
IJE Transactions A: Basics Vol. 24, No. 3, September 2011 - 301

NUMERICAL SIMULATION OF A THREE-LAYERED RADIANT 
POROUS HEAT EXCHANGER INCLUDING LATTICE 

BOLTZMANN SIMULATION OF FLUID FLOW

E. Jahanshahi Javaran, S.A. Gandjalikhan Nassab* and S. Jafari

Department of Mechanical Engineering, Shahid bahonar University

*Corresponding Author

(Received: January 26, 2011 – Accepted in Revised Form: September 23, 2011)

doi: 10.5829/idosi.ije.2011.24.03a.09

Abstract  This paper deals with the hydrodynamic and thermal analysis of a new type of porous 
heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and 
thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and 
HR2) sections. In HT section, the enthalpy of flowing high temperature gas that is converted to 

thermal radiation to gas enthalpy takes place. In each section, a 2-D rectangular porous segment 
which is assumed to be absorbing, emitting and scattering is present. For theoretical analysis of the 
PHE, the gas and solid are considered in non-local thermal equilibrium and separate energy equations 
are used for the two phases. Besides, in the gas flow simulation, the lattice Boltzmann method (LBM) 
is applied to obtain the velocity distribution through the porous segments. For the purpose of thermal 
analysis of the proposed PHE, volume-averaged velocities through the porous matrix obtained by 
LBM are used in the gas energy equation, and then the coupled energy equations for gas and porous 
medium of each section are numerically solved using finite difference method. The radiative transfer 
equation is solved by discrete ordinates method to calculate the distribution of radiative heat flux in 
the porous medium. The numerical results consist of the gas and porous media temperature 
distributions. The variation of radiative heat flux are also presented. Furthermore, the effects of 
scattering albedo, optical thickness and inlet gas temperature on the efficiency of the proposed PHE 
are investigated. It is revealed that this type of heat exchanger has high efficiency in comparison to 
conventional one. Also, the present numerical results for a porous radiant burner are compared with 
theoretical finding by the other investigator and good agreement is found.
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تابشي ، مقايسه اي با نتايج تئوريك ديگر محققين صورت پذيرفته كه انطباق موجود رضايت بخش بوده است. 
سيستم پيش بيني مينمايد. جهت بررسي صحت محاسبات انجام شده، در مورد يك سيستم مشعل متخلخل 
بررسي شده است. در عين سادگي ساختمان داخلي اين مبدل،  نتايج محاسبات عملكرد بالايي را براي اين 
و همچنين توزيع شار تابشي در فاز جامد ارائه شده اند و اثر پارامترهاي متعددي بر رفتار حرارتي سيستم 
راستاهاي مجزا  بهره برده شده است. نتايج عددي به صورت نمودارهايي از توزيع دماي گاز و محيط متخلخل 
محاسبه توزيع شار تابشي در لايه متخلخل که از حل معادله انتقال حرارت تابشي به دست مي آيد از روش 
انرژي براي گاز و محيط متخلخل بصورت عددي با کمک روش اختلاف محدود حل عددي شده اند و جهت 
گاز و محاسبه متوسط حجمي سرعت سيال در داخل ماتريس متخلخل از LBM  استفاده شده است . معادلات 
انرژي به طور جداگانه براي هر فاز نوشته شده و بصورت همزمان حل شده اند. بعلاوه براي شبيه سازي جريان 
مستطيل شکل در نظر گرفته شده است. از آنجا که تعادل حرارتي بين فاز گاز و جامد وجود ندارد  معادلات 
انتالپي گاز ظاهر ميشود. جهت آناليز حرارتي اين مبدل در هر بخش، محيط متخلخل با هندسه دو بعدي 
انرژي تابشي به سمت بخشهاي بازياب گسيل داشته شده جايي كه انرژي تابشي جذب شده بصورت افزايش 
مبدل حرارتي از درون لايه متخلخل دربخش مركزي گذشته و انتالپي گاز  به انرژي تابشي تبديل ميگردد. اين 
بالا و دو بخش بازياب بوده كه در هر كدام از اين بخشها يك لايه متخلخل موجود ميباشد.گاز  داغ ورودي به 
اساس تبديل انتالپي گاز به انرژي تابشي و بالعكس، ميباشد. اين مبدل شامل يك بخش مركزي با درجه حرارت 
چكيده    در اين مقاله يك مدل از مبدل حرارتي متخلخل مورد بررسي قرار گرفته كه اصول كاركرد آن بر 
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thermal radiation emitted towards the two heat recovery sections where the reverse energy conversion from 
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1. INTRODUCTION

