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A B S T R A C T  
   

Adders and multipliers are two main parts of arithmetic units of computer hardware and play important 
role in reversible computations. This paper introduces a novel reversible 4×4 multiplier circuit that is 
based on an advanced “Partial Product Generation Circuits” (PPGC) with Peres gates only without 
duplicating gates. Again, an optimized Peres full adder reversible gate is used in “Reversible Parallel 
Adder” (RPA) part with accompaniment with the carry save adder technique. Comparison of the 
proposed design with previous ones shows that the proposed reversible multiplier improves the 
quantum parameters. The proposed design shows lower quantum cost and depth with the help of a 
novel design in PPGC. The circuit cost of the proposed design is a little higher than the best compared 
design, but the proposed design shows the lowest total cost which is defined as sum of quantum cost 
and circuit cost. Moreover, the number of gates, garbage input and output has no change regarding to 
the best compared design. The proposed multiplier can be generalized as an n×n bit multiplication. 
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NOMENCLATURE 
ALU Arithmetic Logic Unit MKG Majid Keivan Gate 

CC Circuit Cost NG  New Gate 

CPA Carry Propagating Adder NoG Number of Gates 

CSA Carry Save Adder OV Output Vector 

D Depth PA Parallel Adder 

DSP Digital Signal Processor PFAG Peres Full Adder Gate 

FA  Full Adder PG Peres Gate 

FG Feynman Gate PPGC Partial Product Generation Circuits 

FRG Fredkin Gate QC Quantum Cost 

Gin Garbage Input RPA Reversible Parallel Adder 

Gout Garbage Outputs TC Total Cost 

HA Half Adder TG Toffoli Gate 

HNG Haghparast Navi Gate TSG Thapliyal Srinivas Gate 

IV Input Vector VLSI Very Large Scale Integrated 

 
1. INTRODUCTION 1 

 
Power dissipation is one of the important parameters in 
the digital circuit design. A part of this energy loss is 
due to non-ideality of switches and other technological 
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factors. Another part according to Landauer's principle 
[1] is due to irreversible logic computations that results 
in the energy dissipation as data loss. Irreversible 
circuits dissipate KTln2 joules of energy for every bit of 
information that is lost regardless of their 
implementation technologies, where K=1.38×10-23 
m2kg2k-1 (Joules Kelvin-1) is the Boltzmann's constant, 
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and T is the absolute temperature at which the 
computation is performed.  

Due to irreversible gates, the power loss is negligible 
for current logic technologies using adiabatic design. 
However, it is well known that Moore's law, which 
states that processing power will double every 18 
months, will stop functioning in the years 2010-2020. 
This particular problem of VLSI designing was realized 
by Feynman and Bennet in 1970s [2]. 

In 1973, Bennet [3] showed that energy dissipation 
problem of VLSI circuits can be circumvented by using 
reversible logics that will not loose energy during 
internal calculations (However, energy may be lost for 
input and output operations). Furthermore, the 
reversible logics will finally need hardware for the 
implementation. Quantum gates are inherently 
reversible [4], so that quantum computation can be 
considered as a basis for reversible logic 
implementations. 

An introduction on reversible logics and 
corresponding parameters are presented in the 
Appendix. Reversible circuits for different purposes e.g. 
HA (Half Adder), FA (Full Adder) [5-7] and multiplier 
[8-12] have been proposed recently. Among these 
reversible circuits, multiplier circuits are of special 
importance because they are widely used in every 
modern ALU (Arithmetic Logic Unit) of computer 
system and DSP (Digital Signal Processor). 
Consequently, optimized multipliers are on demand 
while designing an arithmetic unit [13]. 

Several reversible logic gates have been proposed in 
the literature, including 2×2 Feynman gate (FG) [14], 
3×3 Toffoli gate (TG) [15], 3×3 Fredkin gate (FRG) 
[16], 3x3 Peres gate (PG) [17], 3×3 New gate (NG) 
[18], 4×4 TSG gate [5], 4×4 MKG gate[6], 4×4 HNG 
gate[7] and  4×4 PFAG gate [11]. Significant aspect of 
these universal 4×4 reversible gates is that they can 
work singly as a reversible FA. Table 1 presents these 
reversible gates including their quantum 
implementation, cost and depth. 

