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ABSTRACT

In this article, element free Galerkin method is used for static analysis of thin orthotropic
micro/nanoscale plates based on the nonlocal plate theory. Equilibrium equation is obtained based on
the nonlocal Kirchoff plate theory. Weak form of the equilibrium equation is discretized based on the
moving least square (MLS) approximation functions. Since MLS approximation functions do not
satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary
conditions. Discrete form of the weak form is then solved and the plate deflection is obtained.
Numerical results show that the number of nodes scattered in the plate domain, support domain radius
and the number of Gauss quadrature points affect the results. Therefore, before presentation of the final
results, the method is calibrated using some exact results. Finally, the plate deflection is obtained for
various boundary conditions and the small scale effect is studied. In addition, as an example bending

problem of nano graphene sheets is solved for different boundary conditions.

doi: 10.5829/idosi.ije.2013.26.07a.14

1. INTRODUCTION

Micro/nano plates (such as graphene) are used
frequently in micro-electromechanical systems (MEMS)
and nano-electromechanical systems (NEMS) because
of their superior electrical, mechanical and thermal
properties. Thus, they have received considerable
attention by researchers. Scale parameter plays a
substantial role in the mechanical behavior of small
scale structure. As the length scale becomes smaller,
long-range interatomic and intermolecular cohesive
forces have more important effects on the mechanical
behavior of the structures. Further, experimental and
atomistic simulation results have shown that the size
parameter affects the mechanical properties when
dimensions of the structures become smaller [1, 2].
Experiments and molecular dynamic simulations are
appropriate methods for accurate mechanical analysis of
micro/nano structures. However, controlled experiments
in nano scale are difficult. On the other hand, molecular
dynamic simulations are computationally expensive.
Hence, modified continuum models capturing small
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scale effects have been introduced for studying
mechanical behavior of these structures [3-5]. Among
the continuum models capturing the small scale effects,
nonlocal elasticity theory [5] has received more
attention.

Some researchers studied bending, buckling and
vibration problems of small scale plates using the
nonlocal elasticity theory. For example, Lu et al. [6]
investigated bending and free vibration of simply
supported rectangular plates. Murmu and Pradhan [7]
solved buckling problem of orthotropic small scale
plates under biaxial compression based on the Kirchhoff
plate theory. Pradhan [8] performed buckling analysis of
single layer graphene sheet based on higher order shear
deformation theory. Pradhan and Phadikar [9] carried
out vibration analysis of multilayered graphene sheets
embedded in polymer matrix. Based on the third order
shear deformation plate theory, Aghababaei and Reddy
[10] investigated effect of nonlocal theory on bending
and free vibration of simply supported orthotropic
rectangular plates. Pradhan and Phadikar [11] solved for
vibration of single and double layered nanoplates based
on the both Kirchhoff and first order shear deformation
plate theories. Narendar [12] carried out buckling
analysis of isotropic nanoplates using the two-variable
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refined plate theory. All of these works investigated
simply supported micro/nano plates and solved the
problems using the Navier’s approach. In addition, there
are some works solving free vibration and buckling
problems of nonlocal plates with the other boundary
conditions [13-16]. However, on bending problem of
nonlocal plates, researches have been limited to the
plates with either all edges simply supported or with at
least two opposite edges simply supported. Since the
problem with arbitrary boundary conditions cannot be
solved analytically, numerical methods are required to
solve the problem. According to our knowledge, this
issue has not been considered yet.

In recent years, mesh free methods have been
developed to structural analysis of plates and shells [18-
26]. A mesh free method is a method used to establish a
system of algebraic equations for the whole problem
domain without the use of a predefined mesh for the
domain discretization [17]. All of the mesh free
methods use a set of nodes scattered in the problem
domain without any element connectivity among them.

Various versions of mesh free methods have been
applied for structural analysis of plates [18-26].
Element free Galerkin method (EFGM) is a well-known
mesh free method using moving least square (MLS)
approximation function. Since MLS approximation
functions do not satisfy the Kronecker’s delta property,
enforcement of the essential boundary conditions
requires special techniques for example, direct
collocation methods, Lagrange multipliers method,
penalty method, coupling with the finite element
method (FEM), d’Alembert’s principle, transformation
method, displacement constraint equations method, etc
[19]. Some researchers applied the EFGM to solve
bending and free vibration problems of beams, plates
and shells. For example, Krysl and Belytschko [27, 28]
investigated static analysis of thin plates and shells. Liu
and Chen [29] studied static and free vibration of thin
plates of complicated shape with clamped and simply
supported edges. Ouatouati and Johnson [30] carried out
modal analyses of Euler-Bernoulli beams and Kirchhoff
plates. Moreover, Belinha and Dinis [31] used the
EFGM in the analysis of laminated composite Mindlin
plates.

