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A B S T R A C T  
   

In this paper, the problem of laminar nanofluid flow in a semi-porous channel is investigated 
analytically using Homotopy Perturbation Method (HPM). This problem is in the presence of 
transverse magnetic field. Here, it has been attempted to show the capabilities and wide-range 
applications of the Homotopy Perturbation Method in comparison with the numerical method used for 
solving such problems. The fluid is water containing copper as nanoparticle. The effective thermal 
conductivity and viscosity of nanofluid are calculated by the Maxwell–Garnetts (MG) and Brinkman 
models, respectively. The obtained solutions, in comparison with the out of the numeric methods admit 
a remarkable accuracy. A clear conclusion that can be drawn from the results of the numerical method 
(NM) is that the said method provides high accurate solutions for nonlinear differential equations. 
Then, we consider the influence of the three dimensionless numbers: the nanofluid volume friction, 
Hartmann number for the description of the magnetic forces and the Reynolds number for the dynamic 
forces. Finally, results and discussions appear at the end. The results show that the velocity boundary 
layer thickness decreases with increasing Reynolds number and nanoparticle volume friction, and it 
increases while Hartmann number increases. 
 
 

 
 

 

NOMENCLATURE   

* *,A B  Constant parameter Greek Symbols 

P  Fluid pressure υ  Kinematic viscosity 

q  Mass transfer parameter σ  Electrical conductivity 

kx  General coordinates ε  Aspect ratio h/Lx 

f Velocity function µ  Dynamic viscosity 

k  Fluid thermal conductivity υ  Kinematic viscosity 

n Power law index in temperature distribution ρ  Fluid density 

Re  Reynolds number Subscripts 

Ha  Hartmann number ∞  Condition at infinity 

u,v  Dimensionless components velocity in x and y directions, respectively     nf  Nanofluid 

u* ,v*  Velocity components in x  and y directions  respectively     f  Base fluid 

x, y  Dimensionless horizontal, vertical  coordinates respectively     s  Nano-solid-particles 

x* , y*  Distance in x,y directions parallel to the plates   
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1. INTRODUCTION 

 
Recently flow problems in porous tubes or channels 
have been under considerable attention because of its 
various applications in biomedical engineering, for 
example, the dialysis of blood in artificial kidney [1], 
the flow of blood in the capillaries [2], the flow in blood 
oxygenators [3], and many other engineering areas such 
as the design of filters [4], transpiration cooling 
boundary layer control [5] and gaseous diffusion [6]. In 
1953, Berman [7] described an exact solution of the 
Navier-Stokes equation for steady two-dimensional 
laminar flow of a viscous, incompressible fluid in a 
channel with parallel rigid porous walls driven by 
uniform, steady suction or injection at the walls. This 
mass transfer is paramount in some industrial processes. 
Lately, Chandran and Sacheti [8] analyzed the effects of 
a magnetic field on the thermodynamic flow past a 
continuously moving porous plate. In fluid mechanics, 
many of the problems end up to a complicated set of 
nonlinear ordinary differential equations which can be 
solved using different analytic method, such as 
homotopy perturbation method, variational iteration 
method introduced by He [9].  

The homotopy perturbation method, proposed first 
by He in 1998 and was further developed and improved 
by He [10]. It yields a very rapid convergence of the 
solution series in most cases. Sheikholeslami et al. [11] 
applied this method to investigate Hydromagnetic flow 
between two horizontal plates in a rotating system. They 
reported that increasing magnetic parameter or viscosity 
parameter leads to decreasing Nu. By increasing the 
rotation parameter, blowing velocity parameter and Pr 
the Nusselt number increases. Sheikholeslami et al. [12] 
studied the three-dimensional problem of steady fluid 
deposition on an inclined rotating disk using HPM. 
They concluded that by increasing normalized 
thickness, Nusselt number increases. However, this 
trend is more noticeable in grater Prandtl numbers.  