Among these reversible logic gates, several 4×4 
reversible gates (e.g. TSG [5], MKG [6], HNG [7] and 
PFAG [11]) have been used in reversible multiplier 
designing to construct the FA.  

In this paper, a novel reversible 4×4 multiplier is 
designed which improves the quantum parameters and 
can be generalized to construct fast reversible n×n bit 
multipliers. The proposed reversible PPGC (Partial 
Product Generation Circuits) has minimum quantum 
cost among all the reversible PPGC designs in 
reversible multiplier circuits literature. 

The related works in reversible multiplier circuit's 
designs is presented in Section 2. Our proposed 
reversible multiplier circuit design is described in 
Section 3. The comparisons and discussion about the 
results of the proposed design and the previous ones are 

described in Sections 4 and 5, and finally Section 6 
concludes the paper. 
 
 
 
TABLE 1. Reversible gates, their quantum implementation, 
quantum cost (QC) and depth (D). 

Reversible gates Quantum implementation QC D 

  
1 1 

  

5 2 

  
5 3 

  ≡   
4 2 

  
7 3 

 
 

14 5 

 

13 5 

  

6 4 

  

6 4 

 
 
2. RELATED WORKS 
 
The operation of a 4×4 parallel multiplier is depicted in 
Figure 1. It can be applied to any other n×n reversible 
multiplier. The existing parallel multiplier circuits have 
two important components: The PPGC and multi- 
operand parallel adder (PA). A parallel multiplier is 
reversible if its componenets; PPGC and PA both are 
reversible. 

The operation of the reversible PPGC consists of 16 
partial product bits of form xi .yj., where i,j=0, 1, 2, 3. 
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The parallel adder as shown in Figure 2 uses the FAs 
and HAs to produce final results. Some reversible gates 
including TSG, MKG, HNG and PFAG can be used as 
reversible FA. 

Different designs of parallel reversible multipliers 
circuits are described in the literature. In the first design 
that was introduced in 2005, FRGs were used for 
designing of PPGC part of this circuit and TGs, NGs 
were used for RPA (Reversible Parallel Adder) design 
[8]. Another reversible multiplier circuit that was 
introduced in 2006 used parallel FRGs as PPGC and 
TSGs as FAs and HAs in RPA section [9]. Another 
reversible multiplier circuit which was introduced in 
2008 is PPGC design that is base on use of PGs instead 
of FRGs (see Figure 3) [10]. This circuit uses PGs since 
it has less logical calculation and less quantum cost in 
compare to FRGs. The operation of RPA of such  circuit 
can be planned with MKGs as FAs and HAs [10]. Other 
reversible multiplier circuit that was introduced in 2008 
used PG as HA and HNG as FA in RPA section of the 
circuit which is resulted in more desired circuits than 
the previous one [7]. Another circuit suggested in 2009 
applied PFAG instead of HNG. This yielded in similar 
results with HNG gate due to its similar quantum 
implementation [11].  

It is worth to be noted that in reversible logics, fan-
out of any gate output is not allowed and every output 
can be used only once. The 2×2 FG with one “0” input 
can be used as copying circuits to duplicate the fan-out. 

 
 
 

 
Figure 1. Operation of a 4×4 multiplication 

 
 

 
Figure 2. 4×4 reversible multiplier circuit in which output of 
PPGC are input of parallel adder 

 

 
Figure 3. Reversible PPGC using 16 Peres gates 

 
 

 
Figure 4. Reversible PPGC with TGs and PGs 

 
 