In the present work, static problem of orthotropic
micro/nano plates is solved based on the EFGM for
different boundary conditions. Small scale effect is
incorporated into the model using the nonlocal elasticity
theory. Equilibrium equation of the plate is obtained
based on the Kirchhoff plate theory. Weak form of the
equilibrium equation is obtained. Natural boundary
conditions are satisfied automatically on the weak form
and essential boundary conditions are enforced using
the penalty method. Deflection of the plate is obtained
and compared with those obtained from the local plate
theory. In addition, the effects of support domain radius,
the number of nodes on the plate domain, Gauss

quadrature points, small scale parameter, aspect ratio
and boundary conditions are studied in detail. Finally,
bending problem of nano graphene sheets as orthotropic
thin nonlocal plates is solved for different boundary
conditions.

2. NONLOCAL CONSTITUTIVE RELATIONS

Nonlocal elasticity theory assumes that stress at a point
is a function of strain at all points of the continuum,
while in the classical elasticity theory, it is assumed that
stress at a point depends only on the strain at that point.
Constitutive relation of a nonlocal continuum is written
in the following form

6(x) = J’ y(x' - x)el(x)dV(x) 0
\4

where, ¢ 1is nonlocal stress tensor, x is a reference
point in the body, u/(|x'—x|) is the nonlocal kernel

function and o’ is local (classical) stress tensor at any

point x' in the body. Eringen [5] showed that it is
possible to represent the integro-partial differential
Equation (1) in an equivalent differential form as

(1-(&a,)’ Ve =6" )

where, a, is an internal characteristic length, ¢, is a

constant and V? is the Laplacian operator.

3. EQULIBRIUM EQUATION

Consider a rectangular orthotropic thin plate with
thickness h, length a and width b under a distributed
transverse load p(x, y). According to the Kirchhoff
plate theory strain-displacement relations of the plate in
Cartesian coordinate system are written as

R —ZwW,,
Ey (T TZW,, 3)
Vs _ZZny

in which, w is lateral displacement of the mid-plane,
index “,” refers to the partial derivative and z is the
through-thickness axis. Constitutive equations for a
nonlocal orthotropic plate are written in the following

form:

Gx Gx 6]] 6]2 5]6 gx
Gy~ (eoao)z v? Oy(r= 92 gzz 826 gy 4)
Ty Ty Qs Qu Qg ||Vxy
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in which, @j,’s (i,j=1,2,6) are reduced off-axis
stiffness defined in terms of the reduced on-axis
coefficients Qj; s as [32].

(_)H c! 20%s° s' 4c%s’

Q, st ct+st A8 —4¢%s’ Q,

(_)m _ cs cs-c’s —cs —2sc(c’ —5)||Qy

Q| | s c’s’ ¢t 4c%s’ Q; ®)
Qy s Cs—cs —cs 2sc(c’—5) || Qs

(\_)66 _czs2 2% 8 (=5

where, s=sin(0), c=cos(0) and Q;’s are defined in
terms of the engineering constants as:

E E)

Q= Q= ,
o) Aviva) ©
Vo E,
QIZ :%’Qﬁ = GIZ'
(I=-viva)

0 is the off-axis angle which for armchair and zigzag

nano graphene sheets is equal to 0° and 90°,
respectively.
Using the principle of virtual work equilibrium
equation of the plate is obtained in the following form
2 20 i
M, L O°M, 0

+ L+ p(x,)=0
o oxdy 6_); p(x,y) (7)

where, moment resultants as , M, and M,, are defined

in the following form:

MX MX M)I(-

M, t—(ea,)’ VI M, t =M, (8)
L

M,, M| M,

in which, local moment resultants M, , M; and M,

are defined as follows:

My D, D, Dgl|lw

X S XX

MyL =|D, D, D Wy Q)]
MxLy Dy Dy Dy 2VV,xy

h/2
where, D, = IZZ Q, dz (i, j=1,2,6 ). Using Equation
-h/2
(8), the equilibrium Equation (7) can be rewritten in the
following form:
82 ML 82 ML 82ML
b. S ) Xy Yy 1— 2 V2 0. 1
o2 Taxay o U@V (10)

The plate boundary conditions can be written as
follows:
For simply supported edges:

w=M, =0 (11)

For clamped edges:

w=w,=0 (12)
For free edges:
‘/n = Mn = Mnr = O (13)

where, n is the unit normal on the boundary and ¢ is
the tangent to the edge of the plate. Analytical solutions
for bending problem of plates based on the nonlocal
plate theory are limited to the plates with simply
supported edges [6]. Thus, for the plates with the other
boundary conditions, numerical methods are required.
In the next section, element free Galerkin method is
used to solve the equilibrium Equation (10) together
with any combination of the boundary conditions of
(11), (12) and (13).

