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A B S T R A C T  

   

In this paper, elastoplastic buckling of rectangular plates with different boundary conditions is 
investigated. Differential governing equations of plate are obtained on the basis of general loading and 
according to deformation theory (DT) of plasticity. Various loading conditions such as uniaxial, biaxial 
and shear are studied. The employed material is AL7075T6 which is usually used in the aerospace 
industry. A wide range of aspect ratios and plate thicknesses are investigated. The generalized 
differential quadrature method (GDQ) is used as the numerical method to analysis the problem. The 
obtained results using deformation theory of plasticity are in good agreement with experimental data. 
An extensive parametric study for the effects of different aspects ratios, loading ratios, transverse shear 
deformations, thickness ratios and various boundary conditions on the buckling coefficient are 
presented. 
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NOMENCLATURE   

a  Length of plates [m] )( tET  Tangent modulus [Pa] 

b  Width of plates [m] wvu ,,  Displacement components 

kc,  Ramberg-Osgood parameters Greek Symbols 

D  Flexural rigidity of plates [N.m] yx φφ ,
 Rotations about x, y 

E  Young’s modulus of elasticity [Pa] η  Thickness parameter 

G  Effective shear modulus [Pa] δµχγβα ,,,,,  Parameters used in stress-strain relations 

h  Thickness of plates [m] 2κ  Shear correction factor 

n  Number of node eε  Total effective strain 

K  Buckling coefficient eσ  Effective stress [Pa] 

ijS  Stress deviator tensor υ  Poisson’s ratio 

)( sES  Secant modulus [Pa] ξ  Loading ratio 

    

 
1. INTRODUCTION1 
 
In the previous decades the problem of plastic buckling 
of plates was studied by many scientists. Indeed, the 
difference which exist in critical loads predicted by 
                                                        
*Corresponding Author Email: m_maarefdoost@yahoo.com  (M. 
Maarefdoust) 

employing plasticity theories still is an open research 
issue. The first analysis of elasto-plastic buckling of 
plates was carried out by Anderson [1] using the energy 
stability criterion for rectangular plates under uniaxial 
compression. Shrivastava [2] studied on the plastic 
buckling of thick plates. The results showed that the 
decrease in plastic buckling stress parameters caused by 
the effect of transverse shear deformation was more in 
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incremental theory than deformation theory. But, this 
difference was not enough to fill the discrepancy 
between these two theories. Khdeir, et al. [3, 4] carried 
out the analysis of laminated plates with the use of first 
order and higher order deformation plate theories using 
Levy-type solution. But they were not able to apply the 
boundary conditions on a loaded free edge. Durban and 
Zuckerman [5] studied on the analysis of rectangular 
plates under uniaxial loading for several various modes 
with the separation of variables solution. However, the 
limited boundary conditions consisting of clamped and 
simply supported boundary conditions limited the 
obtained data in that research. Liew, et al. [6] solved the 
buckling plates with free edge for elastic mode and 
modified the Khdeir’s boundary conditions. Durban [7] 
found out that the incremental theory can predict more 
buckling load in comparison with the deformation 
theory, and that the experimental data have more 
congruence with deformation theory. Of course, there 
are cases where the critical stresses obtained from two 
theories are nearly equal. A typical example is furnished 
by axially symmetric buckling of axially compressed 
circular cylindrical shells [8]. Chakrabarty, et al. [9] and 
Wang, et al. [10-12] investigated the elastic-plastic 
buckling of thin and thick plates based on deformation 
and incremental theories by use of separation of 
variables and Rayliegh-Ritz method. They came to the 
conclusion that the deformation theory predicts less 
buckling stress factor, and as the thickness and 
Ramberg-Osgood constant increases, the difference 
between two theories increases.  

Since the free boundary conditions still have not 
received much attention in the literature, the authors 
have attempted in the current study to investigate the 
buckling problem of rectangular plates for various 
boundary conditions of FSFS, CSFS, SSFS using 
numerical method of GDQ and the results were 
compared with those available from previous studies. 
 
 
2. GOVERNING DIFFERENTIAL EQUATIONS 
 
The governing differential equations for elasto-plastic 
buckling of rectangular plates are mentioned elsewhere 
[12]. Figure 1 shows the sketch of a rectangular plate 
under biaxial and shear edge loads where a, b, h and ξ 
are the length, width, thickness of the plate and load 
ratio, respectively. The load ratio is ξ = 0 for uniaxial 
compression and ξ = 1 for the equibiaxial compression. 