The duplicating gates in the previous designs [7-11] 
are the most disadvantages which degrade the quantum 
parameters. In order to remove these duplicating gates, 
the other suggested circuits in 2009 offered different 
design in PPGC part, as shown in Figure 4. Use of TGs 
and PGs for generating of partial products, had better 
results in numbers of garbage outputs, constant inputs 
and reversible gates compared to the previous designs 
[12]. There are two designs in RPA part of this circuit. 
The first design uses an optimized HNG FA as 
reversible FA and the second approach uses PFAG 
(Peres Full Adder Gate). In addition, they need four 
reversible HAs that use PG as reversible HA. 
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3. THE PROPOSED MULTIPLIER CIRCUIT 
 
As mentioned before, a reversible 4×4 multiplier circuit 
has two important parts: PPGC and RPA. The purpose 
of this paper is the design of reversible multiplier 
circuits with the aim of improving the quantum 
parameters without losing its efficiency. 
 
3. 1. PPGC       Implementation of the PPGC of the 
proposed reversible multiplier circuit is based on the 
PPGC described elsewhere [12]. Since the Peres gate 
(PG) quantum cost is less than Toffoli gate (TG), 
therefore we replace TGs with PGs. One sample of 
replacing TG with PG is shown by the dashed rectangle 
in Figure 4. Applying PGs instead of TGs (see Figure 5) 
results in the proposed PPGC which uses only PGs as 
shown in Figure 6. 

This circuit has an intrinsic advantage over others. 
As it is made up of same gates, it is easy to implement. 
Again, PGs have less QC than the TGs (see Table 1). 
Thus, we have found that the proposed PPGC block 
with lowest QC can be achieved through PGs. 
 
3. 2. RPA Circuit       The basic cell in a reversible 
multiplier is a reversible FA which accepts three bits 
and one constant input. We use Peres FA gate (PFAG) 
[11] as a reversible FA that is shown in Figure 7. The 
PFAG can be implemented by two complex 4×4 
reversible Peres gate as shown in Figure 8. Because of 
its complex functionality, it seems that the PFAG has a 
large QC of 8. But, implementation of the PFAG in 
2009 [19] proved that it has QC of 6 and circuit depth of 
4. As a result, its quantum cost is lower than other 
reversible FAs available in the literature and has the 
minimum QC reported for FA (see Figure 9). In order to 
decrease the circuit depth, the CSA (Carry Save Adder) 
technique can be used in implementing of the RPAs 
[20] of the proposed multiplier. As shown in Figure 1, 
in the reversible 4×4 multiplier, four operands must be 
added to produce the final product. We use the CSA tree 
to reduce the four operands to two. Thereafter, the CPA 
(Carry Propagating Adder) adds these two operands and 
produces the final 8-bit product (see Figure 10). 
However, this implementation leads the designer to take 
less depth than prior designs. Finally, we apply the 
reversible PFAG as a FA and PG as a HA to implement 
this part as shown in Figure 11. In this figure, the 
shaded blocks indicate the critical path of this circuit. 
 
 

   ≡    
(A)           (B) 

Figure 5. Use of the Peres gate instead of the Toffoli gate. (A) 
TG, (B) PG 

 
Figure 6. The proposed reversible PPGC with only PGs 

 

 
Figure 7. Reversible PFAG as a reversible FA 

 

 
Figure 8. Implementation of PFAG using Peres gates 

 

 
Figure 9. Quantum implementation of PFAG 

 

 
Figure 10. Four-operand Addition (Dot notation) [20] 

 

 
Figure 11. The proposed RPA circuit using PFAG 
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4. QUANTUM PARAMETERS OF DIFFERENT 
DESIGNS 
 
Some quantum parameters of the proposed multiplier as 
well as some other ones [8-12] are calculated in this 
section. As mentioned before, in reversible logics, fan-
out of any gate output is not allowed and every output 
can be used only once. Therefore, FGs should be used 
for duplicating each bit of the operands in reversible 
PPGC [7-11]. It is worth to be noted that PPGC 
proposed in [12] used 12 FGs for duplicating gates but 
that design approach did not pay enough consideration 
to numbers of  FGs. Actually, all conclusions of that 
paper  were wrong because of those errors. Another 
design was suggested in 2010 [21] rebuild PPGC with 
16FGs instead of 12 FGs (see Figure 12). 