4. ELEMENT FREE GALERKIN METHOD

Element free Galerkin method is a mesh free method
using moving least square (MLS) approximation
functions. These approximation functions are
continuous on the global domain [33]. MLS
approximation for the plate deflection w at an arbitrary
point & =(x, y) can be defined as follows [33].

we)=Ya,p;©) (14)
=

where, p;(§)’s are monomial basis functions and a;’s
are coefficients which are obtained by minimizing the
following weighted least-square L, norm [33].

nx

J=ZW@M@%W? (15)

where, nx is the number of nodes in support domain of
point & and W(&)=W(&-&)) is the weight function of
the ith node at &. Based on the EFGM, nodes in the
support domain of & are those which their weight
function at & is nonzero. In the above equation, w;’s
are called nodal parameters at &; because they are not
the same as the deflection at that point. Coefficients

a;’s ( j=12,.,n,) which are obtained from

0J/0a; =0 are continuous functions of § on the global

domain because the EFGM uses weight functions which
are continuous on the global domain. Final form of the
approximation function for the plate deflection can be
obtained by substituting a,()’s into Equation (14) in

the form of:

We) = oW, (16)
i=1
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where, ¢,’s are the MLS approximation functions

which do not satisfy the Kronecker’s delta property. The
above Equation can be easily rewritten in the following
form [33].

N
w(E) =Y oW =0"Ww (17)
i=l1

where, N is the number of nodes scattered in the global
domain. Moreover, the approximation function vector
@ and the nodal parameter vector w are defined as

o' = HOO QDN}T (18)

Aa T
wio={W W .. Wy} (19)
Furthermore, partial derivatives of the approximation
functions with respect to x and y are required and

they can be easily obtained. The detailed construction
procedure has been given in reference [33] by Liu and
Gu.

5. SOLUTION BASED ON THE EFGM

The EFGM uses the global weak form of the
equilibrium equation. Weak form of the equilibrium
Equation (10) is written as

[f(MEsw, +2ME 6w, + M) 6 w,)do
Q
+JZ_!(1 —(€,3,)*)V>pS wdQ 20)

+ [ (V) Sw+ M5 w, + M5 w,)dl =0
L

where, Q refers to the plate domain and I’y refers to
the plate edges having natural boundary condition.
Since the MLS approximation functions do not satisfy
the Kronecker’s delta property, penalty method is used
to enforce the essential boundary conditions. To this

end, the following terms must be added to the weak
form (20).

1 - - 2
39 jal(w— w)zdr+ja2(wn—wn) dr 1)
r, r,

where, a, and o, are penalty coefficients whose

magnitude are limited by magnitude of the stiffness
matrix components because very large penalty
coefficients may cause singularity in the matrix
inversion procedures. In addition, I',, refers to the
edges with essential boundary condition. In the above
relation, w=w, =0 for clamped edges, Ww=a, =0 for

simply supported edges and a, =a, =0 for free edges.

Upon substituting Equation (9) together with Equation
(17) into the variational form (20), final discrete form of
the equilibrium equation is obtained as follows

[K+K*W=F" (22)
in which,
[Klyy = [[(® D@ +® D0 +20 D,

Q

x®" +® D@ +® DO
+2®, D, ®' +2® DD’
+20 D, ®" +4® D, ®' )dQ (23)
[K“ vy = [ (@0, @7+ ® 0, ®]) dT
r

F'ya = [[®(1-(e2,))V’ p(x ) dO

where, [K+K?%] is the stiffness matrix. By solving

algebraic Equation (22), nodal parameters vector w is
obtained. Finally, the plate deflection at & =(x, y) can

be obtained by substituting w into Equation (17).

6. IMPLEMENTATION OF THE METHOD

Here, it is assumed that nodes are scattered regularly in
the plate domain. A system of rectangular background
cells and straight boundary cells is applied for Gaussian
quadrature numerical integration so that the nodes are
located at the vertices of these cells as shown in Figure
1. In the integration procedure, it is possible to use 2x2
or 3x3 Gauss points as shown in Figure 1.

