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In this paper, elastoplastic buckling of rectangular plates with different boundary conditions is
investigated. Differential governing equations of plate are obtained on the basis of general loading and
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and shear are studied. The employed material is AL7075T6 which is usually used in the aerospace
industry. A wide range of aspect ratios and plate thicknesses are investigated. The generalized
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differential quadrature method (GDQ) is used as the numerical method to analysis the problem. The
obtained results using deformation theory of plasticity are in good agreement with experimental data.
An extensive parametric study for the effects of different aspects ratios, loading ratios, transverse shear
deformations, thickness ratios and various boundary conditions on the buckling coefficient are

Elastoplastic Buckling presented.
Aspects Ratio
GDQ
doi: 10.5829 /idosi.ije.2013.26.04a.11
NOMENCLATURE
a Length of plates [m] T(E,) Tangent modulus [Pa]
b Width of plates [m)] uv,w Displacement components
¢, k Ramberg-Osgood parameters Greek Symbols
D Flexural rigidity of plates [N.m] 9.9, Rotations about x, y
E Young’s modulus of elasticity [Pa] n Thickness parameter
G Effective shear modulus [Pa] a,B,y, 21,0 Parameters used in stress-strain relations
h Thickness of plates [m] K2 Shear correction factor
n Number of node R Total effective strain
K Buckling coefficient o, Effective stress [Pa]
S; Stress deviator tensor v Poisson’s ratio
S(E,) Secant modulus [Pa] Loading ratio
1. INTRODUCTION employing plasticity theories still is an open research
issue. The first analysis of elasto-plastic buckling of
In the previous decades the problem of plastic buckling plates was carried out by Anderson [1] using the energy
of plates was studied by many scientists. Indeed, the stability criterion for rectangular plates under uniaxial
difference which exist in critical loads predicted by compression. Shrivastava [2] studied on the plastic
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buckling of thick plates. The results showed that the
decrease in plastic buckling stress parameters caused by
the effect of transverse shear deformation was more in
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incremental theory than deformation theory. But, this
difference was not enough to fill the discrepancy
between these two theories. Khdeir, et al. [3, 4] carried
out the analysis of laminated plates with the use of first
order and higher order deformation plate theories using
Levy-type solution. But they were not able to apply the
boundary conditions on a loaded free edge. Durban and
Zuckerman [5] studied on the analysis of rectangular
plates under uniaxial loading for several various modes
with the separation of variables solution. However, the
limited boundary conditions consisting of clamped and
simply supported boundary conditions limited the
obtained data in that research. Liew, et al. [6] solved the
buckling plates with free edge for elastic mode and
modified the Khdeir’s boundary conditions. Durban [7]
found out that the incremental theory can predict more
buckling load in comparison with the deformation
theory, and that the experimental data have more
congruence with deformation theory. Of course, there
are cases where the critical stresses obtained from two
theories are nearly equal. A typical example is furnished
by axially symmetric buckling of axially compressed
circular cylindrical shells [8]. Chakrabarty, et al. [9] and
Wang, et al. [10-12] investigated the elastic-plastic
buckling of thin and thick plates based on deformation
and incremental theories by use of separation of
variables and Rayliegh-Ritz method. They came to the
conclusion that the deformation theory predicts less
buckling stress factor, and as the thickness and
Ramberg-Osgood constant increases, the difference
between two theories increases.

Since the free boundary conditions still have not
received much attention in the literature, the authors
have attempted in the current study to investigate the
buckling problem of rectangular plates for various
boundary conditions of FSFS, CSFS, SSFS using
numerical method of GDQ and the results were
compared with those available from previous studies.

2. GOVERNING DIFFERENTIAL EQUATIONS

The governing differential equations for elasto-plastic
buckling of rectangular plates are mentioned elsewhere
[12]. Figure 1 shows the sketch of a rectangular plate
under biaxial and shear edge loads where a, b, h and §
are the length, width, thickness of the plate and load
ratio, respectively. The load ratio is & = 0 for uniaxial
compression and & = 1 for the equibiaxial compression.

