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A B S T R A C T  

   

In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the 
Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, 
the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared 
based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was 
developed and validated using the randomly selected data series for network testing. The applied 
ANFIS model has four inputs including Reynolds number (Re), Richardson number (Ri), wavy wall 
amplitude (A) and inclination angle (θ). Nusselt number (Nu) was the unique output of the ANFIS 
model. To select the best ANFIS model, the average errors of various architectures for three different 
data series of training, checking and testing of the main data set are calculated. Results indicated that 
the developed ANFIS has acceptable performance to predict the Nu number for the cited convection 
problem. This method can reduce computing time and cost considering acceptable accuracy of results. 
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NOMENCLATURE T  Temperature, ( )k  

sc  Speed of sound in Lattice scale refT  Bulk temperature ( )k , ( ( ) / 2)ref h cT T T= +  

pc
 Specific heat at constant pressure, 1 1( . . )kJ kg K− −  0u  Velocity of lid wall, 1( . )m s −  

eα  
Discrete lattice velocity in α  direction w α  Weighting factor 

Fα  External force in direction of lattice velocity Greek Symbols 

eqf α  Equilibrium distribution β  Thermal expansion coefficient, 1( . )1 k −  

ag  Acceleration due to gravity, 2( . )m s −  t∆  Lattice time step 

Gr  Grashof number, 3 2( . .( ). / )h cg T T L vβ −  θ  Inclination angle 

k  Thermal conductivity, 1 1( . . )W m k− −  ρ  Density, 3( . )kg m −  

L  Characteristic Length, ( )m  τ  Lattice relaxation time 

aveNu  Average Nusselt number Subscripts 

Nu
 

Local Nusselt number ave  average 

Pr  Prandtl number, ( )v α  c  cold 

Re  Reynolds number, 0( . / )u L v  f  fluid 

Ri  Richardson number, 2( / )Gr Re  h  hot 

A  wavy wall curve amplitude max  maximum 
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1. INTRODUCTION 

 
Convection heat transfer from wavy surfaces is 
observed in many engineering and scientific 
applications such as electronic devices, solar collectors, 
and wavy-plate condensers in refrigerators. In recent 
years many studies about convection heat transfer and 
fluid flow in wavy enclosures have been carried out 
using traditional CFD methods [1-6]. 

Al-Amiri et al. [1] have conducted a study on mixed 
convection heat transfer in a lid-driven cavity with a 
sinusoidal bottom wall. They have used a finite element 
approach based on the Galerkin method. They studied 
the effect of the Richardson number, amplitude of the 
surface, and the number of undulations on the fluid flow 
and heat transfer. Adjlout et al. [2] presented a 
numerical simulation of natural convection in an 
inclined cavity with wavy wall. They used partial 
differential equations in their work and illustrated that 
the Nusselt number decreases in comparison with the 
square cavity. Also, they investigated the effect of 
inclination on natural convection for different rotation 
angles. 

The corrugated wall geometry is one of the several 
devices being used in industrial transport processes. The 
viscous flow in wavy channels was analytically studied 
by Bums and Parkes [7]. Also, Goldstein and Sparrow 
[8] used the naphthalene technique to measure local and 
average heat transfer coefficients in a corrugated wall 
channel. 

The lattice Boltzmann method (LBM) is a numerical 
technique based on kinetic theory for simulating fluid 
flows and modeling the physics in fluids. In the last 
decade, LBM has been used as a powerful numerical 
technique to simulate heat transfer and fluid flow [9-
17]. LBM has well-known advantages such as easy 
implementation, possibility of parallel coding and 
simulating of complex fluid dynamic problems (e.g. 
complex geometries [11], multiphase flow [12], porous 
media [13], fuel cell modeling [14], and Nanofluids 
[15]). The LBM utilizes two distribution functions, for 
the flow and temperature fields. It models the 
movement of fluid particles to define macroscopic 
parameters of fluid flow. Basically, LBM applies 
uniform Cartesian cells to the discrete problem domain. 
Each cell of the grid contains a constant number of 
distribution functions, which represent the number of 
fluid particle movement in these separated directions. 
The distribution functions are obtained by solving the 
lattice Boltzmann equation (LBE), which is a special 
form of the Kinetic Boltzmann Equation. 

