problems of beams, plates 
and shells. For example, Krysl and Belytschko [27, 28] 
investigated static analysis of thin plates and shells. Liu 
and Chen [29] studied static and free vibration of thin 
plates of complicated shape with clamped and simply 
supported edges. Ouatouati and Johnson [30] carried out 
modal analyses of Euler-Bernoulli beams and Kirchhoff 
plates. Moreover, Belinha and Dinis [31] used the 
EFGM in the analysis of laminated composite Mindlin 
plates. 

In the present work, static problem of orthotropic 
micro/nano plates is solved based on the EFGM for 
different boundary conditions. Small scale effect is 
incorporated into the model using the nonlocal elasticity 
theory. Equilibrium equation of the plate is obtained 
based on the Kirchhoff plate theory. Weak form of the 
equilibrium equation is obtained. Natural boundary 
conditions are satisfied automatically on the weak form 
and essential boundary conditions are enforced using 
the penalty method. Deflection of the plate is obtained 
and compared with those obtained from the local plate 
theory. In addition, the effects of support domain radius, 
the number of nodes on the plate domain, Gauss 

quadrature points, small scale parameter, aspect ratio 
and boundary conditions are studied in detail. Finally, 
bending problem of nano graphene sheets as orthotropic 
thin nonlocal plates is solved for different boundary 
conditions. 

 
 
 

2. NONLOCAL CONSTITUTIVE RELATIONS 
 
Nonlocal elasticity theory assumes that stress at a point 
is a function of strain at all points of the continuum, 
while in the classical elasticity theory, it is assumed that 
stress at a point depends only on the strain at that point. 
Constitutive relation of a nonlocal continuum is written 
in the following form 

)()()()( xxσxxxσ ′′−′= ∫ dVL

V

ψ  
(1) 

 where, σ  is nonlocal stress tensor, x  is a reference 
point in the body, )( xx −′ψ  is the nonlocal kernel 

function and Lσ is local (classical) stress tensor at any 
point x′  in the body. Eringen [5] showed that it is 
possible to represent the integro-partial differential 
Equation (1) in an equivalent differential form as 

Lae σσ =∇− ))(1( 22
00  (2) 

where, 0a  is an internal characteristic length, 0e  is a 

constant and 2∇  is the Laplacian operator. 
 
 
 
3. EQULIBRIUM EQUATION 
 
Consider a rectangular orthotropic thin plate with 
thickness h , length a  and width b  under a distributed 
transverse load ),( yxp . According to the Kirchhoff 
plate theory strain-displacement relations of the plate in 
Cartesian coordinate system are written as 

















−
−
−

=
















xy

yy

xx

xy

y

x

wz
wz
wz

,

,

,

2γ
ε
ε

 (3) 

in which, w  is lateral displacement of the mid-plane, 
index “ , ” refers to the partial derivative and z  is the 
through-thickness axis. Constitutive equations for a 
nonlocal orthotropic plate are written in the following 
form: 
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in which, ijQ ’s ( 6,2,1, =ji ) are reduced off-axis 
stiffness defined in terms of the reduced on-axis 
coefficients ijQ ’s as [32]. 
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where, )sin(θ=s , )cos(θ=c  and ijQ ’s are defined in 
terms of the engineering constants as: 
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θ  is the off-axis angle which for armchair and zigzag 
nano graphene sheets is equal to o0  and o90 , 
respectively. 

Using the principle of virtual work equilibrium 
equation of the plate is obtained in the following form 
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where, moment resultants xM , yM  and 
xyM  are defined 

in the following form: 
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in which, local moment resultants L
xM  , L

yM   and L
xyM  

are defined as follows: 
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where, ∫
−

=
2/

2/

2
h

h
ijij dzQzD  ( 6,2,1, =ji ). Using Equation 

(8), the equilibrium Equation (7) can be rewritten in the 
following form: 
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The plate boundary conditions can be written as 
follows: 
For simply supported edges: 

0== nMw  (11) 

For clamped edges: 

0, == nww  (12) 

For free edges: 

0=== ntnn MMV  (13) 

where, n  is the unit normal on the boundary and t  is 
the tangent to the edge of the plate. Analytical solutions 
for bending problem of plates based on the nonlocal 
plate theory are limited to the plates with simply 
supported edges [6]. Thus, for the plates with the other 
boundary conditions, numerical methods are required. 
In the next section, element free Galerkin method is 
used to solve the equilibrium Equation (10) together 
with any combination of the boundary conditions of 
(11), (12) and (13). 
 