Since the governing weak form contains second-
order derivatives, w is approximated in the form of a

quadratic polynomial (n, =6) as
n,=6

w(g) = Z a;p;j(§)=a +a,x+azy+ a4x2 +asxy+ aﬁy2 (24)
=1

d
AN . s . : :
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Figure 1. Nodes on the plate domain (o), background cells and
Gauss points on each background cell (x)
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Because of requirement of continuity of the weight
function and its first and second order derivatives, it is
chosen as the quartic spline in the following form

1-6()2 +8(=) —3(—)* 0<r<R
wiry={ ORI ) 05r=k (25)
0 r>R;

where, r:\/(x—xi)z +(y—y)* is distance between an
arbitrary point § and §; (i=12,.,N). R is the
support domain radius of the weight function W(r).
Here, R’s are assumed to be the same for all weight
functions (R, =R, i = 1,2,..., N ).

As mentioned earlier, based on the EFGM nodes in
the support domain of an arbitrary point & are those
which their weight function at & is nonzero. From
Equation (25), it is concluded that the support domain
radius of an arbitrary point &, R, is the same as the
support domain radius of the weight functions, R.

The support domain radius R; is defined in the

following form
R,=da, (26)

where, d; is the mesh size which is here assumed to be
the same as the longer side of the rectangular mesh as
shown in Figure 1. Furthermore, o is a constant which
is obtained by performing some numerical experiments.

7. NUMERICAL STUDIES

Consider a micro/nano rectangular thin plate with
thickness h, length a and width b subjected to the
following transverse distributed load

P = Pay sin(G; x)sin(n,, y) 27)

where, ¢, =An/a and n, = px/b in which A and u

are the half wave numbers. Analytical solutions to this
problem are limited to the plates with simply supported
edges. The problem is solved here for the plates not
only with the simply supported boundary conditions but
also with arbitrary combinations of clamped (C), free
(F) and simply supported (F) boundary conditions based
on the EFGM.

EFGM numerical results depend on the support
domain parameter o, = R,/ d, and the number of Gauss
points. Thus, before presentation of the numerical
results, this method must be calibrated using the exact
results. To this end, deflection of the nonlocal plate is
obtained for ¢ya, =0 and compared with those

obtained from the local plate theory.

For a simply supported plate the EFGM is calibrated
using the following closed form solution

(1+(eag)*($F +n}))
(Dngf +2(D), + 2D66)§fni + Dzzn:) (28)
X Py, sin($; x)sin(1, y)

w(x, y) =

which can be easily obtained from Equation (10)
together with Equation (9).

Figures (2-a) and (2-b) show e=w/w,,, at the
plate center versus o =R /d, using four and two
Gauss points in each background cell and boundary cell,
respectively. It can be seen from these figures that as

both «  and the number of nodes (N=N,xN,)

increase, ¢ approaches 1.

These figures show that the presented results based
on the EFGM are in good agreement with the analytical
results.

For plates with the other boundary conditions since
there is no analytical solution to calibrate the method,
fine meshes finite element results from the ANSYS
software are used as exact solutions. Figures 2, 3 and 4
depict the parameter e at the plate center versus o for

the plates with different aspect ratios and boundary
conditions. In these figures, G,x G, is the number of

Guass quadrature points in each background cell. These
figures show that as the number of nodes in the plate
domain, the number of Guass quadrature points in each
background cell and the support domain parameter o,
increase, numerical results converge to the finite
element results. It can be also seen from these figures
that the numerical results are the same as the exact
results for some values of G, x G, and «; , so they can

be used to calibrate the EFGM. According to these
figures, numerical results for 29<qa <3.1 are
acceptable; thus, the support domain parameter o, can
be selected in this interval. Nonetheless, for each
boundary condition it is possible to find a more
appropriate value for a, asreported in Table 1.

Table 1 represents non-dimensional deflection
parameter w=wD,, / p,, a* for an isotropic nanoscale
plate with ¢ a,/b=0.2. It can be seen from this table
that for A=pu=1, plates with stiffer boundary
conditions have less deflection

To study the small scale effect on the plate

deflection let us introduce the nonlocal effect parameter
k as

w

L
w

k= (29)

where, superscripts L and NL refer to local and
nonlocal results, respectively.
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Figure 2. The parameter € versus o for A =pu=1
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Figure 3. The parameter € versus o for A =pu=1
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TABLE 1. Optimum o, and W(a/2,b/2)x10’ for b/a=0.5, N.xN,=17x17 and G, xG,=2x2