Although LBM is a powerful method to obtain the 
flow and temperature fields of convection problems in 
different shaped enclosures and channels, but achieving 
the adequate accuracy and stability for solving the 
complex convection heat transfer problems needs to 

pass a time consuming and expensive computation 
process. 

To reduce the computational efforts, the soft 
programming techniques such as artificial neural 
network (ANN) and fuzzy-logic (FL) can be used in 
conjunction with LBM as powerful tools to determine 
the solution of flow, heat and mass transfer problems. 

In this paper, firstly data set of Reynolds number 
(Re), Richardson number (Ri), wavy wall curve 
amplitude (A) and inclination angle (θ) assumed as 
inputs and Nusselt number (Nu) are derived from the 
LBM as output for the mixed convection problem. 
Then, an adaptive neuro-fuzzy inference system 
(ANFIS) is developed based on derived data from LBM 
to predict the effects of inclination phenomenon on 
convection heat transfer rate from a wavy wall in a lid 
driven cavity. 

Novelty of this research is in using a combination of 
neural network and fuzzy logic (ANFIS model) to 
predict the Nusselt number which has not been worked 
before. 

 
 

2. PROBLEM DESCRIPTION 
 
In thermal convection problems, the Richardson number 
( 2Ri=Gr/Re ) is a dimensionless parameter which plays a 
more effective role in natural convection compared with 
the forced convection. If the Richardson number 
becomes significantly less than unity, the buoyancy 
force term may be vanished and consequently the 
natural convection becomes negligible ( Ri<0.1 ). On the 
other hand, when Ri grows, the natural convection 
becomes dominant and the forced convection is 
negligible ( Ri>10 ). Furthermore, if Ri gets into the 
order of unity, the flow is likely to be buoyancy-driven 
and both forced and natural convection will be 
important ( 0.1<Ri<10 ). 

Forced convection is independent from the gravity 
force, thus it is predicted that inclination has no effect 
on forced convection. On the other hand, natural 
convection completely depends on the buoyancy force 
that is in relation with the gravity force direction. 
Therefore, the inclination plays an important role in 
both fluid flow and temperature field when natural 
convection is dominant. To cover all conditions of 
convection heat transfer regimes including forced, 
natural and mixed convection, a wide range of input 
variables must be studied at the numerical solution. It 
can be very time consuming and more costly. Therefore, 
this manuscript tries to present an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to predict the needed 
output parameter in a wide range of input parameters. 
The modeled ANFIS architecture is based on the LBM 
results for special case studies at specific input data. The 
selected input data are covered necessary range of input 
variables to delineate the inclination effects on 
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convection heat transfer from a wavy wall in a lid-
driven cavity. 

The geometry of the problem under study is shown 
in Figure 1. The vertical walls of the cavity are assumed 
to be insulated while the wavy bottom surface is 
maintained at a uniform temperature (Th) higher than 
the top lid temperature (Tc). The lid wall has a constant 
velocity motion equal to 0.1 of sound speed in a left to 
right direction (see Figure 1). 

The working fluid is assumed to be Newtonian with 
constant fluid properties, and the flow is considered to 
be laminar, incompressible, steady and two-
dimensional. Viscous dissipation was neglected, 
because it has a negligible effect. The effect of different 
inclination angles ( 0 180≤ θ ≤ ) on both fluid flow and 
heat transfer is investigated for different Richardson 
numbers ( 0.1 Ri 10≤ ≤ ), amplitudes of wavy wall 
( 0.05 A 0.25≤ ≤ ) while the Reynolds number is equal 
to 100, 150 and 200 and the Prandtl number is fixed to 
0.71 for air flow. The wavy wall is defined as follows: 
Y A(1 sin(2 X))= + π  (1) 

where A is the curve amplitude. Also, the local Nusselt 
number along the wavy wall is defined as follows: 

TNu -L
n

∂
=

∂
 (2) 

where n is the coordinate direction normal to the wavy 
wall and L is the characteristic length that is given by: 

1 2

0
L 1 (2A cos(2 X)) dX= + π π∫   (3) 

By integrating the local Nusselt number along the 
wavy surface, the average Nusselt number is calculated 
as follows: 

L

ave 0

1N u N u ds
L

= ∫   (4) 

where s shows the integral calculated along the wavy 
line. 