Transport phenomena in porous media arise in 
many fields of science and engineering. In recent 
years, porous media have frequently been used in 
high temperature systems, such as heat recovery 
systems, porous radiant burners and porous heat 
exchangers. The technique of energy conversion 
between gas enthalpy and thermal radiation by 
means of porous medium has been studied by 
many researchers [1,2]. When a high temperature 
gas flows through a porous metal plate with high 
porosity, the enthalpy of working gas is effectively 
transformed to the porous medium via an 
extremely high heat transfer coefficient and large 
surface area between the flowing gas and the 
porous plate, and then a large amount of radiant 
energy is emitted in upstream direction by the 
porous plate with strong emissive power. This 
procedure has been used in high temperature heat 
exchangers to enhance the performance of these 
equipments [3]. 
    Average and local surface heat transfer 
coefficients in a cylinder packed with spheres has 
been investigated experimentally by Khoshravan 
[4]. The experimental technique consisted of 
introducing a step-wise change in the temperature of 
air flowing through the bed and recording the 
resulting air and ball temperature transients within 
the bed over a range of Reynolds numbers. Finally, 
an overall correlation of heat transfer with Reynolds 
number was derived.
     Yoshida, et al [5] investigated the transient 
characteristics of heat transfer in porous media. In 
that work, because of high porosity of the porous 
media, the conduction heat transfer in the radiative 
converter was neglected. In the non-radiating gas 
flow analysis, it was assumed that conduction and 
convection occurs simultaneously and integral 
method was used to obtain the net radiative heat 
flux in the porous matrix. Transient heat transfer 
characteristics of an energy recovery system using 
porous media has been investigated by 
Gandjalikhan Nassab [6] in which the two-flux 
radiation model was used to calculate the radiative 
fluxes.
     Based on the energy conversion technique 
between gas enthalpy and thermal radiation, a new 
type of multi layered gas-to-gas porous heat 