SSSS ccce CCSs sscc CCFF SSFF FFCC FFSS
o 2.975 3 2.95 3 2.925 2.95 3 3.1

p) u W(a/2,b/2)x10°

1 1 0.6134 0.1768 0.5308 0.1798 2.0581 10.2040 0.1793 0.7072

1 3 -0.0352 0.1078 0.0353 -0.1094 1.9486 10.7886 0.1093 -0.0355

3 1 -0.1387 -0.1058 -0.1951 -0.1007 0.6237 -0.1804 -0.1022 -0.0086

3 3 0.0278 0.0525 0.0277 0.0505 0.4199 -0.0489 0.0506 0.0275

TABLE 2. Nonlocal effect parameter k for b/a=0.5

(A, p) = (LD (A, u)=(@13)

epag /b Equation (30) Present Eq. 30) Present
0 1 1 1

0.1 1.1234 1.12334 1.9129 1.9129
0.2 1.4935 1.4935 4.6518 4.6518
0.3 2.1103 2.1103 9.2164 9.2164
0.4 2.9739 2.9739 15.6070 15.6070
0.5 4.0842 4.0842 23.8235 23.8235
0.6 5.4413 5.4413 33.8658 33.8658
0.7 7.0451 7.0451 45.7340 45.7340
0.8 8.8957 8.8957 59.4280 59.4280
0.9 10.9930 10.9930 74.9480 74.9480
1 13.3370 13.3370 92.2938 92.2938

Table 2 represents parameter k for various €,a,/b.

This table shows that the results are in good agreement
with those which can be obtained from the following
closed form solution reported by Lu et al. [6]

k=1+(c29)* (£} +n;) (30)

Furthermore, Table 2 reveals that as the nonlocal
parameter ¢,a,/b increases, small scale effect increases

considerably. This table shows that the small scale
effect is more important at higher parameters A and u .
Finally, deflection of armchair and =zigzag nano
graphene sheets with the following properties are
obtained.

Armchairl:

a=9.519 nm,b=4.844 nm,h=0.129 nm,
eyag = 0.67 nm, E| = 2434 GPa ,E, = 2473 GPa,
v, =0.197,G,, =1039 GPa
Zigzagl:
a=9.496 nm,b=4.877 nm,h = 0.145 nm,
eyay = 0.47 nm, E, = 2145 GPa ,E, = 2097 GPa,
vy = 0.223,G,, =938 GPa

Tables 3 and 4 present the best support domain
parameter o, and non-dimensional deflection
parameter w for armchairl and zigzagl graphene
sheets, respectively. These tables show that for
A=p=1, w is maximum for SSFF plates and is

minimum for CCCC plates. Comparison of these tables
reveals that armchairl is stiffer than zigzag]l.
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TABLE 3. Non-dimensional deflection  W(a/2,b/2)x10° for =~ Armchairl graphene sheet (N,x N,=17x17  and
GyxG,=2x2,a,=295)

A H SSSS CCCC CCSS SSCC CCFF SSFF FFCC FFSS

1 1 0.5416 0.1602 0.4659 0.1635 1.7423 8.2063 0.1635 0.6361

1 3 -0.0229 -0.0691 -0.0228 -0.0704 1.1498 6.0719 -0.0704 -0.0229

1 5 0.0069 -0.0150 0.0069 -0.0156 1.4935 7.7136 -0.0155 0.0070

3 1 -0.1013 -0.0796 -0.1438 -0.0750 -0.4452 -0.1359 -0.0752 0.0042

3 3 0.0171 0.0318 0.0170 0.0304 -0.2326 -0.0301 0.0302 0.0170

3 5 -0.0060 0.0021 -0.0060 0.0015 -0.3079 -0.0648 0.0017 -0.0059

TABLE 4. Non-dimensional deflection W(a/2,b/2)x10° for Zigzagl graphene sheet ( N, x N, =17x17 and GyxG,=2x2, a;=2.95)

A H SSSS CCCC CCSS SSCC CCFF SSFF FFCC FFSS
1 1 0.4800 0.1429 0.4120 0.1460 1.5504 7.4237 0.1462 0.5700
1 3 -0.0152 -0.0460 -0.0152 -0.0469 0.7662 4.1136 -0.0470 -0.0152
1 5 0.0039 -0.0085 0.0039 -0.0089 0.8504 4.4649 -0.0089 0.0040
3 1 -0.0793 -0.0627 -0.1131 -0.0590 -0.3561 -0.1052 -0.0586 0.0088
3 3 0.0109 0.0202 0.0108 0.0193 -0.1521 -0.0186 0.0190 0.0108
3 5 -0.0033 0.0012 -0.0034 0.0008 -0.1762 -0.0357 0.0009 -0.0033
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