 
 
 

 Figure 1. Geometry of the problem.        
 

3. LATTICE BOLTZMANN METHOD 
 
The basic form of the Lattice Boltzmann Equation 
which is a special form of the kinetic Boltzmann 
equation with an external force by introducing BGK 
approximations can be written as follows for both flow 
and the temperature fields [9]: 

eq

m

f (x e t, t t )
tf (x , t ) [f (x , t ) - f (x , t )] te F

α α

α α α α α

+ ∆ + ∆ =

∆
+ + ∆

τ

 (5) 

e q

t

g ( x e t , t t )
tg ( x , t ) [g ( x , t ) - g ( x , t ) ]

α α

α α α

+ ∆ + ∆ =

∆
+

τ

 (6) 

where f (x, t)α , eα  and Fα  are the distribution function 
on the mesoscopic level, the discrete lattice velocity and 
Fα  ithe external force term in α  direction, respectively. 

eqfα  and eqgα  are equilibrium distribution functions that 
are calculated f as follows: 

2 2
eq

2 4 2
s s s

e u (e u )1 1 u
f w [1 - ]

2 2c c c
α α

α α= ρ + +  (7) 

2

0

2eq 2
α α α α

22
α α α

3- w ρRTu                                         α=0  
2

3 3g = w ρRT[1+(e .u)+ (e .u) -u ]      α=1-4
2 2

9 3w ρRT[3+6(e .u)+ (e .u) - u ]    α=5-8
2 2










r

r r r

r r r

 (8) 

where ρ  and wα  are the lattice fluid density and 
weighting factor, respectively. The latter has these 
values: 0w 4 / 9=  for 0c 0= , 1-4w 1/ 9=  for 1-4c 1=  

and 5-9w 1/ 36=  for 5-9c 2=  in the D2Q9 model [9]. 
To model buoyancy force, the force term in "Equal 5" 
needs to be assumed as below in the required direction: 

refF 3w g (T - T )α α α= β  (9) 

where refT is assumed as average of hT  and cT . 
Macroscopic variables can be calculated as follows: 

i if ,   u f c ,   T gα α α α
α α α

ρ = ρ = =∑ ∑ ∑  (10) 

The boundary fitting method (BFM) accuracy at 
velocity and temperature fields is used to simulate the 
curved boundary in the LBM. The problem is 
investigated for different Richardson numbers 
( 0.1 Ri 10≤ ≤ ), curve amplitudes ( 0.05 A 0.25≤ ≤ ) and 
inclination angles ( 0 180≤ θ ≤ ) when the Reynolds 
number is equal to 100, 150 and 200. The numerical 
code of LBM is validated with the results presented by 
Al-Amiri et al. [1] for mixed convection in a lid-driven 
cavity with a wavy sinusoidal bottom surface. Table 1 
shows the comparison of the values of average Nusselt 
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number of this study with those presented by Al-amiri et 
al. [1] exhibited good agreement between the present 
results and other published  data. 

 
 

TABLE 1. Average Nusselt number along the wavy wall at Gr 
= 104, Pr = 1, A = 0.05 and θ = 0. 

Ri Value Present study Al-Amiri et al. [1] 

Ri = 0.1 7.242 7.412 

Ri = 1 3.200 3.192 

Ri = 10 2.829 2.694 

. 
 
 
 

4. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 
(ANFIS) 
 
An ANFIS gives the mapping relation between the input 
and output data using hybrid learning method to 
determine the optimal distribution of membership 
functions [18]. Both artificial neural network and fuzzy 
logic are used in ANFIS architecture. Basically, five 
layers are used to construct this inference system. Each 
ANFIS layer consists of several nodes described by the 
node function. The inputs for the layers are obtained 
from the nodes in the previous layers. Figure 2 shows 
the ANFIS structure for a system with m inputs 
(X1…Xm), each with n membership functions (MFs), a 
fuzzy rule base of R rules and one output (Y). The 
network consisting of five layers is used for training 
Sugeno-type fuzzy interface system (FIS) through 
learning and adaptation. Number of nodes (N) in layer 1 
is the product of numbers of inputs (m) and MFs (n) for 

each input, i.e., N=mn. Number of nodes in layers 2-4 
depends on the number of rules (R) in the fuzzy rule 
base. Five Layers of ANFIS model are described in the 
following. 
 