The relationship between the stress rate and strain 
rate in the plates are given below: 
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Figure 1. Sketch of a rectangular plate. 

 
 
in which E, G and κ2 are elastic modulus, effective 
shear modulus and shear correction factor, respectively. 
Parameters α, β, γ, χ, µ, δ and effective shear modulus 
depend on the plasticity theory employed. In the present 
study, the deformation theory of plasticity with Hencky 
constitutive equation is used. The fundamental equation 
of this theory is [9]: 
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where S is the secant modulus, T is the tangent modulus 
which is calculated through stress-strain curved and σe 
is the effective stress. The tangent modulus and 
effective stress are calculated as follow: 

,3,/ 2222
xyyyxxeee ddT τσσσσσεσ ++−==  (3) 

where εe is the total effective strain. The parameters α, 
β, γ, χ, µ, δ and shear modulus in this method are 
defined as follow [12]: 
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The buckling equation of standard thick plates can 
be written as follow [9, 12]:  
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Note that Equations (4)-(8) are re-derived and extended 
and are slightly different from the ones given in other 
references [9]. 
 
 
3. GOVERNING BOUNDARY CONDITIONS  
 
The boundary conditions are [9]: 

axxforMW xxy ===== ,0,0,0,0 φ  

byyforMW yyx ===== ,0,0,0,0 φ  (9) 

for simply support edges and 

axxforW yx ===== ,0,0,0,0 φφ  (10) 

for clamped edges. For free boundary conditions we 
have [12]:  

axxforQMM xyxxx ===== ,0,0,0,0  (11) 

where, 
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In the present study, in addition to re-investigation 
of SSSS mode, the other modes including CSFS, SSFS 
and FSFS are investigated.  

4. GENERALIZED DIFFERENTIAL QUADRATURE 
METHOD  
 
This method (GDQ) is a practical and simple in solving 
engineering problem. It was in 1971 that Belman, et al. 
[13] introduced the ordinary or partial equation as a new 
technique for numerical solving. Their purpose was to 
present a new way for overcoming the constant 
problems and amount of numerical problems. The first 
widespread use of this technique in the field of 
engineering problems was given by Bert and Malik 
[14].  

The benefit of accessing to a new and exact solution 
with the least analysis in comparison to others 
numerical solutions like finite element and boundary 
element causes the efficiency of this method to be 
revealed gradually. This method can solve higher order 
differential equations with selecting few grid spacing. 
The essence of the GDQ method is that the partial 
derivative of a function with respect to a variable is 
approximated by a weighted sum of function values at 
all discrete points in that direction. Its weighting 
coefficients do not relate to any special problem and 
only depend on the grid spacing. Thus, any partial 
differential equation can be easily reduced to a set of 
algebraic equations using these coefficients. 

Its other characteristics are simple application, 
programming and high convergence rate. The 
distributions of grid spacing of Chebyshev–Guass–
Lobatto have the best convergence and highest accuracy 
[15, 16]. In this study, the following relation is used: 
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With the aid of GDQ, the governing Equations (6)-(8) 
can be shown as follow: 
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where A and B are the first and the second order 
derivatives, respectively. Now, the buckling coefficient 
K can be defined as: 
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where D is the flexural rigidity and η is the thickness 
parameter as follows: 

,
)1(12 2

3

ν−
= EhD         .

12 2

22

a
hπη =  (18) 

 
 
 
5. RESULTS AND DISCUSSIONS 
 
The material used in this study is AL 7075-T6. Here the 
Ramberg-Osgood elasto-plastic stress-strain relationship 
is used:  
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where ε is the total plastic strain and c and k are 
material parameters. The tangent and secant moduli 
used in the equation are calculated as follow:  
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The characteristics of this metal is obtained by 
means of Equation (19), E/σ0 = 150, Ramberg-Osgood 
parameters c = 9.2 and k = 3/7, shear correction factor 
κ2 = 5/6 and Poisson’s ratio ν = 0.33 [12]. Figure 2 
shows the Ramberg-Osgood stress–strain relation for 
the material AL 7075-T6 described by Equation (19). 
To increase the accuracy of the analysis, the grid 
spacing and mesh sensitivity have to be selected 
properly. As shown in Figure 3, the numbers of grid 
points are 13. It is seen that the convergence rate of 
GDQ method is excellent. 
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Figure 2. Ramberg-Osgood stress–strain relation for AL 
7075-T6. 
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Figure 3. Mesh sensitivity curve for SSSS plate. 