Here we use correct approach [21] and believe that 
for duplicating fan-out, 16 FGs is necessary which 
increase the quantum parameters. Since the quantum 
cost and depth of 2×2 FG is one, the number of gates, 
circuit cost and number of constant inputs, quantum cost 
and depth in [7-12] should be added with 16 FG, 
because of its PPGC part. 

 
4. 1. Number of Gates       One of the major constraints 
in designing a reversible logic circuit is the number of 
reversible gates. For an arbitrary circuit C with K gates 
g1,g2,....gk, the number of gates metric is defined as 
NoG=k [22] .The NoG of the compared designs are 
shown in Table 2. 
 
4. 2. Garbage Output       Garbage output (Gout) 
refers to the output of the reversible gate that is not used 
as a primary output or as input to other gates. The 
garbage outputs of the compared designs are shown in 
Table 3. 
 
 

 
Figure 12. The proposed reversible PPGC using PGs and FGs 
[21] 

4.3. Quantum Cost and Total Cost       Quantum cost 
(QC) is one of the other main factors in designing a 
reversible logic circuit. Again, in order to consider the 
effects of garbage output and number of gate as the 
accompaniment to quantum cost, the total cost (TC) of a 
circuit is defined as sum of number of gate, garbage 
outputs and quantum cost [19]. The quantum costs and 
total costs of the compared designs are shown in Table 
4. 
 
 
 
TABLE 2. Comparison of number of gates (NoG) of the 
proposed circuit with the literature 
Reversible multiplier Calculations  NoG 
The proposed design 16(PG)+8(PFAG)+4(PG) 28 
Reference [12]  
(second design) (9TG+7PG)+ 8PFAG+4PG  28 

Reference [12]  
(first design) (9TG+7PG)+8HNG +4PG  28 

Reference [11] (16PG+16FG)+8PFAG+4PG 44 
Reference [7] (16PG+16FG)+8HNG+4PG 44 
Reference [10] (16PG+16FG)+12MKG 44 
Reference [9] (16FRG+16FG)+13TSG 45 
Reference [8] (16FRG+16FG)+12NG+12TG 56 
 
 
 
TABLE 3. Comparison of garbage outputs (Gout) of the 
proposed circuit with the compared circuits 
Reversible multiplier Gout 
The proposed design 28 
Reference [12] (second design) 28 
Reference [12] (first design) 28 
Reference [11] 52 
Reference [7] 52 
Reference [10] 56 
Reference [9] 58 
Reference [8] 56 
 
 
 

TABLE 4. Comparison of quantum costs (QC) and total costs 
(TC) of the proposed circuit with the literature 

Reversible 
multiplier Calculations  QC TC 

The proposed 
design 

(16×4)(for PG)+(8×6)  (for 
PFAG)+(4×4) 128 184 

Reference [12] 
(second design) 

(9×5)(for TG)+(16×1)+(11×4) 
(for PG)+(8×8)(for PFAG) 153 209 

Reference [12]  
(first design) 

(9×5)(for TG)+(16×1)+(11×4) 
(for PG)+(8×6)(for HNG) 

137 193 

Reference [11] (16×5)+(16×1)+(4×4)+(8×8) 160 256 
Reference [7] (16×5)+(16×1)+(4×4)+(8×8) 160 256 
Reference [10] (16×4)+(16×1)+(12×13) 236 336 
Reference [9] (16×5)+(16×1)+(13×14) 278 381 
Reference [8] (16×5)+(16×1)+(12×7)+(12×5) 220 332 
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4. 4. Circuit Depth       Depth of circuits (D) is one of 
the other main factors in designing a reversible logic 
circuit. The circuit depths of the compared designs are 
shown in Table 5. 
 
4. 5. Constant Garbage Input       Number of constant 
garbage inputs (Gin) is one of the other main factors in 
designing a reversible logic circuit. For the compared 
designs, garbage inputs are shown in Table 6. 
 