The relationship between the stress rate and strain
rate in the plates are given below:
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Figure 1. Sketch of a rectangular plate.

in which E, G and «* are elastic modulus, effective
shear modulus and shear correction factor, respectively.
Parameters a, B, v, %, W, O and effective shear modulus
depend on the plasticity theory employed. In the present
study, the deformation theory of plasticity with Hencky
constitutive equation is used. The fundamental equation
of this theory is [9]:
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where S is the secant modulus, T is the tangent modulus
which is calculated through stress-strain curved and oe
is the effective stress. The tangent modulus and
effective stress are calculated as follow:
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where ¢, is the total effective strain. The parameters o,

B, v, % M, 0 and shear modulus in this method are
defined as follow [12]:
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The buckling equation of standard thick plates can
be written as follow [9, 12]:
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Note that Equations (4)-(8) are re-derived and extended
and are slightly different from the ones given in other
references [9].

3. GOVERNING BOUNDARY CONDITIONS

The boundary conditions are [9]:

W=0, ¢y=0, M, =0, for x=0,x=a

(€))
W=0, ¢ =0, M, =0, for y=0,y=>b
for simply support edges and
W=0, ¢,=0, ¢,=0, for x=0,x=a (10)

for clamped edges. For free boundary conditions we
have [12]:

M., =0, M, =0, Q =0, for x=0,x=a (11)
where,
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In the present study, in addition to re-investigation
of SSSS mode, the other modes including CSFS, SSFS
and FSFS are investigated.

4. GENERALIZED DIFFERENTIAL QUADRATURE
METHOD

This method (GDQ) is a practical and simple in solving
engineering problem. It was in 1971 that Belman, et al.
[13] introduced the ordinary or partial equation as a new
technique for numerical solving. Their purpose was to
present a new way for overcoming the constant
problems and amount of numerical problems. The first
widespread use of this technique in the field of
engineering problems was given by Bert and Malik
[14].

The benefit of accessing to a new and exact solution
with the least analysis in comparison to others
numerical solutions like finite element and boundary
element causes the efficiency of this method to be
revealed gradually. This method can solve higher order
differential equations with selecting few grid spacing.
The essence of the GDQ method is that the partial
derivative of a function with respect to a variable is
approximated by a weighted sum of function values at
all discrete points in that direction. Its weighting
coefficients do not relate to any special problem and
only depend on the grid spacing. Thus, any partial
differential equation can be easily reduced to a set of
algebraic equations using these coefficients.

Its other characteristics are simple application,
programming and high convergence rate. The
distributions of grid spacing of Chebyshev—Guass—
Lobatto have the best convergence and highest accuracy
[15, 16]. In this study, the following relation is used:

xi:%(17C05;;7117r),i:1,2, ..... ,n (13)

With the aid of GDQ, the governing Equations (6)-(8)
can be shown as follow:
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where A and B are the first and the second order
derivatives, respectively. Now, the buckling coefficient
K can be defined as:

o b’ o (1-07)b
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where D is the flexural rigidity and ) is the thickness
parameter as follows:
ER’ m’h’

D=—— _ = . 1
12(1-v?)’ LRETPE (18)