exchanger has been proposed by Tomimura et al. 
[7]. A series of experiments have been conducted 
for 2-5 layers and it was clarified that the optical 
thickness of about 8 is enough to obtain sufficient 
heat recovery. 
     A multi-layered type of porous air heater was 
proposed by the author [8]. The proposed system 
has five distinct porous layers which are separated 
from each other by four quartz glass walls. The heat 
of combustion is converted into thermal radiation in 
a porous radiant burner and the energy conversion 
process form thermal radiation into gas enthalpy 
occurred in low temperature sections. In order to 
improve the thermal performance of the system, a 
high temperature section was also considered to 
recover the enthalpy of exhaust gas from PRB 
which otherwise would be wasted. Two-flux model 
was used to describe the radiative flux from the 
solid matrix. Numerical results showed a very high 
efficiency for this type of porous air heater.
     A five-layered porous heat exchanger consisting 
of two high temperature, two heat recovery and one 
low temperature sections have been analyzed by 
Gandjalikhan Nassab, et al [9]. In that work, the 
gaseous radiation was also considered and it was 
shown that in the case of high optical thicknesses 
for porous layers, this type of porous heat exchanger 
has high efficiency. In a recent study by the second 
author, theoretical analysis of a porous radiant 
burner under the influence of a 2-D radiation field 
using discrete ordinates method was carried out 
[10]. In that work, combustion in the porous 
medium was modeled by considering a non-uniform 
heat generation zone. It was found that the layer 
with large aspect ratio and small scattering 
coefficient, operates efficiently to convert the 
energy from gas enthalpy to thermal radiation. Also, 
the results indicate that the temperatures of gas and 
porous media at the outlet section increase as the 
flame location moves downstream.
     In all of the above works, for obtaining the gas 
and  temperature distributions along the porous 
layer, the gas and  energy equations was solved 
numerically, such that the convective term in gas 
energy equation was considered by assuming a 
simple plug flow through porous matrix. Besides, it 
is clear that to achieve an accurate thermal analysis, 
fluid flow simulation in porous medium should be 
considered. Complex geometry of a porous medium 
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makes it difficult to simulate flow using 
conventional methods such as the finite difference, 
finite volume, and finite element methods. The 
lattice Boltzmann method, which is a new method 
for simulating fluid flow and modeling physics in 
fluids, has successfully been applied to simulate 
flow in porous media [11]. Two approaches have 
been adopted in simulations of porous flow using 
LBM; the pore-scale approach and the representative 
elementary volume (REV)-scale approach [12]. In 
the first approach, the fluid through the pores of the 
medium is directly modeled by the standard LBM 
and no-slip bounce-back rule is applied to account for 
interaction between fluid and solid. In the REV 
approach, an extra term is added to the standard LBM 
to show the presence of the porous medium. In 1989, 
three-dimensional flow in complex geometries with 
the lattice Boltzmann method was simulated by Succi 
et al [13]. In that work, Darcy’s law was recovered 
and a preliminary estimation of the permeability 
presented. Numerical simulations of the lattice 
Boltzmann equation in three-dimensional porous 
geometries constructed by the random positioning 
penetrable spheres of equal radii were investigated by 
Cancelliere et al [14] and methods for calculating the 
permeability were presented. A lattice Boltzmann 
description of fluid flow in heterogeneous porous 
media was presented by Spaid and Phelan [15]. In 
that study, the Brinkman equation was also recovered 
through a modification of the particle equilibrium 
distribution function. Guo and Zhao [12], proposed a 

flow in porous media. The key point was to include 
the porosity into the equilibrium distribution 
function, and add a force term in the evolution 
equation to account for the linear and nonlinear drag 
forces of the medium (Darcy and Forcheimer terms). 
Through the Chapman-Enskog procedure, the 
generalized Navier-Stokes equations for
incompressible flow in porous media were derived 
from the lattice Boltzmann model.
     The capability and accuracy of the lattice 
Boltzmann equation (LBE) for modeling flow 
through porous media was investigated by Pan et al 
[16]. In that work, several fluid-solid boundary 
conditions were investigated. They also conducted a 
comparative study of LBE models with the 
multiple-relaxation time (MRT) and Bhatnagar-
Gross-Krook (BGK) single relaxation time (SRT) 
collision operators and found that MRT-LBE model 

is superior to the BGK- LBE model. Yan et al [17] 
numerically studied the porous flow through low 
head loss biofilter medium using the lattice 
Boltzmann method. The constant pressure drop was 
set by giving the same density difference between 
the inlet and outlet of the biofilter and the effects of 
Darcy number and porosity on removal efficiency 
of low head loss biofilter were investigated. Three-
dimensional fluid flow simulations in fibrous media 
were conducted using the SRT LBM by Nabovati et 
al [18]. The fibrous media were constructed by 
random placement of cylindrical fibers with random 
orientations within the computational domain. The 
radius, curvature and length of the fibers were 
varied systematically. It was found that fiber 
curvature has a negligible impact on the 
permeability of the medium.