 
 
To verify the current study, some of the obtained 

results are firstly compared with some reference [3] and 
then some new results are presented. The buckling 
coefficient (K) in terms of loading ratio (ξ) for different 
thickness parameters (η) were calculated by 
deformation theory for SSSS plate, and it is observed 
that there is a good consistency between the current 
results and some reference [5] for rectangular plate of    
a/b = 1, Figure 4. In this case, the square plate under 
biaxial compression, buckling occurs in elastic mode 
when η = 0.0001 and the obtained results from 
deformation theory are in agreement with some 
reference [5]. Moreover, to check the accuracy of the 
obtained results, they are compared with some previous 
results, see Table 1.  

A comparison between the obtained results and 
experimental data for rectangular plates under uniaxial 
compression are presented in Figure 5. It can be seen 
that the results attained by deformation theory are close 
to the experimental ones. 
 
5. 1. Effect of Aspect Ratio on the Critical 
Buckling Load Figure 6 shows the relationship 
between the buckling coefficient and plate aspect ratio  
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TABLE 1. Comparison between the buckling coefficient for plates under uniaxial and equibiaxial loads with different thickness 
parameters. 

008.0=η  002.0=η  0001.0=η   BC 

 -----  ----- 4.0000 Durban et al.,[5] 

SSSS 
(uniaxial) 

0.9144 2.7954 4.0000 Wang et al., [9] 
0.9144 2.7954 4.0000 Wang et al., [12] 
0.9205 2.8058 4.0000 Shrivastava [2] 
0.9144 2.7954 4.0000 Present study(GDQ) 
0.6250 0.9032 0.9158 Wang et al., [9] 

FSFS 
(Equibiaxial) 

0.6249 0.9033 0.9159 Wang et al., [12] 
0.6249 0.9032 0.9159 Present study(GDQ) 

 
 

for FSFS rectangular plates for various thickness ratios 
(h/b) in three modes including axial compression (ξ=0), 
biaxial compression (ξ=1) and shear obtained by 
deformation theory. In FSFS thin plates (h/b ≤ 0.05), the 
buckling coefficient in uniaxial compression increases 
as the plate aspect ratio increases in a range of 0.5≤ a/b 
≤1.3. 

When the aspect ratio increases further, the buckling 
mode shape switches from asymmetric to symmetric 
and then no more mode change is observed by 
increasing the aspect ratio (Figure 7). However, for 
higher thickness ratios (h/b), the variation of aspect ratio 
has not significant influence on the buckling coefficient 
(Figure 6a). In equibiaxial compression, the buckling 
coefficient increases monotonically and with increasing 
the aspect ratio no mode shape shift is observed 
(Figures 6b and 8b-8c). 

In thin plates (h/b≤0.05) the changes of buckling 
mode shape is more obvious than that of the thick plates 
(0.05≤h/b) when buckling occurs in plastic mode [9]. 
Figure 6 also provides some information about the 
effect of transverse shear deformation on the buckling 
coefficients which decreases as the plate thickness ratio 
(h/b) increases.  
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Figure 4. Comparison of deformation theory with Durban 
solutions for SSSS square plate for different thickness 
parameteres. 
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Figure 5. Comparison of buckling coefficient obtained by 
deformation theory with experimental data for SSSS square 
plate under uniaxial compression. 
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Figure 6. Variation of buckling coefficient with aspect 
ratio for different thickness ratios (h/b) based on 
deformation theory for various loading in FSFS plate. 
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Figure 7. The critical buckling mode shape for FSFS plate 
under uniaxial loading in various aspect ratios for h/b= 
0.005, (a) a/b=0.5; (b) a/b=1.3 and (c) a/b=2.2. 
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Figure 8. The critical buckling mode shape for FSFS plate 
under equibiaxial loading in various aspect ratios for h/b= 
0.005, (a) a/b= 0.5; (b) a/b= 1.3 and (c) a/b= 2.2 . 
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Figure 9. Variation of buckling coefficient with aspect 
ratio for different thickness ratios (h/b) based on 
deformation theory in various loadings for SSFS plate. 

