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ABSTRACT

In this paper, the problem of laminar nanofluid flow in a semi-porous channel is investigated
analytically using Homotopy Perturbation Method (HPM). This problem is in the presence of
transverse magnetic field. Here, it has been attempted to show the capabilities and wide-range
applications of the Homotopy Perturbation Method in comparison with the numerical method used for
solving such problems. The fluid is water containing copper as nanoparticle. The effective thermal
conductivity and viscosity of nanofluid are calculated by the Maxwell-Garnetts (MG) and Brinkman
models, respectively. The obtained solutions, in comparison with the out of the numeric methods admit
a remarkable accuracy. A clear conclusion that can be drawn from the results of the numerical method
(NM) is that the said method provides high accurate solutions for nonlinear differential equations.
Then, we consider the influence of the three dimensionless numbers: the nanofluid volume friction,
Hartmann number for the description of the magnetic forces and the Reynolds number for the dynamic
forces. Finally, results and discussions appear at the end. The results show that the velocity boundary
layer thickness decreases with increasing Reynolds number and nanoparticle volume friction, and it
increases while Hartmann number increases.

doi: 10.5829 /idosi.ije.2013.26.06¢.10

NOMENCLATURE

A, B Constant parameter Greek Symbols

P Fluid pressure L Kinematic viscosity
q Mass transfer parameter (o) Electrical conductivity
X, General coordinates & Aspect ratio h/Lx
f Velocity function H Dynamic viscosity
]_( Fluid thermal conductivity 9] Kinematic viscosity
n Power law index in temperature distribution P Fluid density

Re Reynolds number Subscripts

Ha Hartmann number o0 Condition at infinity
uv Dimensionless components velocity in x and y directions, respectively nf Nanofluid

u*,v* Velocity components in x and y directions respectively f Base fluid

X,y Dimensionless horizontal, vertical coordinates respectively N Nano-solid-particles
x*, y* Distance in x,y directions parallel to the plates

*Corresponding Author Email: Mohsen.sheikholeslami@yahoo.com ( M. Sheikholeslami)


mailto:Mohsen.sheikholeslami@yahoo.com

M. Sheikholeslamiet al. / IJE TRANSACTIONS C: Aspects Vol. 26, No. 6, (June 2013) 653-662 654

1. INTRODUCTION

Recently flow problems in porous tubes or channels
have been under considerable attention because of its
various applications in biomedical engineering, for
example, the dialysis of blood in artificial kidney [1],
the flow of blood in the capillaries [2], the flow in blood
oxygenators [3], and many other engineering areas such
as the design of filters [4], transpiration cooling
boundary layer control [5] and gaseous diffusion [6]. In
1953, Berman [7] described an exact solution of the
Navier-Stokes equation for steady two-dimensional
laminar flow of a viscous, incompressible fluid in a
channel with parallel rigid porous walls driven by
uniform, steady suction or injection at the walls. This
mass transfer is paramount in some industrial processes.
Lately, Chandran and Sacheti [8] analyzed the effects of
a magnetic field on the thermodynamic flow past a
continuously moving porous plate. In fluid mechanics,
many of the problems end up to a complicated set of
nonlinear ordinary differential equations which can be
solved using different analytic method, such as
homotopy perturbation method, variational iteration
method introduced by He [9].

The homotopy perturbation method, proposed first
by He in 1998 and was further developed and improved
by He [10]. It yields a very rapid convergence of the
solution series in most cases. Sheikholeslami et al. [11]
applied this method to investigate Hydromagnetic flow
between two horizontal plates in a rotating system. They
reported that increasing magnetic parameter or viscosity
parameter leads to decreasing Nu. By increasing the
rotation parameter, blowing velocity parameter and Pr
the Nusselt number increases. Sheikholeslami et al. [12]
studied the three-dimensional problem of steady fluid
deposition on an inclined rotating disk using HPM.
They concluded that by increasing normalized
thickness, Nusselt number increases. However, this
trend is more noticeable in grater Prandtl numbers.

Considered Fluid heating and cooling are important
in many industries such as power, manufacturing and
transportation. Effective cooling techniques are
absolutely necessary for cooling any sort of high energy
device. Common heat transfer fluids such as water,
ethylene glycol, and engine oil have limited heat
transfer capabilities due to their low heat transfer
properties.

In contrast, thermal conductivity of metals are up to
three times higher than those of fluids. Therefore, it is
naturally desirable to combine the two substances to
produce a heat transfer medium that behaves like a
fluid, but has the thermal conductivity of a metal.
Recently, several studies have been carried out on
nanofluids.  Steady  magnetohydrodynamic  free
convection boundary layer flow past a vertical semi-
infinite flat plate embedded in water filled with a

nanofluid has been theoretically studied by Hamad et al.
[13]. They have found that Cu and Ag nanoparticles
proved to have the highest cooling performance for this
problem.