 
4. ELEMENT FREE GALERKIN METHOD 
 
Element free Galerkin method is a mesh free method 
using moving least square (MLS) approximation 
functions. These approximation functions are 
continuous on the global domain [33]. MLS 
approximation for the plate deflection w  at an arbitrary 
point ),( yx=ξ  can be defined as follows [33]. 
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where, )(ξjp ’s are monomial basis functions and ja ’s 
are coefficients which are obtained by minimizing the 
following weighted least-square 2L  norm [33]. 
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where, nx  is the number of nodes in support domain of 
point ξ  and )()( iii WW ξξξ −=  is the weight function of 
the i th node at ξ . Based on the EFGM, nodes in the 
support domain of ξ  are those which their weight 
function at ξ  is nonzero. In the above equation, iŵ ’s 
are called nodal parameters at iξ  because they are not 
the same as the deflection at that point. Coefficients 

ja ’s ( pnj ,...,2,1= ) which are obtained from 

0/ =∂∂ jaJ  are continuous functions of ξ  on the global 
domain because the EFGM uses weight functions which 
are continuous on the global domain. Final form of the 
approximation function for the plate deflection can be 
obtained by substituting )(ξja ’s into Equation (14) in 
the form of: 
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where, iϕ ’s are the MLS approximation functions 
which do not satisfy the Kronecker’s delta property. The 
above Equation can be easily rewritten in the following 
form [33]. 

wΦξ ˆˆ)(
1

T
N

i
ii ww == ∑

=

ϕ  (17) 

where, N  is the number of nodes scattered in the global 
domain. Moreover, the approximation function vector 
Φ  and the nodal parameter vector ŵ  are defined as 

T
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Furthermore, partial derivatives of the approximation 
functions with respect to x  and y  are required and 
they can be easily obtained. The detailed construction 
procedure has been given in reference [33] by Liu and 
Gu. 
 
 
5. SOLUTION BASED ON THE EFGM 
 
The EFGM uses the global weak form of the 
equilibrium equation. Weak form of the equilibrium 
Equation (10) is written as 
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where, Ω  refers to the plate domain and sΓ  refers to 
the plate edges having natural boundary condition. 
Since the MLS approximation functions do not satisfy 
the Kronecker’s delta property, penalty method is used 
to enforce the essential boundary conditions. To this 
end, the following terms must be added to the weak 
form (20). 
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where, 1α  and 2α  are penalty coefficients whose 
magnitude are limited by magnitude of the stiffness 
matrix components because very large penalty 
coefficients may cause singularity in the matrix 
inversion procedures. In addition, wΓ  refers to the 
edges with essential boundary condition. In the above 
relation, 0~~

, == nww  for clamped edges, 0~
2 == αw  for 

simply supported edges and 021 == αα  for free edges. 

Upon substituting Equation (9) together with Equation 
(17) into the variational form (20), final discrete form of 
the equilibrium equation is obtained as follows 
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where, ][ αKK +  is the stiffness matrix. By solving 
algebraic Equation (22), nodal parameters vector ŵ  is 
obtained. Finally, the plate deflection at ),( yx=ξ  can 
be obtained by substituting ŵ  into Equation (17). 
 
 
6. IMPLEMENTATION OF THE METHOD 
 
Here, it is assumed that nodes are scattered regularly in 
the plate domain. A system of rectangular background 
cells and straight boundary cells is applied for Gaussian 
quadrature numerical integration so that the nodes are 
located at the vertices of these cells as shown in Figure 
1. In the integration procedure, it is possible to use 22×  
or 33×  Gauss points as shown in Figure 1.  