 
 
In SSFS thin plate, the buckling coefficient in 

uniaxial compression increases as the aspect ratio 
increases up to 0.75 and then decreases (Figure 9a). The 
limitations of aspect ratio (0.5≤ a/b ≤0.75) to increase 
the buckling coefficient is smaller than those of the 
previous mode (0.5≤a/b≤1.2). Moreover, with 
increasing the thickness, the changes of aspect ratio is 
not significant on buckling coefficient (Figure 9a). 

Buckling mode deformation occurs in (a/b = 0.75). 
In equibiaxial compression mode, however, the 
buckling coefficient steadily decreases as the aspect 
ratio increases and no mode shape shift is observed 
(Figure 9b). 

In shear mode, with increasing the aspect ratio the 
buckling coefficient decreases and with increasing the 
thickness of plate, the changes of aspect ratio has no 
influence on the buckling coefficient (Figure 9c).  

In CSFS plate, and in uniaxial compression, with 
increasing the aspect ratio, the buckling coefficient 
decreases. There are mode shape shifts in this case again 
although the shift points are not so clear (Figure 10a). 
However, in equibiaxial compression and shear loading, 
the buckling coefficient decreases monotonically as the 
aspect ratio changes from 0.5 to 3 and no mode shape 
shift is evident in this case (Figures 10b-10c).  
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Figure 10. Variation of buckling coefficient with aspect 
ratio for different thickness ratios (h/b) based on 
deformation theory in different loading conditions for 
CSFS plate. 

 
 

With increasing the aspect ratio, the reduction of 
buckling coefficient in CSFS is more than that of SSFS 
for different loading cases (Figures 9 and 10). In 
contrast to the CSFS plate subjected to uniaxial 
compression which shows decreasing of buckling 
coefficient with increase of aspect ratio, for FSFS and 
SSFS plates firstly an initial increase and then a steadily 
decrease is observed (Figures 6a, 9a and 10a). For the 
equibiaxial compression, however, the buckling 
coefficient increases for higher aspect ratios in FSFS 
plate which is different from CSFS and SSFS cases 
(Figures 6b, 9b and 10b). 
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Figure 11. Variation of buckling coefficient with plate 
thickness ratio for different loading ratios based on 
deformation theory. 

 
 
From Figures 9a and 10a, it can be clearly seen that 

in uniaxial compression mode with the increase of 
aspect ratio (a/b≥2), the change of boundary conditions 
from simply support (x = 0) to clamp doesn’t have any 
significant effect on the results of buckling coefficient. 
Moreover, the effect of transverse shear deformation 
can also be seen here in Figures 9 and 10. 
 
5. 2. Effect of Loading Ratio on the Critical 
Buckling Load The effect of loading ratio on the 
buckling coefficient for rectangular plates with the 
boundary conditions of FSFS, SSFS and CSFS are 
shown in Figure 11. It is seen that with increase of 
loading ratio in all three cases, the buckling coefficients 
decrease. Moreover, with increasing the thickness ratio 

the buckling coefficients for different loading ratios     
(ξ ≥ 0) approach to each other (Figure 11). Furthermore, 
the buckling coefficients decrease as the thickness ratios 
increase for all cases.  

Similarly, it is seen that the effect of transverse shear 
deformation on the buckling coefficient is more 
pronounced in plates subjected to uniaxial compression 
(ξ=0) than that in biaxial compression (ξ=0.5 and 1.0), 
Figures 11a-11c. This effect is marginally greater in the 
CSFS plate than those in SSFS and FSFS plates. 

 
5. 3. Effect of Thickness Ratio on the Critical 
Buckling Load    Figure 12 shows that with increasing 
the loading ratio, buckling coefficient decreases. This 
reduction occurs more rapidly for thinner plates. In 
FSFS plate, the mode deformation occurs in the range of 
0.6 ≤ ξ ≤ 0.72 for plates with different thicknesses 
(Figure 12a). The rate of reduction in the buckling 
coefficient accelerates when the load ratio reaches these 
mode shape shift points.  