     According to the literature and to the best of 
authors' knowledge, the thermal characteristics of 
porous heat exchangers have not been obtained by 
solving the flow equation using LBM. The purpose 
of the present work is to develop a mathematical 
model to investigate the thermal and hydrodynamic 
behaviors of a new type of PHE using porous 
media. The heat exchanger consists of three distinct 
rectangular porous segments called HT, HR1 and 
HR2 sections. These segments are separated from 
each other by two quartz glass windows. In the HT 
section, the enthalpy of flowing high temperature 
gas is converted to thermal radiation and in heat 
recovery sections, the reverse energy conversion 
from thermal radiation into gas enthalpy take place, 
such that entering air flow to the heat exchanger is 
heated in two steps in HR1 2

The schematic outline of the system is shown in 
Figure 1. The lattice Boltzmann method is 
employed to obtain the gas velocity field through 
the porous segments. Furthermore, in thermal 
analysis of the PHE, because of the non-local 
thermal equilibrium between gas and solid phases, 
separate energy equations for both phases are solved 
by numerical techniques. To obtain the radiative 
term in the porous energy equation, the radiative 
transfer equation is solved numerically by discrete 
ordinates method (DOM). For validation of 
computational results, comparison is made between 
the present numerical results with those obtained 
theoretically by other investigators for a porous 
radiant burner and good agreement is found.

lattice Boltzmannmodel for isothermal incompressible 

and HR  , respectively. 
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2. THEORETICAL ANALYSIS

The basis of the proposed PHE, which consists of 
one high temperature section and two heat 
recovery sections, is the energy conversion process 
between flowing gas enthalpy and thermal 
radiation, such that similar processes take place in 
all three sections. To save space, only the detailed 
theoretical analysis of the HT section is detailed 
here; similar methods are applied to heat recovery 
sections. In Figure 2, a schematic diagram of the 
flowing gas passing through a porous segment is 
shown. A high porosity non-homogeneous 
rectangular porous segment with the dimensions 

xL and yL is located in the region xLx 0

through the channel. To ensure the two 
dimensionality of the problem, dimensions of the 
channel and porous medium in normal direction to 
the gas flow (not shown here) are remarkably 
large. The HT gas flow with uniform velocity and 

ixx  . The incoming radiation fluxes 1B and 2B

from upstream and downstream directions are 
considered as incident radiation to the porous 
segment. The porous medium is considered as a 
radiating medium that emits, absorbs and scatters 
thermal radiation while gaseous radiation is 
neglected in comparison to solid radiation. 
Therefore, radiation is considered only between the 
particles that comprise the porous segment. All 
thermo physical properties of the solid and gas 
phases are assumed constant. To obtain thermal 
behavior of the proposed PHE, the gas velocity 
distribution through porous segments is needed. 
This part of simulation is carried out by employing 
the lattice Boltzmann method.

2.1. Hydrodynamic Computations by Means 
of Lattice Boltzmann Method
2.1.1. Theory of lattice boltzmann method   In 
the present work, the lattice Boltzmann equation 
with the multiple-relaxation-time (MRT) is used 
[19,20],

1 ˆ( , ) ( , ) . . ( , ) ( , )eq
i i ix e t t t x t M S u x t         f f m m

(1)
in which  and u are the macroscopic density and 
velocity respectively, the bold face symbols such 
as f stand for 9-component vectors; 9 is the 

Figure 1. Schematic diagram of a three-layered porous heat 
exchanger.