4. 1. Fuzzification Layer      It transforms the crisp 
inputs Xi to linguistic labels (Aij, like small, medium, 
large, etc.) with a degree of membership. The output of 
node ij is expressed as follows: 

1
ij ij iO (X ),   i 1...m,   j 1...n= µ = =  (11) 

where ijµ  is the jth membership function for the input 
Xi. Several types of MFs can be used, including 
triangular curve, generalized bell function, trapezoidal 
curve, Gaussian function and the sigmoidal function that 
are used in this study. 

The triangular curve is a function of a vector, x, and 
depends on three scalar parameters a, b, and c, as 
follows: 

0                     x a 
x a b a      a x b

f (x;a, b, c)
c x c b      b x c
0                     c x

≤ 
 − − ≤ ≤ =  − − ≤ ≤ 
 ≤ 

 (12) 

where a and c locate the "feet" of the triangle and the 
parameter b locates the peak. The generalized bell 
function depends on three parameters a, b, and c as 
follows: 

2b
1f (x;a,b, c)

x c1
a

=
−

+

 
(13) 
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 Figure 2. Schematic of the ANFIS structure.        
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where a and b vary the width of the curve and the 
parameter c locates the center of the curve, where b is 
usually positive. The trapezoidal curve is a function of a 
vector, x, and depends on four scalar parameters a, b, c, 
and d, as given by the following: 

0                      x a 
(x-a) (b-a)       a x b

f (x; a, b, c, d) 1                      b x c
(d-x) (d c)    c x d
0                      d x

≤ 
 ≤ ≤  = ≤ ≤ 
 − ≤ ≤ 

≤  

 
(14) 

where the parameters a and d locate the "feet" of the 
trapezoid and the parameters b and c locate the 
"shoulders". The Gaussian function depends on two 
parameters σ and c as given by the following: 

2

2

(x c)
2f (x; , c) e

− −
σσ =  (15) 

where the parameter c locates the peak.  
The sigmoidal membership function is a mapping on 

a vector x, and depends on two parameters a and c as 
given in the following equation: 

a(x c)
1f (x; , c)

1 e− −
σ =

+
 (16) 

Depending on the sign of the parameter a, the 
sigmoidal membership function is inherently open to the 
right or to the left. 
 
4. 2. Product Layer      For each node k in this layer, 
the output represents weighting factor (firing strength) 
of the rule k. The output Wk is the product of all its 
inputs as follows: 

1 2 m

2
k k 1e 1 2e 2 me m

1 2 m

O W (X ) (X ) ... (X )

k 1...R,     e , e ,..., e 1...n

= = µ µ µ

= =
 (17) 

 
4. 3. Normalized Layer      The output of each node k 
in this layer represents the normalized weighting factor 

kW  of the kth rule as follows: 
3 k

kk
1 2 R

WO W
W W ... W

= =
+ + +

 (18) 

4. 4. De-Fuzzification Layer      Each node of this 
layer gives a weighted output of the first order TSK-
type fuzzy if-then rule as follows: 

4
kk kO W  f=  (19) 

where fk represents the output of kth TSK-type fuzzy 
rules as follows: 

1 2

m i

1 1e 2 2e

m

m me k ie i k
i 1

1 2 m

If  (X  is A ) and (X  is A ) and ... 

and (X  is A ) Then f p X r

(e ,  e  e =1 n),  (k 1...R)
=

= +

… … =

∑  (20) 

where 
iiep  and kr  are called consequent parameters. 

 
4. 5. Output Layer      This single-node layer 
represents the overall output (Y) of the network as the 
sum of all weighted outputs of the rules: 

n
5

k k
k 1

O Y W  f
=

= = ∑  (21) 

 
 
5. RESULTS AND DISSCUTION 
 
The procedure of the ANFIS development for this study 
consists of three main steps include: data set 
preparation, data pre-processing and developing the 
ANFIS network. All these steps are described in the 
following sections. 
 