Considered Fluid heating and cooling are important 
in many industries such as power, manufacturing and 
transportation. Effective cooling techniques are 
absolutely necessary for cooling any sort of high energy 
device. Common heat transfer fluids such as water, 
ethylene glycol, and engine oil have limited heat 
transfer capabilities due to their low heat transfer 
properties.  

In contrast, thermal conductivity of metals are up to 
three times higher than those of fluids. Therefore, it is 
naturally desirable to combine the two substances to 
produce a heat transfer medium that behaves like a 
fluid, but has the thermal conductivity of a metal. 
Recently, several studies have been carried out on 
nanofluids. Steady magnetohydrodynamic free 
convection boundary layer flow past a vertical semi-
infinite flat plate embedded in water filled with a 

nanofluid has been theoretically studied by Hamad et al. 
[13]. They have found that Cu and Ag nanoparticles 
proved to have the highest cooling performance for this 
problem.  

Soleimani et al. [14] studied natural convection heat 
transfer in a semi-annulus enclosure filled with 
nanofluid using the Control Volume based Finite 
Element Method. Also, it is reported that the angle of 
turn has an important effect on the streamlines, 
isotherms and maximum or minimum values of local 
Nusselt number.  

Sheikholeslami et al. [15] have investigated the flow 
of nanofluid and heat transfer characteristics between 
two horizontal plates in a rotating system. Their results 
show that for suction and injection, the heat transfer rate 
at the surface increases by increasing the nanoparticle 
volume fraction, Reynolds number, and 
injection/suction parameter and it decreases with power 
of rotation parameter. Natural convection of a non-
Newtonian copper-water nanofluid between two infinite 
parallel vertical flat plates has been investigated by 
Domairry et al. [16].  

They have concluded that as the volume fraction of 
nanoparticle increases, the momentum boundary layer 
thickness increases, while  the thermal boundary layer 
thickness decreases. Sheikholeslami et al. [17] studied 
the natural convection in a concentric annulus between a 
cold outer square and heated inner circular cylinders in 
presence of static radial magnetic field. They have 
reported that average Nusselt number is an increasing 
function of nanoparticle volume fraction as well as 
Rayleigh number, while it is a decreasing function of 
Hartmann number.  

Sheikholeslami et al. [18] performed a numerical 
analysis for natural convection heat transfer of Cu-water 
nanofluid in a cold outer circular enclosure containing a 
hot inner sinusoidal circular cylinder in presence of 
horizontal magnetic field using the Control Volume 
based Finite Element Method. They have induced that 
in absence of magnetic field, enhancement ratio 
decreases as Rayleigh number increases; while in 
presence of magnetic field an opposite trend, was  
observed. Sheikholeslami et al. [19] studied the effects 
of magnetic field and nanoparticle on the Jeffery-Hamel 
flow by ADM. They have shown that increasing 
Hartmann number will lead to backflow reduction. In 
greater angles or higher Reynolds numbers, high 
Hartmann number is needed to reduce the backflow. 
Also, the results show that momentum boundary layer 
thickness causes increase of nanoparticle volume 
fraction. The main aim is to investigate the problem of 
laminar nanofluid flow in a semi-porous channel in the 
presence of transverse magnetic field using Homotopy 
Perturbation Method. The effects of the nanofluid 
volume friction, Hartmann number and Reynolds 
number on velocity profile are considered. 
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2. MATHEMATICAL MODEL 
 
Consider the laminar two-dimensional stationary flow 
of an electrical conducting incompressible viscous fluid 
in a semi-porous channel made by a long rectangular 
plate with length of xL in uniform translation in x*  
direction and an infinite porous plate. The distance 
between the two plates is h . We observe a normal 
velocity q  on the porous wall. A uniform magnetic 
field B  is assumed to be applied towards direction 

*y (Figure 1). In case of a short circuit to neglect the 
electrical field, perturbations to the basic normal field 
and without gravity forces, the governing equations are: 