4. 6. Circuit Cost       One of the factors of hardware 
complexity of reversible circuits is the number of XOR, 
AND, NOT logic in the output expressions which are 
defined as: 
  a = calculation of a two input XOR gate.  
  b = calculation of a two input AND gate.   
  d = calculation of a NOT gate. 
The circuit costs (CC) (sometimes called total logic 
calculations or complexity) of the compared designs are 
shown in Table 7. 
 
 
 
TABLE 5. Comparison of depths (D) of the proposed circuit 
with the literature 

Reversible 
multiplier Calculations  D 

The proposed 
design 

2(for PG)+(4+4)(for PFAGs) +2(for 
PG)+(4+4+4)(for PFAGs) 24 

Reference [12]  
(second design) 

2(for TG and PG) + 2(for PG) + (4×4) 
+ (2×4) 28 

Reference [12]  
(first design) 

2(for TG and PG) + 2(for PG) + (4×4) 
+ (2×4) 

28 

Reference [11] 2(for FG)+2(for PG)+ 2(for 
PG)+(2×4)+(4×4)(for PFAG) 30 

Reference [7] 2(for FG)+2(for PG)+ 2(for PG) 
+(2×4)+(4×4)(for HNG) 30 

Reference [10] 
2(for FG)+2(for PG)+(7×5) 
(for MKG) 

39 

Reference [9] 2(for FG)+5(for FRG) +(7×5)(for 
TSG) 42 

Reference [8] 2(for FG)+5(for FRG ) +7(3+2)(for TG 
and NG) 42 

 
 
 
TABLE 6. Comparison of garbage inputs (Gin) of the 
proposed circuit with the literature 
Reversible multiplier Gin 
The proposed design 28 
Reference [12] (second design) 28 
Reference [12] (first design) 28 
Reference [11] 28+16=44 
Reference [7] 28+16=44 
Reference [10] 32+16=48 
Reference [9] 34+16=50 
Reference [8] 31+16=47 

TABLE 7. Comparison of circuit cost (CC) of the proposed 
circuit with the literature 
Reversible 
multiplier Logic Calculations  CC 

The proposed 
design 

16×(2a+1b)(for PG)+ 
8×(5a+2b)(for PFAG) + 
4×(2a+1b)(for PG) 

80a+36b 

Reference [12]  
(second design) 

9×(1a+1b)(for TG)+ 
7×(2a+1b)(for PG)+ 
8×(5a+2b)(for PFAG)+  
4×(2a+1b)(for PG) 

71a+36b 

Reference [12]  
(first design) 

9×(1a+1b)(for TG)+ 
7×(2a+1b)(for PG)+ 
8×(5a+2b)(for HNG)+ 
4×(2a+1b)(for PG) 

71a+36b 

Reference [11] (80+16)a+36b  96a+36b 
Reference [7] (80+16)a+36b  96a+36b 
Reference [10] (92+16)a+52b+36d 108a+52b+36d 
Reference [9] (110+16)a+103b+71d 126a+103b+71d 
Reference [8] (80+16)a+100b+68d 96a+100b+68d 

 
 
5. DISCUSSION 
 
The quantum parameters of different multiplier circuits 
are shown in Table 8. Regarding to the previous 
multiplier circuits in [7-12], all quantum parameters of 
the proposed design is improved. However, in term of 
the number of reversible logic gates, garbage output and 
input, the proposed multiplier shows the same value as 
the multiplier circuit in [12]. 

In term of quantum cost and depth, our proposed 
circuit is the best, because of using the CSA in RPA 
part, and replacing the Toffoli gates with Peres gates in 
PPGC part of the original circuit [12]. On the other 
hand, the circuit cost of the proposed circuit is slightly 
worse than the reference [12], but at the same time, the 
total cost of the proposed circuit is the best. 

 
 

6. CONCLUSSION 
 
Reversible logic circuits are of particular interest in low 
power CMOS design, optical computing, DNA 
computing, bioinformatics, quantum computing and 
nanotechnology. Multiplier is a basic arithmetic cell in 
computer arithmetic units. Furthermore, reversible 
implementation of this unit is necessary for quantum 
computers. Targeting this purpose, various designs can 
be found in the literature.  