Since the governing weak form contains second-
order derivatives, w  is approximated in the form of a 
quadratic polynomial ( 6=pn ) as 
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Figure 1. Nodes on the plate domain ( ), background cells and 
Gauss points on each background cell (× ) 
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Because of requirement of continuity of the weight 
function and its first and second order derivatives, it is 
chosen as the quartic spline in the following form   
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where, 22 )()( ii yyxxr −+−=  is distance between an 
arbitrary point ξ  and iξ  ( Ni ,...,2,1= ). iR  is the 
support domain radius of the weight function )(rWi . 
Here, iR ’s are assumed to be the same for all weight 
functions ( RRi = , Ni ,...,2,1= ). 

As mentioned earlier, based on the EFGM nodes in 
the support domain of an arbitrary point ξ  are those 
which their weight function at ξ  is nonzero. From 
Equation (25), it is concluded that the support domain 
radius of an arbitrary point ξ , sR , is the same as the 
support domain radius of the weight functions, R . 

The support domain radius sR  is defined in the 
following form 

sss dR α=  (26) 

where, sd  is the mesh size which is here assumed to be 
the same as the longer side of the rectangular mesh as 
shown in Figure 1. Furthermore, sα  is a constant which 
is obtained by performing some numerical experiments. 
 
 
 
7. NUMERICAL STUDIES 
 
Consider a micro/nano rectangular thin plate with 
thickness h , length a  and width b  subjected to the 
following transverse distributed load 

)sin()sin( yxpp µλλµ ηζ=  (27) 

where, a/λπζ λ =  and b/µπηµ =  in which λ  and µ  
are the half wave numbers. Analytical solutions to this 
problem are limited to the plates with simply supported 
edges. The problem is solved here for the plates not 
only with the simply supported boundary conditions but 
also with arbitrary combinations of clamped (C), free 
(F) and simply supported (F) boundary conditions based 
on the EFGM. 

EFGM numerical results depend on the support 
domain parameter sss dR /=α  and the number of Gauss 
points. Thus, before presentation of the numerical 
results, this method must be calibrated using the exact 
results. To this end, deflection of the nonlocal plate is 
obtained for 000 =ae  and compared with those 
obtained from the local plate theory. 

For a simply supported plate the EFGM is calibrated 
using the following closed form solution 
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which can be easily obtained from Equation (10) 
together with Equation (9). 

Figures (2-a) and (2-b) show exactwwe /=  at the 
plate center versus sss dR /=α  using four and two 
Gauss points in each background cell and boundary cell, 
respectively. It can be seen from these figures that as 
both sα  and the number of nodes ( yx NNN ×= ) 
increase, e  approaches 1. 

These figures show that the presented results based 
on the EFGM are in good agreement with the analytical 
results. 

For plates with the other boundary conditions since 
there is no analytical solution to calibrate the method, 
fine meshes finite element results from the ANSYS 
software are used as exact solutions. Figures 2, 3 and 4 
depict the parameter e  at the plate center versus sα  for 
the plates with different aspect ratios and boundary 
conditions. In these figures, yx GG ×  is the number of 
Guass quadrature points in each background cell. These 
figures show that as the number of nodes in the plate 
domain, the number of Guass quadrature points in each 
background cell and the support domain parameter sα  
increase, numerical results converge to the finite 
element results. It can be also seen from these figures 
that the numerical results are the same as the exact 
results for some values of yx GG ×  and sα  , so they can 
be used to calibrate the EFGM. According to these 
figures, numerical results for 1.39.2 ≤≤ sα  are 
acceptable; thus, the support domain parameter sα  can 
be selected in this interval. Nonetheless, for each 
boundary condition it is possible to find a more 
appropriate value for sα  as reported in Table 1. 