* * 0 ,
* *

u v
x y

∂ ∂
+ =

∂ ∂
        

(1)  

* * 1 ** *
* * *nf

u u Pu v
x y xρ

∂ ∂ ∂+ = −
∂ ∂ ∂         

         22 2

2 2
* * *

* *
nf n f

nf n f

Bu u u
x y

µ σ
ρ ρ

 ∂ ∂
+ + − ∂ ∂   

(2)  

* * 1 ** *
* * *n f

v v Pu v
x y yρ

∂ ∂ ∂
+ = −

∂ ∂ ∂       

          2 2

2 2
* *

* *
n f

n f

v v
x y

µ
ρ

 ∂ ∂+ + ∂ ∂     

(3)  

The boundary conditions for the velocity are: 
0* 0 : * * , * 0,y u u v= = =         (4)  

* : * 0, * ,y h u v q= = = −
       

(5)  
Calculating a mean velocity U by the relation: 

0* 0 : * * , * 0 ,y u u v= = =         (6)  

 We consider the following transformations: 
* *; ,
x

x yx y
L h

= =
    

(7)  

2

* * *; ,
.y

f

u v Pu v P
U q qρ

= = =
        (8)  

Then, we can consider two dimensionless numbers: the 
Hartman number Ha  for the description of magnetic 
forces [1] and the Reynolds number Re  for dynamic 
forces: 

/ . ,f f fH a B h σ ρ υ=     (9)  

R e .n f
n f

h q
ρ

µ
=         (10)  

The effective density ( nfρ ) is defined as [18]: 

(1 )nf f sρ ρ φ ρ φ= − +  (11) 

where φ  is the solid volume fraction of nanoparticles. 
The dynamic viscosity of the nanofluids is [20]: 

2.5(1 )
f

nf

µ
µ

φ
=

−
 (12) 

The effective thermal conductivity can be modeled by 
the Maxwell–Garnetts as [18]: 

2 2 ( )
2 ( )

n f s f f s

f s f f s

k k k k k
k k k k k

φ

φ

+ − −
=

+ + −
 (13) 

The effective electrical conductivity of nanofluid was 
presented by Maxwell [18] as: 

1 [3 1 / 2 1 ]nf s s s

f f f f

σ σ σ σ
φ φ

σ σ σ σ

      
 = + − + − −                 

 (14) 

The thermo physical properties of the nanofluid are 
given in Table 1 [18]. 
So, we can evolve the dimensionless equations: 

0 ,u v
x y

∂ ∂
+ =
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(17)  

where *A  and *B   are constant parameters:  
* (1 ) ,s

f

A ρ
φ φ

ρ
= − +

 

* 1 [3 1 / 2 1 ]s s s

f f f

B σ σ σ
φ φ

σ σ σ

      
 = + − + − −                 

 
(18) 

Quantity of ε  is defined as the aspect ratio between 
distance h  and a characteristic length xL of the slider.  
 
 
TABLE 1. Thermo physical properties of water and 
nanoparticles [18]. 

 Pure water Copper ( Cu ) 

3( kg / m )ρ  997.1 8933 

pC ( j / kg k )  4179 385 

k( W / m.k )  0.613 401 

1 1( m )σ − −Ω  0.05 75.96 10×  

 
 

 
Figure 1.  Schematic diagram of the system 
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It is normally small. Berman’s similarity transformation 
is used to be free fromε : 

( ) ( )0
*; .u d Vv V y u u U y x

U d y
= − = = +     (19)  

Introducing Equation (19) in the second momentum 
Equation (17) shows that quantity 

yP y∂ ∂ does not 
depend on the longitudinal variable x . By first 
momentum equation, we also observe that

 
2 2

yP x∂ ∂  is 
independent of x . We omit asterisks for simplicity. 
Then a separation of variables leads to [21]: 

( )
' 2 '' '''

2 .5*

1 1
R e 1

V V V V
A φ

− −
−

    