5. RESULTS AND DISCUSSIONS

The material used in this study is AL 7075-T6. Here the
Ramberg-Osgood elasto-plastic stress-strain relationship
is used:

p=Zeikoufoe ) (19)
E E \o,

where € is the total plastic strain and ¢ and k are
material parameters. The tangent and secant moduli
used in the equation are calculated as follow:

c-1
?:Hd{i;j J(c=1)

c-1 (20)
E:Hk[&j (c>1).
S o,

The characteristics of this metal is obtained by
means of Equation (19), E/c, = 150, Ramberg-Osgood
parameters ¢ = 9.2 and k = 3/7, shear correction factor
k> = 5/6 and Poisson’s ratio v = 0.33 [12]. Figure 2
shows the Ramberg-Osgood stress—strain relation for
the material AL 7075-T6 described by Equation (19).
To increase the accuracy of the analysis, the grid
spacing and mesh sensitivity have to be selected
properly. As shown in Figure 3, the numbers of grid
points are 13. It is seen that the convergence rate of
GDQ method is excellent.
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Figure 2. Ramberg-Osgood stress—strain relation for AL
7075-T6.
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Figure 3. Mesh sensitivity curve for SSSS plate.

To verify the current study, some of the obtained
results are firstly compared with some reference [3] and
then some new results are presented. The buckling
coefficient (K) in terms of loading ratio (&) for different
thickness parameters (n) were calculated by
deformation theory for SSSS plate, and it is observed
that there is a good consistency between the current
results and some reference [5] for rectangular plate of
a/b = 1, Figure 4. In this case, the square plate under
biaxial compression, buckling occurs in elastic mode
when mn = 0.0001 and the obtained results from
deformation theory are in agreement with some
reference [5]. Moreover, to check the accuracy of the
obtained results, they are compared with some previous
results, see Table 1.

A comparison between the obtained results and
experimental data for rectangular plates under uniaxial
compression are presented in Figure 5. It can be seen
that the results attained by deformation theory are close
to the experimental ones.

5. 1. Effect of Aspect Ratio on the Critical
Buckling Load Figure 6 shows the relationship
between the buckling coefficient and plate aspect ratio
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TABLE 1. Comparison between the buckling coefficient for plates under uniaxial and equibiaxial loads with different thickness
parameters.

BC 1n =0.0001 1n=0.002 1n=0.008

Durban et al.,[5] 4.0000 e
Wang et al., [9] 4.0000 2.7954 0.9144
S?S? Wang et al., [12] 4.0000 2.7954 0.9144
(uniaxial) Shrivastava [2] 4.0000 2.8058 0.9205
Present study(GDQ) 4.0000 2.7954 0.9144
FSFS Wang et al., [9] 0.9158 0.9032 0.6250
L Wang et al., [12] 0.9159 0.9033 0.6249
(Equibiaxial)
Present study(GDQ) 0.9159 0.9032 0.6249
for FSFS rectangular plates for various thickness ratios 05
(h/b) in three modes including axial compression (£=0), g0 0
biaxial compression (£=1) and shear obtained by ) ° i
deformation theory. In FSFS thin plates (h/b < 0.05), the 5 AL 707576
buckling coefficient in uniaxial compression increases e or(G0a)
as the plate aspect ratio increases in a range of 0.5< a/b Ni-; o el
<1.3. £ s
When the aspect ratio increases further, the buckling o,
mode shape switches from asymmetric to symmetric il @:
and then no more mode change is observed by ®

increasing the aspect ratio (Figure 7). However, for
higher thickness ratios (h/b), the variation of aspect ratio
has not significant influence on the buckling coefficient
(Figure 6a). In equibiaxial compression, the buckling
coefficient increases monotonically and with increasing
the aspect ratio no mode shape shift is observed
(Figures 6b and 8b-8c).

In thin plates (h/b<0.05) the changes of buckling
mode shape is more obvious than that of the thick plates
(0.05<h/b) when buckling occurs in plastic mode [9].
Figure 6 also provides some information about the
effect of transverse shear deformation on the buckling
coefficients which decreases as the plate thickness ratio
(h/b) increases.
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Figure 4. Comparison of deformation theory with Durban
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Figure 5. Comparison of buckling coefficient obtained by
deformation theory with experimental data for SSSS square
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. .
0.05 0.06 0.07