Figure 2. Schematic sketch of a single layer of the PHE.

temperature distribution enter the channel at
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number of discrete velocities, as follows:

 0 1 8, ,.....,
T

f f ff (2)

 0 1 8( ) ( ), ( ),....., ( )
T

i i i ix e t f x f x e t f x e t     f

(3)

0 1 8( , ,....., )m m mm (4)

0 1 8( , ,....., )eq eq eq eqm m mm (5)

where T denotes the transpose operator. In 
f is the 9-component vector of the 

discrete distribution functions, m and eqm are 9-
component vectors of moments and their 

equilibria, M is the transformation matrix and Ŝ is 
the diagonal matrix of relaxation rates.
     The nine-velocity square lattice Boltzmann 
(D2Q9) model has widely and successfully been 
used for simulating two-dimensional flows (Figure
3). In the (D2Q9) model, e denotes the discrete 
velocity set, namely,

)0,0(0 e (6a)

4,3,2,1)1,0()0,1(   forcandce (6b)

8,7,6,5)1,1(   fore (6c)

where txc  , x and t are the lattice spacing 
and the time increment which are assumed to be 
unity.
     The moments are arranged in the following 
order:

( , , , , , , , , )T
x x y y xx xye j q j q p p m (7)

where 0m is the density, em 1 is related to 
the total energy, 2m is related to energy square, 

),(),(),( 53 yxyx uujjmm  is the flow 

momentum, ),(),( 64 yx qqmm  is related to the 

heat flux, and xxpm 7 and xypm 8 are related to 

the diagonal and off-diagonal components of the 
stress tensor, respectively. 
     The macroscopic density and momentum on 
each lattice node are calculated using the following 
equations:





8

0
 f (8)

8

1

e f 





 j u (9)

In addition, in Equation 1, the equilibrium 
moments are:

)(32 22
yx

eq jje   , )(3 22
yx

eq jj   (10)

x
eq
x jq  , y

eq
y jq  (11)

22
yx
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xy jjp  (12)

The transform matrix is given as follows [19]:
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000011110

111120200

111110100

111102020

111101010

111122224

222211114

111111111

M (13)

This matrix maps the distribution functions to their 
moments in the following form:

1. , .M M  m f f m (14)

The diagonal matrix Ŝ of relaxation rates is is 
given by:

),,,0,,0,,,0(ˆ
876421 ssssssdiagS  (15)

Figure 3. A 2-D 9-velocity lattice (D2Q9) model.

Equation 1,
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where the relaxation rates /187  ss determines 
the dimensionless viscosity of the model:

tcs  2)
2

1
(  (16)

The speed of sound in D2Q9 model is 3ccs  . 
Pressure and density are related to each other by 
the equation of state for an ideal gas, 2

scP  . 
Other relaxation rates 21,ss and qsss  64 are 

usually indicated by linear stability of the model 
[19]. In addition, the no-slip boundary conditions 
will also determine the choice of 64 ss  [16].
     With the above equilibrium moments, if all 
relaxation rates are set to be a single value /1 , 

i.e., IS 1ˆ  , where I is 99 identity matrix, then 
the model is equivalent to an LBGK model with 
the following equilibrium distribution function:

].
2

3
).(

2

9
.

3
1[

2
2

42
)( uu

c
ue

c
ue

c
wf eq    (17)

For D2Q9 model, the coefficients 9/40 w , 
9/1iw for 41i , and 36/1iw for 85i .

2.1.2. Methodology for simulating fluid flow in 
2-D porous media   In the present study, the fluid 
flow in two-dimensional random porous media is 
simulated at pore level scale using LBM. The 
problem under consideration is depicted in Figure
2. The channel is divided into three sections I, II 
and III. Two-dimensional square obstacles with 
random distribution are placed in section II 
between two parallel plates to produce desired 
porosity. The random generator must distribute 
solid obstacles in the domain monotonously with 
free overlapping and its porous generation differs, 
when it runs at different times. A void fraction 
function P(x) is used to differentiate solid nodes 
from fluid nodes:






solid

fluid
xP

1

0
)( (18)

To solve Equation 1, suitable boundary conditions 
should be considered. The boundary conditions are 
specific velocity and pressure at the inlet and outlet 
sections, respectively; no-slip boundary condition 
at solid-fluid interactions (upper and lower walls 

and solid-fluid boundaries in the interior domain). 
Since, in the lattice Boltzmann computations, the 
unknowns are distribution functions, therefore, 
these boundary conditions should be represented in 
the form of distribution functions.  At the inlet and 
outlet sections of the domain, the method proposed 
by Lim et al. [21] is used to demonstrate the given 
boundary conditions in terms of the distribution 
functions as follows:
Inlet boundary conditions:

),,0,0,,(),,0(

),,0,0,,(),,0(

),,0,0,,(),,0(

88

22

11

tyxuuftyxf

tyxuuftyxf

tyxuuftyxf

inlet
eq

inlet
eq

inlet
eq













(19)

Outlet boundary conditions:

tyLXxuftyLXf

tyLXxuftyLXf

tyLXxuftyLXf

out
eq

out
eq

out
eq

,,,,,(),,(

),,,,,(),,(

),,,,,(),,(

66

44

55













(20)

Owing to the specific velocity boundary condition 
at the inlet, the values of vu, are known at this 
nodes and the density values are extrapolated from 
the flow domain whereas at the outlet, density 
values are given due to the equation of state, and 
the u- and v-values are obtained using a second 
order extrapolation from the interior domain.  The 
bounce-back boundary condition is used at lower 
and upper walls and the solid-fluid interaction in 
the interior domain:

),(),( txfttxf ff    (21)

where fx is the fluid node next to the boundary 

location bx and  ee  . It was shown that the 
no-slip boundary location is precisely on half 
lattice spacing beyond the last flow node, if the 
following relation is satisfied [16]:

 
 



s

s
sq 




8

2
8 (22)

in which  /187  sss determines the shear 

viscosity and qsss  64 is the relaxation rate for 

xq and yq . It is obvious that the single-relaxation-

time collision model can not satisfy this condition.
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     These boundary conditions with the evolution 
equation (Equation 1) are used to simulate fluid 
flow in the porous medium.

2.1.3. Results and confirmation of the fluid flow 
computations   This section shows the main 
results of the fluid flow simulation. Dimensions of 
the channel were chosen 203.009.0 m

)( heightlenght  and obstacle size )( pd was 0.4

mm (4-lattice unit). Calculations were performed 
using 300900 lattice nodes for 450Re xL . 

Porosity was assumed to be 0.9 in this study. 
     Velocity profiles along x-axis at different cross 
sections through the channel are shown in Figure
4. Moreover, to demonstrate the effect of obstacles 
on the fluid flow, the zoomed observation of the 
velocity field and streamlines in the porous 
medium are shown in Figures 5a, 5b. The effect of 
solid particles on flow distribution is clearly seen 
in these figures.
     To verify the numerical results, the non-
dimensional pressure drop )( dXdP along the 
porous medium was compared with the results of 
other investigators. In order to calculate

)( dXdP , the non-dimensional pressure 
difference between the inlet and outlet of the 
porous matrix is divided by its non-dimensional 
length. The inlet and outlet fluid pressures are 
determined using the following equation  

max

max

1

j

P

P

j

j
j

 (23)

out using Darcy law with Forchheimer term which 
is as follows [22-24]:

2
00

.
~

gg uAuP 



 (24)

where parameter A in Equation 24 is an empirical 
function given by:

pd
A

3

)1(75.1




 (25)

To determine the permeability , the two 
following forms are used:

Figure 4. Velocity vectors in a duct including porous segment, 
450Re 

xL
.

(a)

(b)

Figure 5. (a) Vector field inside the porous medium, (b)
streamlines inside the porous medium, 9.0 .