Table 1 represents non-dimensional deflection 
parameter 4

11 / apwDw λµ=  for an isotropic nanoscale 
plate with 2.0/00 =bae . It can be seen from this table 
that for 1== µλ , plates with stiffer boundary 
conditions have less deflection 

To study the small scale effect on the plate 
deflection let us introduce the nonlocal effect parameter 
k  as 

L

NL

w
wk =  (29) 

where, superscripts L  and NL  refer to local and 
nonlocal results, respectively. 
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TABLE 1. Optimum sα  and 310)2/,2/( ×baw  for 5.0/ =ab , 1717×=× yx NN  and 22×=× yx GG  

 SSSS CCCC CCSS SSCC CCFF SSFF FFCC FFSS 

sα  2.975 3 2.95 3 2.925 2.95 3 3.1 

λ  µ  310)2/,2/( ×baw  

1 1 0.6134 0.1768 0.5308 0.1798 2.0581 10.2040 0.1793 0.7072 

1 3 -0.0352 -0.1078 -0.0353 -0.1094 1.9486 10.7886 -0.1093 -0.0355 

3 1 -0.1387 -0.1058 -0.1951 -0.1007 -0.6237 -0.1804 -0.1022 -0.0086 

3 3 0.0278 0.0525 0.0277 0.0505 -0.4199 -0.0489 0.0506 0.0275 

 
 
 

TABLE 2. Nonlocal effect parameter k  for 5.0/ =ab  

 )1,1(),( =µλ  )3,1(),( =µλ  

bae /00  Equation (30) Present Eq. (30) Present 

0 1 1 1 1 

0.1 1.1234 1.12334 1.9129 1.9129 

0.2 1.4935 1.4935 4.6518 4.6518 

0.3 2.1103 2.1103 9.2164 9.2164 

0.4 2.9739 2.9739 15.6070 15.6070 

0.5 4.0842 4.0842 23.8235 23.8235 

0.6 5.4413 5.4413 33.8658 33.8658 

0.7 7.0451 7.0451 45.7340 45.7340 

0.8 8.8957 8.8957 59.4280 59.4280 

0.9 10.9930 10.9930 74.9480 74.9480 

1 13.3370 13.3370 92.2938 92.2938 

 
 
 

Table 2 represents parameter k  for various bae /00 . 
This table shows that the results are in good agreement 
with those which can be obtained from the following 
closed form solution reported by Lu et al. [6] 

)()(1 222
00 µλ ηζ ++= aek  (30) 

Furthermore, Table 2 reveals that as the nonlocal 
parameter bae /00  increases, small scale effect increases 
considerably. This table shows that the small scale 
effect is more important at higher parameters λ  and µ . 
Finally, deflection of armchair and zigzag nano 
graphene sheets with the following properties are 
obtained. 

Armchair1: 

GPaG
GPaEGPaEnmae

nmhnmbnma

1039,197.0
,2473,2434,67.0

,129.0,844.4,519.9

1212

2100

==
===

===

ν

 

Zigzag1: 

GPaG
GPaEGPaEnmae

nmhnmbnma

938,223.0
,2097,2145,47.0

,145.0,877.4,496.9

1212

2100

==

===
===

ν

 

Tables 3 and 4 present the best support domain 
parameter sα  and non-dimensional deflection 
parameter w  for armchair1 and zigzag1 graphene 
sheets, respectively. These tables show that for 

1== µλ , w  is maximum for SSFF plates and is 
minimum for CCCC plates. Comparison of these  tables 
reveals that armchair1 is stiffer than zigzag1. 
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TABLE 3. Non-dimensional deflection 310)2/,2/( ×baw for Armchair1 graphene sheet ( 1717×=× yx NN  and 

22×=× yx GG , 95.2=sα ) 