_—h/b=0.005

2 { e
7 Nhib=o.0s i
o
&
£
%
E h/b=0.1
< v
h/b=0.15
0.5f /
%,5 1 15 2 2‘,5 3
alb
(a)
1 T T
h/b=0.005
¥ — —
09— — \
h/b=0.05
0.8
)
e 07 h/b=0.1
=
s L — £ __ - — —
E 0.6 P 4
RN
05f < -
<
04 h/b=0.15 ]
0,3_-- --_--‘ I I ~]
0.5 1 15 2 25 3
alb
(b)



M. Maarefdoust and M. Kadkhodayan / IJE TRANSACTIONS A: Basics Vol. 26, No. 4, (April 2013) 421-432 426

h/b=0.005

(©)
Figure 6. Variation of buckling coefficient with aspect
ratio for different thickness ratios (h/b) based on
deformation theory for various loading in FSFS plate.

Figure 8. The critical buckling mode shape for FSFS plate
X e y under equibiaxial loading in various aspect ratios for h/b=
(b) 0.005, (a) a/b=0.5; (b) a/b=1.3 and (c) a/b=2.2 .
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Figure 7. The critical buckling mode shape for FSFS plate s ; 15 5 25 3
under uniaxial loading in various aspect ratios for h/b= alb

0.005, (a) a/b=0.5; (b) a/b=1.3 and (c) a/b=2.2. (a)
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Figure 9. Variation of buckling coefficient with aspect
ratio for different thickness ratios (h/b) based on

deformation theory in various loadings for SSFS plate.

In SSFS thin plate, the buckling coefficient in
uniaxial compression increases as the aspect ratio
increases up to 0.75 and then decreases (Figure 9a). The
limitations of aspect ratio (0.5< a/b <0.75) to increase
the buckling coefficient is smaller than those of the
previous mode (0.5<a/b<1.2). Moreover, with
increasing the thickness, the changes of aspect ratio is
not significant on buckling coefficient (Figure 9a).

Buckling mode deformation occurs in (a/b = 0.75).
In equibiaxial compression mode, however, the
buckling coefficient steadily decreases as the aspect
ratio increases and no mode shape shift is observed
(Figure 9b).

In shear mode, with increasing the aspect ratio the
buckling coefficient decreases and with increasing the
thickness of plate, the changes of aspect ratio has no
influence on the buckling coefficient (Figure 9c).

In CSFS plate, and in uniaxial compression, with
increasing the aspect ratio, the buckling coefficient
decreases. There are mode shape shifts in this case again
although the shift points are not so clear (Figure 10a).
However, in equibiaxial compression and shear loading,
the buckling coefficient decreases monotonically as the
aspect ratio changes from 0.5 to 3 and no mode shape
shift is evident in this case (Figures 10b-10c¢).
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Figure 10. Variation of buckling coefficient with aspect
ratio for different thickness ratios (h/b) based on
deformation theory in different loading conditions for
CSFS plate.

With increasing the aspect ratio, the reduction of
buckling coefficient in CSFS is more than that of SSFS
for different loading cases (Figures 9 and 10). In
contrast to the CSFS plate subjected to uniaxial
compression which shows decreasing of buckling
coefficient with increase of aspect ratio, for FSFS and
SSFS plates firstly an initial increase and then a steadily
decrease is observed (Figures 6a, 9a and 10a). For the
equibiaxial compression, however, the buckling
coefficient increases for higher aspect ratios in FSFS
plate which is different from CSFS and SSFS cases
(Figures 6b, 9b and 10b).
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Figure 11. Variation of buckling coefficient with plate
thickness ratio for different loading ratios based on
deformation theory.

From Figures 9a and 10a, it can be clearly seen that
in uniaxial compression mode with the increase of
aspect ratio (a/b>2), the change of boundary conditions
from simply support (x = 0) to clamp doesn’t have any
significant effect on the results of buckling coefficient.
Moreover, the effect of transverse shear deformation
can also be seen here in Figures 9 and 10.