5. 1. Data Set Preparation      The main data set 
comprising of 189 pairs of four inputs (Reynolds 
number (Re), Richardson number (Ri), wavy wall curve 
amplitude (A) or inclination angle (θ)) and one output 
(Nusselt number (Nu)) is prepared based on the already 
mentioned LBM. A Sample of this database is shown in 
Table 2. 

 
 
 

TABLE 2. Part of data set obtained via LBM. 

No. 
Inputs  Output 

Train data Check data Test data 
Re Ri A θ  Nu  

 ـ ـ * 2.125  0 0.05 0.1 100 1

 ـ ـ * 2.046  30 0.05 0.1 100 2

 ـ * ـ 1.960  60 0.05 0.1 100 3
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 . 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 ـ ـ * 3.412  90 0.25 10 200 186

 ـ ـ * 2.477  120 0.25 10 200 187

 * ـ ـ 1.623  150 0.25 10 200 188
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For each input data, such Reynolds and Richardson 
numbers and curve wall amplitude, three values, is 
selected according to the needed range to describe the 
physics of the problem truly when inclination angels 
vary from 0 to 180o at 30o steps. The selected values of 
Ri must cover all convection heat transfer regimes. Thus 
0.1, 1 and 10 were selected. When Ri is equal to 0.1 it 
means that forced convection is dominant. On the other 
hand, when the Ri is equal to 10, natural convection is 
dominant. Considering the values of Ri, the Re values 
are assumed to be equal to 100, 150 and 200 to have a 
laminar flow field. 
 
5. 2. Data Pre-processing      It is important to process 
the data set into patterns before the ANFIS can be 
trained and the mapping learnt. Training/ checking/ 
testing pattern vectors are formed. Each pattern is 
formed with an input condition vector and the 
corresponding target vector [19, 20]. The scale of the 
input and output data is an important matter to consider, 
especially when the operating ranges of process 
parameters are different. The scaling or normalizing 
ensures that the ANFIS will be trained effectively, 
without any particular variable skewing the results 
significantly. As a result, all of the input parameters are 
equally important in the training of the network. The 
scaling is performed by mapping each term to a value 
between “0” and “1” using the following equation: 

i min
norm

max min

VV
V V
V −

−
=  (22) 

where Vnorm is the normalized value, Vi is the value of a 
certain variable (Re, Ri, A or θ), and Vmax and Vmin are 
the maximum and minimum values of the of the 
independent variable, respectively. 

The input pattern vectors are then formed; 
comprising of 137, 22 and 30 pairs of input/output ones 
respectively for training, checking and testing the 
network on the basis of the main data set. 
 
 

5. 3. Development of ANFIS Model      This section is 
composed of three stages: determining the suitable 
topology of the ANFIS model by trial and error, training 
the ANFIS along with checking to prevent overfitting of 
the network and validating the developed ANFIS by 
using the test data series. After data preprocessing, 137, 
22 and 30 pairs of input/output ones are randomly 
selected on the basis of the main data set as training, 
checking and testing data series, respectively (e.g. data 
marked by “ * ” in Table 2). The testing data series is 
used in ANFIS learning process and the checking data 
series is used for testing the ANFIS network along with 
the training to prevent overfitting of the network. Also, 
the testing data series is presented to the trained network 
as new application data for verifying or testing the 
predictive accuracy of the network model. Thus, the 
network is evaluated using data that have not been used 
for training and checking. 

Defining fuzzy membership functions and 
corresponding values can be considered as an important 
stage in the modeling. In order to determine the suitable 
architecture of the ANFIS by trial and error, different 
membership functions with [3 3 3 3] structure, 81 fuzzy 
“If–then rules” to train the model and hybrid 
optimization method were tested on three different 
combination of training, checking and testing data sets. 
The average Root Mean Square Error (RMSE) was 
calculated (Table 3) according to Equation (23). The 
advantage of hybrid method is that it uses back 
propagation for parameter associated with input 
membership function and least square estimation for 
parameters associated with output membership. As 
shown in Table 3, the Triangular, Gaussian and 
Sigmoidal membership functions (the zero-order 
Sugeno fuzzy rules) have demonstrated the best 
performances respectively (with least resultant testing 
RMSE). Finally, the triangular membership functions 
(see Figures 3a–d), the simplest MF formed from 
straight lines, has been chosen because of its valid 
results (see Figure 4 and Table 4). The structure of the 
developed ANFIS model is shown in Figure 4. 