       
22 *

' 2 2
* 2

1
R e

y yP PH a B V
A x x x

ε ε
∂ ∂

+ = =
∂ ∂

   
(20)  

' 'U V VU− =
 

( )
( )2.5'' 2 *

2.5*

1 1 1
Re 1

U Ha B U
A

φ
φ

 − − −  
(21)  

The right-hand side of Equation (20) is constant. By 
derivation respect to x , we have: 

( )2.52 * ''1IVV Ha B Vφ= −     

( )2.5* ' '' '''R e 1A V V VVφ  + − −   
(22)  

where primes denote differentiation with respect to y 
and asterisks have been omitted. The dynamic boundary 
conditions are: 

'0 : 1; 0; 0,y U V V= = = =     (23)  
'1 : 0; 1; 0.y U V V= = = =

 
(24)  

 
 
3. ANALYSIS OF HOMOTOPY PERTURBATION 
METHOD   

 
To illustrate the basic ideas of this method, we consider 
the following equation: 

( ) ( ) 0=− rfuA  Ω∈r  (25) 

 With the boundary condition of: 

0, =







∂
∂

n
uuB

, Γ∈r , (26) 

 where A is a general differential operator, B a boundary 
operator, f (r) a known analytical function and Γ is the 
boundary of the domain Ω. A can be divided into two 
parts which are L and N, where L is linear and N is 
nonlinear. Equation (27) can therefore be rewritten as 
follows: 

( ) ( ) ( ) 0=−+ rfuNuL  Ω∈r  (27) 

 Homotopy perturbation structure is: 

( ) ( ) ( ) ( )[ ]01, uLLppH −−= νν  
    ( ) ( )[ ] 0=−+ rfAp ν  

(28) 

( ) [ ] Rpr →×Ω 1,0:,ν  (29) 
In Equation (5), [ ]1,0∈p  is an embedding 

parameter and 0u  is the first approximation that satisfies 
the boundary condition. We can assume that the 
solution of Equation (18) can be written as a power 
series in p, as following: 

...2
2

10 +++= νννν pp  (30) 

and the best approximation for solution is: 

...lim 2101 +++== → ννννpu  (31) 

 
 
4. IMPLEMENTION OF THE METHOD 

 
According to HPM, we construct a homotopy. Suppose 
the solution of Equation (28) has the form: 

( ) ( )( )IV IV
0H V , p 1 p V V= − −  

( )( 2 .5IV 2 * ' 'p V H a B 1 Vφ+ − + −  

( ) )2 .5* ' ' ' ' ' 'Re A 1 V V VV 0φ  + − − = 
 

(32) 

( ) ( )( )0H U , p 1 p U U′′ ′′= − − ( ' 'p U V V U+ − +  

( )
( )2.5'' 2 *

2.5*

1 1 U Ha B 1 U 0
Re A 1

φ
φ


 + − − =  − 

 (33) 

We consider V and U  as follows: 

( ) ( ) ( ) ( )
n

0 1 i
i 0

V y V y V y .. . V y
=

= + + = ∑  
(34) 

( ) ( ) ( ) ( )
n

0 1 i
i 0

U y U y U y .. . U y
=

= + + = ∑  
(35) 

By substituting F from Equations (34) and (35) 
Equations (32) and (33) into and some simplification 
and rearranging based on powers of p–terms, according 
to the boundary conditions, we have: 

0

iv
0 0

p :

V 0 ,U 0 ,′′= =

 
(36) 

1p :  
( ) 2.52 * iv

0 1H a 1 B V Vφ − ′′− − + ( ) 2 .5*
0 0Re A 1 V Vφ − ′′′+ −  

   ( ) 2.5*
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(37) ( ) 2 .52 *
0 1H a 1 B U Uφ − ′′ ′′− − +  

    ( ) 2 .5*
0 0Re A 1 V Uφ − ′− −  

    ( ) 2 .5*
0 0Re A 1 V U 0φ − ′+ − =  

Solving Equations (36) and (37) with boundary 
conditions, we have: 

( )
( )

3 2
0

0

V y 2 y 3 y ,

U y y 1.