Soleimani et al. [14] studied natural convection heat
transfer in a semi-annulus enclosure filled with
nanofluid using the Control Volume based Finite
Element Method. Also, it is reported that the angle of
turn has an important effect on the streamlines,
isotherms and maximum or minimum values of local
Nusselt number.

Sheikholeslami et al. [15] have investigated the flow
of nanofluid and heat transfer characteristics between
two horizontal plates in a rotating system. Their results
show that for suction and injection, the heat transfer rate
at the surface increases by increasing the nanoparticle
volume fraction, Reynolds number, and
injection/suction parameter and it decreases with power
of rotation parameter. Natural convection of a non-
Newtonian copper-water nanofluid between two infinite
parallel vertical flat plates has been investigated by
Domairry et al. [16].

They have concluded that as the volume fraction of
nanoparticle increases, the momentum boundary layer
thickness increases, while the thermal boundary layer
thickness decreases. Sheikholeslami et al. [17] studied
the natural convection in a concentric annulus between a
cold outer square and heated inner circular cylinders in
presence of static radial magnetic field. They have
reported that average Nusselt number is an increasing
function of nanoparticle volume fraction as well as
Rayleigh number, while it is a decreasing function of
Hartmann number.

Sheikholeslami et al. [18] performed a numerical
analysis for natural convection heat transfer of Cu-water
nanofluid in a cold outer circular enclosure containing a
hot inner sinusoidal circular cylinder in presence of
horizontal magnetic field using the Control Volume
based Finite Element Method. They have induced that
in absence of magnetic field, enhancement ratio
decreases as Rayleigh number increases; while in
presence of magnetic field an opposite trend, was
observed. Sheikholeslami et al. [19] studied the effects
of magnetic field and nanoparticle on the Jeffery-Hamel
flow by ADM. They have shown that increasing
Hartmann number will lead to backflow reduction. In
greater angles or higher Reynolds numbers, high
Hartmann number is needed to reduce the backflow.
Also, the results show that momentum boundary layer
thickness causes increase of nanoparticle volume
fraction. The main aim is to investigate the problem of
laminar nanofluid flow in a semi-porous channel in the
presence of transverse magnetic field using Homotopy
Perturbation Method. The effects of the nanofluid
volume friction, Hartmann number and Reynolds
number on velocity profile are considered.
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2. MATHEMATICAL MODEL

Consider the laminar two-dimensional stationary flow
of an electrical conducting incompressible viscous fluid
in a semi-porous channel made by a long rectangular
plate with length of [ in uniform translation in x*

direction and an infinite porous plate. The distance
between the two plates is h. We observe a normal
velocity g on the porous wall. A uniform magnetic
field B is assumed to be applied towards direction
y *(Figure 1). In case of a short circuit to neglect the
electrical field, perturbations to the basic normal field
and without gravity forces, the governing equations are:

ou* Ov*

—+ —=0,
ox* Oy* M
ou* ou* 1 OP*
u* + v* = -
ox* Ooy* P, Ox*
(©))
Hor o’u* o’u* *Gnt‘Bz
+ =+ |~ u
Par \ OX oy Par
u*av*+v*6v* __ 1 opP*
ox* oy* Par Oy
3
Mo 0%v* 8%y )
+ — +
P\ Ox* ay*?
The boundary conditions for the velocity are:
y¥=0:u*=u,*,v¥=0, %)
y¥*=h:u*=0, v¥=—q, 5)
Calculating a mean velocity y by the relation:
y*=0:u*=u,* v =0, (6)
We consider the following transformations:
X* ) B y*
XS TS 7
u * v * P *
u = sV o= , P, =
U a’ ’ peq’ ®)

Then, we can consider two dimensionless numbers: the
Hartman number Ha for the description of magnetic
forces [1] and the Reynolds number Re for dynamic
forces:

Ha = Bho ,/p,v,, 9)
hq
Hoar
The effective density ( p,, ) is defined as [18]:

Re =

Poar- (10)

Pur = Pr (1) +py¢ (11)
where ¢ is the solid volume fraction of nanoparticles.

The dynamic viscosity of the nanofluids is [20]:

”f
o = (12)

The effective thermal conductivity can be modeled by
the Maxwell-Garnetts as [18]:

kn o ks + 2kf - 2¢(kt‘ - ks)

k,  k +2k,+¢(k, —k,) (13)

f

The effective electrical conductivity of nanofluid was
presented by Maxwell [18] as:

o el )
Oy O O, (o

The thermo physical properties of the nanofluid are
given in Table 1 [18].