This paper introduces a novel 4×4 reversible 
multiplier circuit. The advanced design is based on the 
same gates (PGs only) that it is easy to implement. In 
addition, use of PGs in PPGC part improves the 
quantum cost of the proposed design without needing to 
any duplicating gates. Furthermore, using CSA 
technique in RPA part reduces the circuit depth of the 
proposed design. 



583                                    P. Moallem and M. Ehsanpour / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 6, (June 2013)   577-586 
 

 
TABLE 8. Comparison of different reversible multiplier circuits (a,b and c: number of XOR, AND, and NOT gates, respectively, 
CC:Circuit Cost, NoG:Number of Gate, Gout:Garbage output, Gin:Garbage input, QC:Quantum Cost, TC:Total Cost, D:Depth) 
Reversible 
multiplier CC NoG Gout Gin QC TC D 

The proposed 
design 80a+36b 28 28 28 128 184 24 

Reference [12] 
(second design) 71a+36b 28 28 28 153 209 28 

Reference [12] 
(first design) 71a+36b 28 28 28 137 193 28 

Reference [11] 96a+36b 44 52 44 160 256 30 

Reference [7] 96a+36b 44 52 44 160 256 30 

Reference [10] 108a+52b +36d 44 56 48 236 336 39 

Reference [9] 126a+103b+71d 45 58 50 278 381 42 

Reference [8] 96a+100b+68d 56 56 47 220 332 42 

 
 

Regarding to the best previous design, the proposed 
reversible multiplier decreases the quantum cost, total 
cost and depth, without increasing in the number of 
gate, number of garbage input and outputs. However, 
the circuit cost is increased slightly regarding to the best 
previous design.  

As future works, some other reversible 
implementation of more complex arithmetic circuits 
such as function evaluations and multiplicative division 
circuits can be investigated using the proposed 
multiplier. 

 
 

7. REFERENCES 
 

1. Landuer, R., "Irreversibility and heat generation in the 
computing process", IBM Journal of Research and 
Development,  Vol. 5, (1961), 183-191. 

2. Demmer, M., Fonseca, R. and Koushanfa, F., "Richard 
Feynman: Simulating physics with computers", International 
Journal of Theoretical Physics, Vol. 21, No. 6-7, (1982), 467-
488. 

3. Bennet, C.H., "Logical reversibility of computation", IBM 
Journal of Research and Development, Vol. 17, No. 6, (1973), 
525-532. 

4. Nielson, M. and Chuang, I., "Quantum Computation and 
Quantum Information", Cambridge University Press, (2002). 

5. Thapliyal, H. and Srinivas, M. B., "Novel reversible TSG gate 
and its application for designing reversible carry look ahead 
adder and other adder architectures", Proceedings of 10th Asia-
Pacific Computer Systems Architecture Conference, (2005), 
775-786. 

6. Haghparast, M. and Navi, K., "A Novel Reversible Full Adder 
Circuit for Nanotechnology Based Systems", Journal of Applied 
Science, Vol. 7, No. 24, (2007), 3995-4000. 

7. Haghparast, M., Jafarali Jassbi, S., Navi, K. and Hashemipour, 
O., "Design of a novel reversible multiplier circuit using HNG 
gate in nanotechnology", World Applied Sciences Journal, Vol. 
3, No. 6, (2008), 974-978. 

8. Thaplyal, H., Srinivas, M. B. and Arabnia, H. R., "A reversible 
version of 4×4 bit array multiplier with minimum gates and 
garbage outputs", International Conference on Embedded 
System and Applications (ESA'05), Las Vegag, USA, (2005), 
106-114. 

9. Thaplyal, H. and Srinivas, M. B., "Novel reversible multiplier 
architecture using reversible TSG gate", IEEE International 
Conferecne on Computer Systems and Applications, (2006), 
100-103. 