The buckling mode shapes for different boundary 
conditions under uniaxial and equibiaxial loadings for 
(a) FSFS, (b) SSFS and (c) CSFS plates are 
demonstrated in Figures 13 and 14. It is observed that 
for a/b = 1 and h/b = 0.005, the SSFS and CSFS square 
plates under uniaxial and equibiaxial loadings buckle in 
higher mode shape, but the FSFS square plate buckles in 
the first mode shape, Figures (13a-13c, 6a, 9a and 10a).  
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Figure 12. Variation of buckling coefficient with loading 
ratios for different plate thickness ratios based on 
deformation theory. 
 
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.4

-0.2

0

0.2

0.4

yx

z

 
(a) 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.4

-0.3

-0.2

-0.1

0

0.1

yx

z

 
(b) 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.4

-0.3

-0.2

-0.1

0

0.1

yx

z
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Figure 13. The critical buckling mode shapes for different 
boundary conditions under uniaxial loading (a) FSFS; (b) 
SSFS and (c) CSFS plates (h/b = 0.005, a/b=1). 
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Figure 14. The buckling mode shapes for different 
boundary conditions under equibiaxial loading (a) FSFS; 
(b) SSFS and (c) CSF S plates (h/b = 0.005, a/b = 1). 

 

6. CONCLUSION 
 
The elasto-plastic buckling of rectangular plates with 
the use of deformation theory of plates was investigated. 
The equilibrium equations of the thick plate were 
derived by the aid of Hencky constitutive equations. 
The generalized differential quadrature method was 
employed to solve the governing differential equations. 
Some of the obtained results were compared with the 
previous reported data in the literature and some other 
results were presented. It was found that the results 
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obtained from deformation theory of plates formulation 
are in good agreement with those of experimental data. 

The effect of boundary condition, transverse shear 
deformation, loading conditions, aspect ratio, and 
thickness and loading ratio on the buckling coefficient 
were investigated and discussed in detail and the 
buckled mode shapes could be easily plotted. Based on 
the numerical results, some more important conclusions 
are highlighted as follow: 
• In the same boundary conditions, the maximum and 

minimum buckling coefficients occurred in 
equibiaxial and shear loadings, respectively. 

• In various loadings and boundary conditions, most 
variations of buckling coefficient occurred in the 
range of 0.5≤ a/b ≤1.0. 

• In thick plates (0.05≤ h/b ≤0.1), with increasing the 
thickness in various boundary conditions the 
variation of aspect ratio had not significant influence 
on the buckling coefficient in uniaxial and shear 
loadings. However, for the case of equibiaxial 
loading some slight effects could be observed.  

• In various boundary conditions and in equibiaxial 
loading, with increasing the loading ratio (0≤ξ≤1.0) 
the buckling coefficient decreased.  

• In different loading ratios (0 ≤ ξ ≤ 1.0), the variation 
ranges of buckling coefficients in thin plates were 
much more than those in thick plates.  

• The effects of transverse shear deformations on the 
buckling coefficients were more dominant in 
uniaxial compression than that in the biaxial 
compression plates.  
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 چکیده

 
  

معادلات دیفرانسیل . گیرد در این مقاله کمانش الاستوپلاستیک صفحات مستطیلی با شرایط مرزي مختلف مورد بررسی قرار می
. استخراج گردیده است (DT)  شکل حاکم بر صفحه در حالات بارگذاري کلی و بر اساس تئوري پلاستیسیته تغییر

است  7075T6)(ماده مورد استفاده آلومینیوم . شودي مختلفی شامل تک محوري، دو محوري و برشی مطالعه میها بارگذاري
محدودة وسیعی از نسبت طول به عرض و ضخامت صفحه مطالعه . گیرد که معمولا در صنعت هوافضا مورد استفاده قرار می

مقایسه . گیردي براي تحلیل مساله مورد استفاده قرار میعدد روش یک چهارم تفاضلی تعمیم یافته به عنوان روش .شودمی
نتایج عددي با نتایج آزمایشگاهی نشان از دقت خوب تئوري تغییرشکل در محاسبه ضریب کمانش الاستوپلاستیک صفحات 

یط مطالعۀ پارامتریک وسیعی در مورد اثر نسبت ابعادي، ضریب بار، تغییرشکل برشی عرضی، ضریب ضخامت و شرا. دارد
 .  مرزي مختلف بر ضریب کمانش انجام گرفته است

 
doi: 10.5829/idosi.ije.2013.26.04a.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