So, we can evolve the dimensionless equations:
ou Ov

ox "oy~ (13)
g 20, 0u 2 0P
ox oy ox 16
+'u_"tl_ 28211 + 6211 —u HaZB_* ( )
p. hq ox* oy’ Re A’
ov ov oP,
Uu—+v—=-—=
ox oy ox a7
Mo 1 2 0%y a’v
+——— =+ —
par hg ox° 0y

* Sk
where A and B are constant parameters:

A =(1-g)+ Loy,

r

{5 5)
o-f o-f o-f

Quantity of & is defined as the aspect ratio between

(18)

distance h and a characteristic length L of the slider.

TABLE 1. Thermo physical properties of water and
nanoparticles [18].

Pure water Copper (Cu)
p(kg /m’) 997.1 8933
C,(j/ kgk) 4179 385
k(W /mk) 0.613 401
c(Q 'm") 0.05 5.96x 107

Figure 1. Schematic diagram of the system
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It is normally small. Berman’s similarity transformation
is used to be free from € :

* dv
v:—V(y);u:u?:uoU(y)+xd—y. (19)
Introducing Equation (19) in the second momentum

Equation (17) shows that quantity oP,/ oy does not

depend on the longitudinal variable X. By first
momentum equation, we also observe that 5 P,/ ox is

independent of X. We omit asterisks for simplicity.
Then a separation of variables leads to [21]:
1 1

VvV e — - Vv
Re A (1_¢)'
Lo , (20)
,Ha iV':szaiy: : L9,
Re A 0x X 0x
Uv -VvU' =
1 1 [UVY—HazB*(l—([))Z'SU} (21)

R_e A (1 _¢)z.5
The right-hand side of Equation (20) is constant. By
derivation respect to X, we have:
V"V =Ha’B (1-¢)" V'

. 25F e (22)
+Re A (1-¢) " [VV' -VV']

where primes denote differentiation with respect to y
and asterisks have been omitted. The dynamic boundary
conditions are:

y=0: U=1V=0;V =0, (23)

y=1: U=0,V=LV =0. (24)

3. ANALYSIS OF HOMOTOPY PERTURBATION
METHOD

To illustrate the basic ideas of this method, we consider
the following equation:

A(w)- f(r)=0 reQ (25)
With the boundary condition of:

B(ll,g—:j:O’ rel’, (26)
where Ais a general differential operator, B a boundary
operator, f(r) a known analytical function and I is the
boundary of the domain . A can be divided into two
parts which are L and N, where L is linear and N is
nonlinear. Equation (27) can therefore be rewritten as
follows:

L(u)+ N(u)- f(r)=0 reQ 27)

Homotopy perturbation structure is:

H,p)=@-p)[Lt)- L(u,)]
+ plAv)- £(r)]=0

v(r,p): Qx[0,1]> R (29)
In Equation (5), pe[0,1] is an embedding

(28)

parameter and y, is the first approximation that satisfies

the boundary condition. We can assume that the
solution of Equation (18) can be written as a power
series in p, as following:

V=v,+pv,+piv, +.. (30)
and the best approximation for solution is:

u=lim , v =v,+v, +v,+.. @31

4.IMPLEMENTION OF THE METHOD

According to HPM, we construct a homotopy. Suppose
the solution of Equation (28) has the form:

H(V.p)=(1-p)(V"-V,)
+p(—V’V+HaZB*(I—¢)2'5V” (32)
tRe A (1-¢) V'V —VV”']): 0

H(U.p)=(1-p)(U"-U)+ p(-UV + VU’

1 1 " P 25 _ (33)
+?€W[U ~Ha’B (1-¢) U}]_o

We consider vand U as follows:
V()= V() V() F = V() (34)
U= (DU ()5 = 3 UL () (35)

By substituting F from Equations (34) and (35)
Equations (32) and (33) into and some simplification
and rearranging based on powers of p—terms, according
to the boundary conditions, we have:

(36)

~Ha’(1-¢) " B'V,/+ V" + Re A" (1-¢) 7" V,"V,
~Re A (1-¢) VvV =0

~Ha’(1-¢) " BUJ+U} (37)
~Re A (1-¢)"" VU,
+Re A (1-¢) VU, =0

Solving Equations (36) and (37) with boundary
conditions, we have:

Vo(y)=-2y"+3y",

U, (y)=—-y+1. (38)
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V,(y)=0.0571428 Re A" (1-¢) "y
~0.2Re A (1-¢) " y*
~0.1Ha’(1-¢) " By’
+03ReA (1-¢)"" y*
~0.385714Re A" (1-¢) "y’
~0.2Ha*(1-¢) " By’
+0.22857142Re A" (1-¢) "y’
+0.5Ha’ (1-¢) " By’