 
 

TABLE 3. Average root mean squared error (RMSE) of different membership functions. 

MF type 

Average Error (All Data sets) 

Average training Error Average checking Error Average testing Error 

Cons. Lin. Cons. Lin. Cons. Lin. 

Triangular 0.108 0.001 0.275 0.470 0.313 0.542 

Bell- shaped 0.101 0.001 0.381 0.390 0.350 0.502 

Trapezoidal 0.264 0.031 0.372 1.279 0.414 1.263 

Gaussian 0.108 0.001 0.285 0.456 0.334 0.648 

Sigmoidal 0.104 0.001 0.292 0.525 0.337 0.688 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Membership function plot for inputs: (a) “Reynolds number (Re)”, (b) “Richardson number (Ri)”, (c) “wavy wall curve 
amplitude (A)”, (d) “inclination angle (θ)”.   
 

 
TABLE 4. Obtained (LBM) and estimated (ANFIS) Nusselt number values from neuro-fuzzy model together with percentage error. 
No. Re Ri A θ Obtained Nu Predicted Nu Error (%) 
1 100 0.1 0.05 90 1.895 1.903 0.466 
2 100 0.1 0.15 60 2.123 2.111 0.559 
3 100 0.1 0.25 0 2.229 2.252 1.056 
4 100 1 0.05 30 1.846 1.516 17.898 
5 100 1 0.05 180 1.396 1.190 14.750 
6 100 1 0.15 90 1.488 1.485 0.160 
7 100 1 0.25 90 1.995 2.017 1.119 
8 100 10 0.05 60 3.746 3.525 5.887 
9 100 10 0.05 180 0.751 0.612 18.570 
10 100 10 0.15 150 1.153 1.403 21.672 
11 100 10 0.25 120 1.724 1.890 9.581 
12 150 0 0.05 90 2.212 2.191 0.985 
13 150 0 0.15 90 2.483 2.500 0.675 
14 150 0 0.25 180 2.611 2.594 0.657 
15 150 1 0.05 180 1.437 1.443 0.419 
16 150 1 0.15 150 1.572 1.733 10.241 
17 150 1 0.25 180 2.391 2.227 6.833 
18 150 10 0.05 150 0.984 1.441 46.483 
19 150 10 0.15 90 3.382 3.256 3.715 
20 150 10 0.25 60 3.341 3.143 5.932 
21 200 0 0.05 90 2.479 2.499 0.796 
22 200 0 0.15 90 2.793 2.794 0.034 
23 200 0 0.25 120 2.891 2.901 0.339 
24 200 1 0.05 90 2.143 1.701 20.624 
25 200 1 0.15 30 2.987 2.710 9.264 
26 200 1 0.25 30 2.999 2.870 4.319 
27 200 10 0.05 30 5.178 5.501 6.233 
28 200 10 0.15 30 4.462 4.977 11.535 
29 200 10 0.25 30 3.803 4.500 18.344 
30 200 10 0.25 150 1.623 1.941 19.607 
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Figure 4. Testing (c) of the [3 3 3 3] ANFIS with Triangular membership function.   

 
 
The training performance of the ANFIS model can 

be checked by the Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE) and Variance 
Accounted For (VAF) as follow: 

N
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i i
i 1

1RMSE = (target -output )
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∑  (23) 
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i i

i 1 i

t arg et output100MAPE
N t arg et=

−
= ×∑  (24) 

var(t arg et outpt)VAF =(1 ) 100
var(output)

−
− ×  (25) 

N
2

i
i 1

1var(y) variance  in  set (y) (y y)
N =

= = −∑  (26) 

where N is the total number of testing patterns (30 
patterns), target/targeti is the target value, outputi is the 
ANFIS output value, and y  is the average of the set y. 
Subscript i indicates ith data in the set. 