λ  µ  SSSS CCCC CCSS SSCC CCFF SSFF FFCC FFSS 

1 1 0.5416 0.1602 0.4659 0.1635 1.7423 8.2063 0.1635 0.6361 

1 3 -0.0229 -0.0691 -0.0228 -0.0704 1.1498 6.0719 -0.0704 -0.0229 

1 5 0.0069 -0.0150 0.0069 -0.0156 1.4935 7.7136 -0.0155 0.0070 

3 1 -0.1013 -0.0796 -0.1438 -0.0750 -0.4452 -0.1359 -0.0752 0.0042 

3 3 0.0171 0.0318 0.0170 0.0304 -0.2326 -0.0301 0.0302 0.0170 

3 5 -0.0060 0.0021 -0.0060 0.0015 -0.3079 -0.0648 0.0017 -0.0059 

 
 
TABLE 4. Non-dimensional deflection 310)2/,2/( ×baw for Zigzag1 graphene sheet ( 1717×=× yx NN  and 22×=× yx GG , 95.2=sα ) 

λ  µ  SSSS CCCC CCSS SSCC CCFF SSFF FFCC FFSS 

1 1 0.4800 0.1429 0.4120 0.1460 1.5504 7.4237 0.1462 0.5700 

1 3 -0.0152 -0.0460 -0.0152 -0.0469 0.7662 4.1136 -0.0470 -0.0152 

1 5 0.0039 -0.0085 0.0039 -0.0089 0.8504 4.4649 -0.0089 0.0040 

3 1 -0.0793 -0.0627 -0.1131 -0.0590 -0.3561 -0.1052 -0.0586 0.0088 

3 3 0.0109 0.0202 0.0108 0.0193 -0.1521 -0.0186 0.0190 0.0108 

3 5 -0.0033 0.0012 -0.0034 0.0008 -0.1762 -0.0357 0.0009 -0.0033 

 
 
8. CONCLUSION 

 
In this article, nonlocal bending problem of micro/nano 
thin plates has been solved using the element free 
Galerkin method. Equilibrium equation has been 
derived based on the nonlocal thin plate theory. Weak 
form of the equilibrium equation has been discretized 
using the MLS approximation functions which do not 
satisfy the Kronecker’s delta property. Thus, to enforce 
the essential boundary conditions penalty method was 
used. The plate deflection has been obtained for various 
boundary conditions, including the cases where 
analytical solution does not exist. Numerical results 
showed that as the number of nodes on the plate 
domain, the number of Gauss quadrature points on each 
background cell and the support domain radius 
increases numerical results converge to the exact results. 
Numerical results reveal that by increasing the nonlocal 
parameter the small scale effect increases. Finally, 
deflection of both armchair and zigzag nano graphene 
sheets has been obtained and compared for various 
boundary conditions. 
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  چکیده
 

  

هاي نازك ارتوتروپیک استفاده  نانو ورق- در این مقاله از روش عددي بدون المان گالرکین، جهت تحلیل استاتیکی میکرو
فرم ضعیف معادله تعادل پس از . آید هاي نازك بدست می معادله تعادل ورق با استفاده از تئوري غیرمحلی ورق. شود می

ویژگی تابع دلتاي  MLSاز آنجاییکه توابع تقریب . شود به فرم گسسته نوشته می MLSاج، با استفاده از توابع تقریب استخر
فرم گسسته حاصل حل شده و در . کرونکر را ندارند، از روش جریمه جهت ارضاي شرایط مرزي اساسی استفاده می شود

هاي توزیع شده در دامنه ورق، شعاع دامنه پشتیبان،  د که تعداد گرهدهن نتایج عددي نشان می. آید نهایت خیز ورق بدست می
لذا قبل از ارائه نتایج نهایی، روش حل با استفاده از مقادیر . ها دارند اي بر جواب همچنین تعداد نقاط گوس تأثیر قابل ملاحظه

و اثر مقیاس کوچک بر پارامتر خیز مورد  آید در نهایت خیز ورق به ازاي شرایط مرزي مختلف بدست می. شود دقیق کالیبره می
  .هاي گرافین پرداخته می شود همچنین به عنوان کاربردي از این مسئله، به تحلیل استاتیکی نانو ورق. گیرد بررسی قرار می

  
  

doi: 10.5829/idosi.ije.2013.26.07a.14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 