10. Shams, M., Haghparast, M., Navi, K., "Novel reversible 
multiplier circuit in nanotechnology", World Appllied Science 
Journal, Vol. 3, No. 5, (2008), 806-810. 

11. Islam, M. S., Rahman, M. M., Begum, Z. and Hafiz, M. Z., 
"Low cost quantum realization of reversible multiplier circuit", 
Information Technology Journal, Vol. 8, No. 2, (2009), 208-
213. 

12. Mohammadi, M., Navi, K. and Eshghi, M., "Optimized 
reversible multiplier circuit", Journal of Circuits, Systems and 
Computers, Vol. 18, No. 2, (2009), 311-323. 

13. Ehsanpour, M., Moallem, P., Vafaei, A., "Design of a Novel 
Reversible Multiplier Circuit Using Modified Full Adder", 2010 
International Conferecne on Computer Design and Applications, 
Vol. 3 ,(2010), 230-234. 

14. Feynman, R. P., "Quantum mechanical computers", Optical 
News, Vol. 11, No. 2, (1985), 11-20. 

15. Toffoli, T., "Reversible computing", In Automata, Lnaguages 
and Programming, Spring-Verlog, (1985), 632-644. 

16. Fredkin, E., Toffoli, T., "Conservative logic", International 
Journal of Theoretical Physics, Vol. 21, No. 3-4, (1982), 219-
253. 

17. Peres, A., "Reversible logic and quantum computers", Physical 
Review A, Vol. 32, No. 6, (1985) , 3266-3276. 

18. Azad Khan, M. H., "Design of full adder with reversible gate", 
International Conference on Computer and Information 
Technology, Dhaka, Bangladesh, (2005), 515-519. 

19. Banerjee, A., and Pathak, A., "An analysis of reversible 
multiplier circuits", arXiv preprint arXiv:0907.3357 (2009). 

20. Naderpour, F. and Vafaei, A., "Reversible multiplier: Decreasing 
the depth of the circuit", 5th International Conference on 
Electrical and Computer Engineering (ICECE2008), Dhaka, 
Bangladesh, (2008), 306-310. 



P. Moallem and M. Ehsanpour / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 6, (June 2013)   577-586                                    584 
 

21. Zhou, R., Shi, Y., Cao, J. and Wang, H.,"Comment on Design of 
a novel reversible multiplier circuit using HNG gate in 
nanotechnology", World Appllied Science Journal, Vol. 10, No. 
2, (2010), 161-165. 

22. Gupta, P., Agrawal, A. and Jha, N. K., "An Algorithm for 
synthesis of reversible logic circuits", IEEE Transactions on 
Computer-aided Design of Integrated Circuits and Systems, 
Vol. 25, No. 11, (2006), 2317-2330. 

23. Perkowski, M., Al Rabadi, A., Kerntopf, P., Buller, A., 
Chrzanowska-Jeske, M., Mishchenko, A., Azad Khan, M., 
Coppola, A., Yanushkevich, S., Shmerko, V. and Jozwiak, L., 
"A general decomposition for reversible logic", In Reed-Muller 
Workshop, (2001), 119-139. 

24. Tayari, M. and Eshghi, M., "Design of  3-Input  Reversible  
Programmable Logic Array", Journal of Circuits, Systems and 
Computers, Vol. 20, No. 2, (2011), 283-297. 

25. Maslov, D. and Dueck, G. W., "Garbage in reversible design of 
multiple output functions", Procceding of 6th International 
Symposium on Representation and Metodology of future 
Computing, (2003), 162-170.  

 
 
 
 
 
APPENDIX 
 
An introduction to reversible logics and corresponding 
quantum parameters are presented in this appendix. 
 
1. Introduction to Reversible Logics       A 
reversible logic circuit comprises reversible gates. A 
gate that implements one to one mapping between n 
inputs and n outputs is called an n×n reversible logic 
gate that can be represented as:
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where IV and OV are the input and output vector. 
The reversible logic gate must have the same 

number of inputs and outputs, and for each input pattern 
there must be a unique output pattern [3]. Reversible 
logic circuits avoid energy loss by “uncomputing” the 
computed information using recycling the energy in the 
system [3].  