5. 2. Effect of Loading Ratio on the Critical
Buckling Load The effect of loading ratio on the
buckling coefficient for rectangular plates with the
boundary conditions of FSFS, SSFS and CSFS are
shown in Figure 11. It is seen that with increase of
loading ratio in all three cases, the buckling coefficients
decrease. Moreover, with increasing the thickness ratio

the buckling coefficients for different loading ratios
(§ = 0) approach to each other (Figure 11). Furthermore,
the buckling coefficients decrease as the thickness ratios
increase for all cases.

Similarly, it is seen that the effect of transverse shear
deformation on the buckling coefficient is more
pronounced in plates subjected to uniaxial compression
(&=0) than that in biaxial compression (£§=0.5 and 1.0),
Figures 11a-11c. This effect is marginally greater in the
CSFS plate than those in SSFS and FSFS plates.

5. 3. Effect of Thickness Ratio on the Critical
Buckling Load Figure 12 shows that with increasing
the loading ratio, buckling coefficient decreases. This
reduction occurs more rapidly for thinner plates. In
FSFS plate, the mode deformation occurs in the range of
0.6 < & < 0.72 for plates with different thicknesses
(Figure 12a). The rate of reduction in the buckling
coefficient accelerates when the load ratio reaches these
mode shape shift points.

The buckling mode shapes for different boundary
conditions under uniaxial and equibiaxial loadings for
(a) FSFS, (b) SSFS and (c) CSFS plates are
demonstrated in Figures 13 and 14. It is observed that
for a/b = 1 and h/b = 0.005, the SSFS and CSFS square
plates under uniaxial and equibiaxial loadings buckle in
higher mode shape, but the FSFS square plate buckles in
the first mode shape, Figures (13a-13c, 6a, 9a and 10a).
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Figure 12. Variation of buckling coefficient with loading
ratios for different plate thickness ratios based on
deformation theory.

(©
Figure 13. The critical buckling mode shapes for different
boundary conditions under uniaxial loading (a) FSFS; (b)
SSFS and (c) CSFS plates (h/b = 0.005, a/b=1).

Figure 14. The buckling mode shapes for different
boundary conditions under equibiaxial loading (a) FSFS;
(b) SSFS and (c) CSF S plates (b/b = 0.005, a/b=1).

6. CONCLUSION

The elasto-plastic buckling of rectangular plates with
the use of deformation theory of plates was investigated.
The equilibrium equations of the thick plate were
derived by the aid of Hencky constitutive equations.
The generalized differential quadrature method was
employed to solve the governing differential equations.
Some of the obtained results were compared with the
previous reported data in the literature and some other
results were presented. It was found that the results
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obtained from deformation theory of plates formulation
are in good agreement with those of experimental data.

The effect of boundary condition, transverse shear

deformation, loading conditions, aspect ratio, and
thickness and loading ratio on the buckling coefficient
were investigated and discussed in detail and the
buckled mode shapes could be easily plotted. Based on
the numerical results, some more important conclusions
are highlighted as follow:

In the same boundary conditions, the maximum and
minimum  buckling coefficients occurred in
equibiaxial and shear loadings, respectively.

In various loadings and boundary conditions, most
variations of buckling coefficient occurred in the
range of 0.5< a/b <1.0.

In thick plates (0.05< h/b <0.1), with increasing the
thickness in various boundary conditions the
variation of aspect ratio had not significant influence
on the buckling coefficient in uniaxial and shear
loadings. However, for the case of equibiaxial
loading some slight effects could be observed.

In various boundary conditions and in equibiaxial
loading, with increasing the loading ratio (0<£<1.0)
the buckling coefficient decreased.

In different loading ratios (0 < & < 1.0), the variation
ranges of buckling coefficients in thin plates were
much more than those in thick plates.

The effects of transverse shear deformations on the
buckling coefficients were more dominant in
uniaxial compression than that in the biaxial
compression plates.
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