= − +

= − +
 (38) 
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(39) 

when 2i ≥  the terms ( ), ( )i iV y U y  are too large;  that 
is graphically mentioned. When 1→p , we have the 
following relations:  

( ) ( ) ( ) ( )
n

0 1 i
i 0

V y V y V y . .. V y
=

= + + = ∑
 

(40) 
( ) ( ) ( ) ( )

n

0 1 i
i 0

U y U y U y ... U y
=

= + + = ∑  

 
 
5. RESULTS AND DISCUSSION 
 
In this study homotopy perturbation method is applied 
to obtain an explicit analytical solution of the laminar 
nanofluid flow in a semi-porous channel in the presence 
of uniform magnetic field (Figure 1). The results that 
obtained by homotopy perturbation method matched 

well with the results carried out by the numerical 
solution obtained by four-order Rung-kutte method as 
shown in Figure 2 and Table 2. The percentage error is:  

%Error NM HP M

NM

f ( ) f ( ) 100
f ( )

η η

η
−

= ×
 

(43) 

Figure 2(c) shows the average error for different 
functions at various iterations. As can be seen in this 
figure homotopy-perturbation method is converged in 
step 8 and error has been minimized. The effect of 
nanoparticle volume fraction on ( )U y  is shown in 
Figure 3. For both cases, presence and absence of 
magnetic field, velocity boundary layer thickness 
decreases with increase of nanoparticle volume fraction. 
Also, it can be seen that increasing nanoparticle volume 
friction leads to decrease the values of ( )U y and this 
decrement is more sensible in absence of magnetic field. 
Effect of various values of Hartmann numbers on 

( )V y and ( )U y is shown in Figure 4. Generally, when 
the magnetic field is imposed on the enclosure, the 
velocity field suppressed owing to the retarding effect of 
the Lorenz force. For low Reynolds numbers, as 
Hartmann number increases ( )V y  decreases for my y> , 
but opposite trend is observed for 

my y> ; my  is a 

meeting point that all curves joint together at this point. 
When Reynolds number increases this meeting point 
shifts to the solid wall and it can be seen that 

( )V y decreases with increase of Hartmann number. As 
Hartmann number increases ( )U y  decreases for all 
values of Reynolds number. Besides, this figure shows 
that this change is more pronounced for low Reynolds 
number. 

 
 

TABLE 2. Comparison between numerical results and HPM when Re 1,Ha 1, 0.06φ= = =  and 2.6Pr = . 

  
( )V y 

 
 

 
( )U y 

 
 

η NM  HPM %Error NM HPM %Error 

0 0 0 0  1 1 9.99201E-14 

0.1 0.031536 0.031536 3.94231E-07 0.811214 0.810273 0.004312136 

0.2 0.114879 0.114879 7.31117E-09 0.642786 0.640942 0.010666076 

0.3 0.234148 0.234148 6.406E-08 0.497688 0.495028 0.019876212 

0.4 0.374868 0.374868 9.01469E-08 0.376093 0.372762 0.032934072 

0.5 0.523888 0.523888 1.18899E-07 0.276303 0.272514 0.050985265 

0.6 0.669183 0.669183 9.38714E-08 0.195535 0.191575 0.075286883 

0.7 0.799622 0.799622 2.96393E-07 0.130546 0.126783 0.107182537 

0.8 0.904758 0.904758 1.746E-07 0.07812 0.075006 0.148190076 

0.9 0.974688 0.974688 2.24162E-07 0.035383 0.033476 0.200316815 

1 1 1 0 0 0 0 
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( )a H a 0=  

 

 
( )b H a 5=  

 

 
( )c  

 
Figure 2. Comparison between the Numerical results and 
HPM solution for different values of active parameters 
when 0.06φ = ;(c) %Error for ( )θ η  (a) for different steps of 

HPM for 0.06 ,Ha 1,Re 1φ = = =  

 

 
H a 0=  

 

 
H a 5=  

 

Figure 3. Effect of nanoparticle volume fraction (φ ), on 
( )U y , when Re 1= . 