The performance indices RMSE, MAPE and VAF 
were calculated as 0.250, 8.625 and 94.698, respectively. 
Theoretically, a prediction model is accepted as excellent 
when RMSE and MAPE are equal to zero and VAF is 
100%. Performance indices RMSE, MAPE and VAF 
indicate that assessed result had an acceptable accuracy in 
the specified range. 

Also, the regression line of the targets/outputs is 
shown in Figures 5 and 6. 

 

 
6. CONCLUSIONS 
 
An Adaptive Neuro-Fuzzy Inference System (ANFIS) 
was developed to combine with the Lattice Boltzmann 
Method (LBM) in order to study mixed convection rate 
on a wavy wall in a 2D cavity. This combination 
reduced the calculation time and its cost. The problem 
was investigated for different Richardson numbers (0.1 
≤ Ri ≤ 10), curve amplitudes (0.05 ≤ A ≤ 0.25) and 
inclination angles (0 ≤ θ ≤ 180) when the Reynolds 
number was equal to 100, 150 and 200. The prediction 
has been done based on LBM data for the cited problem 
with normalized inputs and output. The triangular 
membership function has been considered with [3 3 3 3] 
structure and hybrid optimization Method. 
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Figure 5. Schematic structure of the developed ANFIS model.  
 
  

 
Figure 6. Cross-correlation between estimated and obtained 
Nusselt number values.   

 
 

The ANFIS had four inputs including Reynolds 
number (Re), Richardson number (Ri), wavy wall curve 
amplitude (A), inclination angle (θ) and Nusselt number 
(Nu) as the one output. The input pattern vectors were 
formed comprising 137, 22 and 30 pairs of input/output 
ones respectively for training, checking and testing the 
network on the basis of the main data set. Results 
obtained from LBM were compared to the ANFIS 
results for the same case and it was seen that the 
developed ANFIS has a capability to properly estimate 
Nu number in the cited problem. The performance 
indices VAF, RMSE and MAPE, were calculated as 
94.698, 0.250 and 8.625, respectively. This indicate that 
assessed result had an acceptable accuracy in the 
specified range. 
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 چکیده
 

  

ي  ي مواج در یک محفظه بر روي دیواره) Nu(فازي تطبیقی براي تعیین عدد ناسلت  - ي عصبی در پژوهش حاضر، یک شبکه
ها براي آموزش،  ي داده در ابتدا مجموعه. است ي بولتزمن ارائه شده شبکهکارگیري نتایج حاصل از روش  دار با به درپوش

 یهبولتزمن، ته ي دست آمده از حل مسئله به روش شبکه ي نتایج به فازي تطبیقی، بر پایه -ي عصبی ارزیابی و آزمایش شبکه
ي بولتزمن  دست آمده از شبکه هایج بشده و در نهایت با نت فازي تطبیقی توسعه و آموزش داده  -ي عصبی سپس شبکه. شود می

به عنوان ) θ(ي دوران  و زاویه) A(ي مواج  ي دیواره ، دامنه)Ri(، عدد ریچاردسون )Re(عدد رینولدز . گردد اعتبارسنجی می
میانگین مجموع . است فازي تطبیقی مدنظر قرار گرفته - ي عصبی  چهار ورودي و عدد ناسلت به عنوان تنها خروجی شبکه

هاي مختلف شبکه مورد مقایسه  هاي آموزش، ارزیابی و آزمایش به ازاي معماري ات خطا براي سه آرایش گوناگون دادهمربع
 - ي عصبی کوشد تا با استفاده از شبکه پژوهش حاضر می. گردد یقرار گرفته و بر این اساس بهترین معماري شبکه انتخاب م

ي بیان شده را براي سایر مقادیر ورودي در  ورودي، عدد ناسلت در هندسهشده براي مقادیر خاص  فازي تطبیقی آموزش داده
ي دقت قابل  ضمن ارائه یفازي تطبیق - عصبی ي که استفاده از شبکه دهند نتایج نشان می. کندبینی  شده پیش ي تعریف محدوده
  .ه در مقایسه با حل دقیق عددي شودشد ي صرف تواند موجب کاهش زمان و هزینه قبول می
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