(39

U(y)=—02ReA(1-¢)""y
~0.7Re A (1-¢)7" y'
~0.16667Ha*(1-¢) " B'y’
+0.1Re A (1-¢) "y’ +0.5Ha’ (1-¢) " By
~045Re A (1-¢) "y
~0.3333Ha’(1-¢) " By
when j > 2 theterms v (y), U.(y) aretoo large; that
is graphically mentioned. When p_,1, we have the
following relations:

V(y)=Vo(y)+ V,(y)+m:§vi(y)

. (40)
U(y)=U(,(y)+U,(y)+m=’Z:;)U,.(y)

5. RESULTS AND DISCUSSION

In this study homotopy perturbation method is applied
to obtain an explicit analytical solution of the laminar
nanofluid flow in a semi-porous channel in the presence
of uniform magnetic field (Figure 1). The results that
obtained by homotopy perturbation method matched

well with the results carried out by the numerical
solution obtained by four-order Rung-kutte method as
shown in Figure 2 and Table 2. The percentage error is:

%EITOI': | f(r, )NM _ f(n )Hl’Ml
(N Iym

Figure 2(c) shows the average error for different
functions at various iterations. As can be seen in this
figure homotopy-perturbation method is converged in
step 8 and error has been minimized. The effect of
nanoparticle volume fraction on U (y) is shown in

x 100 (43)

Figure 3. For both cases, presence and absence of
magnetic field, velocity boundary layer thickness
decreases with increase of nanoparticle volume fraction.
Also, it can be seen that increasing nanoparticle volume
friction leads to decrease the values of U (y)and this

decrement is more sensible in absence of magnetic field.
Effect of various values of Hartmann numbers on
V(y)andU (y)is shown in Figure 4. Generally, when

the magnetic field is imposed on the enclosure, the
velocity field suppressed owing to the retarding effect of
the Lorenz force. For low Reynolds numbers, as
Hartmann number increases v () decreases for y> y ,

but opposite trend is observed for y>y ~y isa

meeting point that all curves joint together at this point.
When Reynolds number increases this meeting point
shifts to the solid wall and it can be seen that
V(y) decreases with increase of Hartmann number. As

Hartmann number increases y(y) decreases for all

values of Reynolds number. Besides, this figure shows
that this change is more pronounced for low Reynolds
number.

TABLE 2. Comparison between numerical results and HPM when Re= 1,Ha = 1,0 =0.06 and Pr =6.2 .

vV(y) U(y)

n NM HPM %Error NM HPM %Error

0 0 0 1 1 9.99201E-14
0.1 0.031536 0.031536 3.94231E-07 0.811214 0.810273 0.004312136
0.2 0.114879 0.114879 7.31117E-09 0.642786 0.640942 0.010666076
0.3 0.234148 0.234148 6.406E-08 0.497688 0.495028 0.019876212
0.4 0.374868 0.374868 9.01469E-08 0.376093 0.372762 0.032934072
0.5 0.523888 0.523888 1.18899E-07 0.276303 0.272514 0.050985265
0.6 0.669183 0.669183 9.38714E-08 0.195535 0.191575 0.075286883
0.7 0.799622 0.799622 2.96393E-07 0.130546 0.126783 0.107182537
0.8 0.904758 0.904758 1.746E-07 0.07812 0.075006 0.148190076
0.9 0.974688 0.974688 2.24162E-07 0.035383 0.033476 0.200316815

1 1 1 0 0 0 0
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Figure 5 shows the effect of Reynolds number on
V(y) and U(y) profiles at constant Hartmann

number. It is worth to mention that the Reynolds
number indicates the relative significance of the inertia
effect compared to the viscous effect.

Thus, velocity profile decreases as Re increases and
in turn increasing Re leads to increase in the magnitude
of the skin friction coefficient. By increasing Reynolds
number, v(y) and U(y) increase. These effects
become less at higher Hartmann numbers. Also, it

shows that increasing Hartmann number leads to
increasing the curve of velocity profile.
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Ha=10

Figure 5. Effects of various values of Reynolds numbers on
v(y) and U(y) when ¢ = 0.06 -

6. CONCLUDING REMARKS

The main aim of this paper is solving the problem of
laminar nanofluid flow in a semi-porous channel in the
presence of uniform magnetic field by homotopy
perturbation method. It was found that HPM is a
powerful approach. Also, as it is shown in the figures
that there is a good agreement between the results of the
present work and numerical data. The results indicate
that velocity boundary layer thickness decreases with
increasing Reynolds number and nanoparticle volume
friction and it increases while Hartmann number
increases. Furthermore, it can be seen that for low
Reynolds numbers, as Hartmann number increases
v(y) decreases for y > y but in opposite trend, it is

observed for y> y . Whilst y is a meeting point that

all curves joint together at this point. When Reynolds
number increases this meeting point shifts to the solid
wall and it can be seen that V(y)decreases with

increase of Hartmann number.
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