Synthesis of the quantum or reversible logic circuits 
in comparison  to synthesis of the traditional irreversible 

logic circuits has two restrictions that should be 
mentioned [23]: 

- In the reversible logic, fan-out of any gate output 
is not allowed. 

- Several authors assume that there should be no 
loops of gates and we followed this assumption 
in this paper. 

Due to these restrictions, synthesis of the reversible 
circuits can be carried out from the inputs towards the 
outputs and vice versa [22]; so, there is a one-to-one 
mapping between input and output vector. In an n-
output reversible gate, the output vectors are 
permutations of the numbers 0 to 2n -1. 
 
2. Parameters of Reversible Circuits       There are 
some important parameters in designing an efficient 
reversible logic circuits including: the number of gates 
(NoG), quantum cost (QC), number of garbage outputs 
(Gout), number of constant garbage inputs (Gin), circuit 
cost (CC) (which is sometimes called the total logic 
calculations or hardware complexity) and depth of 
reversible circuits (D). 

The number of gates as one of the comparison 
parameters is used to evaluate the implementation cost. 
The quantum cost of a reversible circuit is the number 
of (1×1) or (2×2) reversible gates used to implement the 
circuit. These elementary quantum gates with quantum 
cost equal to one is defined as follows [4]: 

- Inverter (NOT): A single qubit (basic unit of 
information in quantum computer) is inverted. 

- Controlled - NOT (CNOT): The target qubit is 
inverted if the control qubit is 1. 

- Controlled - V: Performs the V operation known 
as the square root of NOT, since two consecutive 
V operations are equivalent to an inversion.  

- Controlled -V+: Performs the inverse of V. 
The circuit depth is defined as the number of steps 

required to execute all available gates in a circuit [24]. 
The garbage outputs must be added as necessary so that 
the output patterns are distinct, and it is not used for 
further computations. Of course, the constant garbage 
inputs must be added, as a necessity, to balance the 
number of inputs and outputs [25]. Reduction of these 
quantum parameters is the bulk of the work in reversible 
circuits design.  
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 چکیده

 
  

 اي عمده نقش و شده محسوب کامپیوتر افزار سخت محاسباتی واحدهاي اصلی بخش دو ها، کننده ضرب و ها کننده جمع
 در که کند می معرفی را نوینی 4×4پذیر برگشت کننده ضرب مدار مقاله، این. کنند می ایفا پذیر برگشت محاسبات در

. ندارد کپی هاي دریچه به نیازي و است کرده استفاده پرس هاي دریچه از تنها جزئی، هاي حاصلضرب دمول مدار طراحی
 نقلی، ذخیره با جمع روش همراه به شده، بهینه پرس کننده جمع تمام پذیر برگشت دروازه از پیشنهادي، کننده ضرب در
 دهد می نشان ها طرح دیگر با پیشنهادي پذیر رگشتب کننده ضرب مقایسه. است شده استفاده موازي کننده جمع قسمت در
 نوینی طراحی کمک به را عمق و کوانتومی هزینه مقدار کمترین پیشنهادي، طرح. است یافته بهبود کوانتومی پارامترهاي که
 مورد طرح بهترین نسبت به پیشنهادي طرح مداري هزینه. دهد می نشان جزیی هاي ضرب حاصل مولد مدار قسمت در

 تعریف مداري هزینه و کوانتومی هزینه مجموع صورت به که کل هزینه نظر نقطه از اما یافته، افزایش اندکی مقایسه
 اضافه، ورودي و اضافه خروجی دریچه، تعداد پیشنهادي، طرح در این، بر علاوه. دهد می نشان را مقدار کمترین شود، می

 توسعه قابل n×n کننده ضرب یک براي پیشنهادي، کننده ضرب. است تهنیاف افزایشی مقایسه، مورد طرح بهترین به نسبت
  .است
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