 
 

Re=1 

 
 (a) 
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Re=1 

 
 (b) 

 

Re=20 

 
 (c) 

 

Re=20 

 
 (d) 

 
Figure 4. Effect of various values of Hartmann numbers ( Ha ) 
on ( )V y and ( )U y , when 0.06φ = . 

Figure 5 shows the effect of Reynolds number on 
( )V y  and ( )U y  profiles at constant Hartmann 

number. It is worth to mention that the Reynolds 
number indicates the relative significance of the inertia 
effect compared to the viscous effect.  

Thus, velocity profile decreases as Re increases and 
in turn increasing Re leads to increase in the magnitude 
of the skin friction coefficient. By increasing Reynolds 
number, ( )V y  and ( )U y  increase. These effects 
become less at higher Hartmann numbers. Also, it 
shows that increasing Hartmann number leads to 
increasing the curve of velocity profile.  
 
 
 
 

Ha=0 

 
(a) 

 
 

 
 (b) 
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Ha=10 

 
(c) 

 
 

 
 (d) 

 
Figure 5. Effects of various values of Reynolds numbers on 

( )V y  and ( )U y  when 0 .06φ = . 

 
 
 
6. CONCLUDING REMARKS 
 
The main aim of this paper is solving the problem of 
laminar nanofluid flow in a semi-porous channel in the 
presence of uniform magnetic field by homotopy 
perturbation method. It was found that HPM is a 
powerful approach. Also, as it is shown in the figures 
that there is a good agreement between the results of the 
present work and numerical data. The results indicate 
that velocity boundary layer thickness decreases with 
increasing Reynolds number and nanoparticle volume 
friction and it increases while Hartmann number 
increases. Furthermore, it can be seen that for low 
Reynolds numbers, as Hartmann number increases 

( )V y  decreases for my y>  but in opposite trend, it is 
observed for 

my y> . Whilst my  is a meeting point that 

all curves joint together at this point. When Reynolds 
number increases this meeting point shifts to the solid 
wall and it can be seen that ( )V y decreases with 
increase of Hartmann number. 
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  هچکید

  

روش آشفتگی هوموتوپی به صورت  ي هاي نازك در کانال شبه متخلخل به وسیله جریان نانوسیال با لایه ي  در این مقاله  مسئله
جا تلاش شده است تا توانایی و  در این. باشد مغناطیسی متقاطع می ي این مسئله در حضور ناحیه. است شدهتحلیلی بررسی 

سیال مورد . نشان داده شود دستاین از اربرد هاي وسیع روش آشفتگی هوموتوپی در مقایسه با روش عددي در حل مسائلی ک
هاي  گانتس و مدل- ماکسول ي وسیلهه نانوسیال ب روي گرانرسانایی گرمایی موثر و . نظرآب حاوي مس به عنوان نانوذره است

 نشانهاي عددي دقت قابل توجهی را  هاي روش آمده در مقایسه با خروجیهاي به دست جواب. اند برینکمن محاسبه شده
هاي دیفرانسیلی  که روش ذکر شده براي معادلهاین است شود  از نتایج روش عددي عرضه می ی کهي مشخص نتیجه. دهدمی

اصطکاك حجمی نانوسیال، عدد : کنیم بعد را بررسی می اثر اعداد بی ،بنا براین.کند هایی با دقت بالا فراهم می غیرخطی راه حل
 آمدهدر انتهاي این بررسی  گیریبحث نتیجه. هارتمن براي نمایش نیروهاي مغناطیسی و عدد رینولدز براي نیروهاي دینامیکی

    . است
  

doi: 10.5829/idosi.ije.2013.26.06c.10 

 

 
 
 
 
 

 
 
 