In addition, pressure drop computations are carried 
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The non-dimensional pressure gradient )( dXdP
through the porous medium versus pRe for 9.0

is shown in Figure 6. It is seen that there is quite a 
good agreement between the pressure drop 
calculations of the present analysis and those 
calculated based on Equation 24.
     In addition, to investigate the grid dependency 
of the results, three different sizes of domain and 
obstacles were used: 44 obstacles in a 120360
domain, 55 obstacles in a 150450 domain and 

66 obstacles in a 180540 domain. The non-
dimensional pressure gradients for these three grids 
are summarized in Table 1. The difference between 
second and third grid is below %1 . Therefore, we 
use the second one to validate our results. In 
addition, we created 12 media with different 
random obstacle placement for 150450 domain 
and the Reynolds number of 450. The mean non-
dimensional pressure gradient and standard 
deviation for these media are shown in Table 2. 
The comparison between the non-dimensional 
pressure gradient for the random and uniform 
porous medium in Table 1 and the mean non-
dimensional pressure gradient for these media 
shows relatively good agreement.

2.2. Thermal Computations 

2.2.1. Governing equations   Since the gas and 
solid phases are not in local thermal equilibrium, 
separate energy equations are needed to describe 
energy transfer in these two phases. To this end, 
the gas and porous media energy equations are 
obtained with volumetric averaging, but for only a 
small control volume V that contains a number of 
solid particles. Besides, the energy balance for the 
gas flow and the solid phase are written by 
considering the convective energy transfer between 
two phases with a known convection coefficient. 
This coefficient which is a function of gas velocity 
and particle size is calculated by empirical 
equations given in Ref. [25].

     The energy equations for gas and solid phases 
along with the radiative transfer equation can be 
written in non-dimensional forms as follows:
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Figure 6. Variation of non-dimensional pressure 
gradient with 

pdRe along porous medium ( 9.0 ).

Grid Obstacle Non-Dimensional 
Pressure Gradient

120360 44 9890.17

150450 55 5135.16

180540 66 4015.16

Porosity
Mean Non-

Dimensional 
Pressure Gradient

Standard 
Deviation (%)

0.9 17.5418 6.47

TABLE 2. Mean Non-Dimensional Pressure Gradient and 
Standard Deviation For Different Media.

TABLE 1. The Non-Dimensional Pressure Gradient for 
Different Grids.



IJE Transactions A: Basics Vol. 24, No. 3, September 2011 - 309

0)(.)1( 3

*

2

2

2

2

2 





















 pgrad

y

p

x

p PQP 







 (29)

 

  












4

'*2*
1

*
0

*
*

)ˆ,ˆ,()ˆ,(
4

)(ˆ,

ˆ,.̂

dssrsrIrIsrI

srIs

b




(30)

It should be noted that all variables and non-
dimensional parameters used in these equations 
and their boundary conditions are given in the 
Nomenclature.
     The non-dimensional divergence of radiative 

heat flux, radQ.
*
 , can be obtained from the 

radiative transfer equation (Equation 30) and is 
written in the following form: 


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Solving Equation 30 leads to find unknown 
intensities, which are used for obtaining the 
radiative heat flux inside the medium as follows:

  dssrIrQrad ˆ)ˆ,()(
4
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


(32)

2.2.2. Boundary conditions   In order to solve the 
governing equations, the following boundary 
conditions are employed.
Gas phase boundary conditions:
     The following boundary conditions are applied 
at four boundary surfaces
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Solid phase boundary conditions:
     For the solid energy equation, two energy 

balances at the inlet and outlet sections give the 
following two boundary conditions: 
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On the upper and lower walls, the following 
boundary conditions are considered:
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Radiative transfer boundary conditions:
To solve the radiative transfer equation, 
appropriate boundary conditions are needed which 
are as follows:
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3. SOLUTION METHOD

SN

Approximation)   The discrete ordinates method, 
which is a numerical and straightforward technique 
to solve the radiative transfer equation (RTE), 
transforms the equation of transfer into a set of 
partial differential equations [26]. This method is 
based on a discrete representation of the radiation 

3.1. Discrete Ordinates Method (
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intensity in specified directions. The notation NS

approximation indicates that N different direction 
cosines which are used for each principal direction, 
such that )2(  NNn different directions should 
be considered for all radiant intensities. According 
to this method, the general equation of transfer 
(Equation 30) is solved for a set of n different 
directions iŝ , i=1, 2,…, n, along the total solid 

angle range of 4 , such that the integrals over 
direction are replaced by quadratures as follows:

 
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
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1

)ˆ()ˆ(
n

i
ii sfwdsf (45)

where the iw s are the quadrature weights 
associated with the directions iŝ . 
     Therefore, the RTE is approximated by a set of 
n differential equations as follows:
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Once the intensities have been determined in the 
desired directions, integrated quantities can be 
readily calculated. Then, the radiative flux method 
inside the medium may be found from:
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For the two-dimensional Cartesian coordinates 
system, Equation 46 becomes
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in which mandm  denote outgoing and incoming 
directions, respectively.
The following equation can be obtained for 
computing radiant intensity by differentiation of 
the above equation:
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The numerical solution of Equation 48 can be 
started with the black body assumption for the 

boundaries with neglecting the source term *S . In 
the following iterations, the general form of 
Equation 48 and its boundary conditions are 
applied. This procedure is repeated until the 
convergence criterion is met. Finally, from the 
radiative intensities obtained by Equation 49, the 
divergence of the radiative heat flux can be 
calculated from the following equation:











 






m

m
brad

m

IwIQ **
1

*

4

1
4.


 (50)

The details of numerical solution of RTE by DOM 
were also described in the previous work by the 
author in which the thermal characteristic of 
porous radiant burner were investigated [8]. 

of governing equations are solved numerically to 
obtain the temperature and radiative heat flux 
distributions in three sections of the PHE. 
Equations 28 to 30 are coupled and should be 
solved simultaneously. To this end, the finite 
difference forms of gas and solid energy equations 
are obtained using central differencing for 
derivative terms where the error of discretization is 
of the order of 2x and 2y . 
     To solve the gas energy equation (Equation 28), 

3.2. Solution Strategy      Non-dimensional forms 



u- and v- velocity components at each nodal point 
through the porous medium are needed. These 
values are obtained using the lattice Boltzmann 
method. As mentioned in section 2.2.1, the energy 
equations are written by integral method, but for a 
differential control volume of )( dydx that 
comprises a number of solid particles based on the 
medium porosity. Considering this point, each 
control volume contains some pore and void nodes. 
Velocity values at these nodes are obtained using 
LBM and then by averaging the velocities of these 
nodes at each control volume (volume-averaged 
velocity), one can obtain the velocities that are 
used in gas energy equation. It should be noted that 
gas and solid energy equations along with radiative 
transfer equation are solved after the time-
independent velocity are obtained by the lattice 
Boltzmann method. In addition, the radiative 
transfer equation is solved using discrete ordinates 
method, as mentioned before, to obtain the 
radiative term in the porous energy equation.
     The sequence of calculations can be summarized
as follows:

1. A first approximation of each dependent 
variable g and p is assumed.

2. The finite difference form of the radiative 
transfer equation is solved using S6

approximation to obtain the values of *I , 

radQ and radQ. at each nodal point.
3. The solid energy equation is solved to 

determine porous temperature p using the 

values of radQ. obtained in step 2.
4. The values of g are computed by numerical 

solution of the gas energy equation.
5. Steps 2-4 are repeated until convergence is 

achieved. This condition was assumed to be 
achieved when the fractional changes in the 
temperature and radiative intensity between 
the two consecutive iteration levels did not 
exceed 610 at each nodal point.

     To fulfill the grid independent solution, a 
uniform grid of 6080 nodal points in the 
computational domain is used.

3.3. Thermal Analysis of the Proposed PHE   As 
shown in Figure 1, the PHE under investigation 

consists of HT, HR1 and HR2 sections. In the HT 
section, the enthalpy of HT gas flow is effectively 
converted into thermal radiation and in two heat 
recovery sections the reverse conversion process 
from thermal radiation into gas enthalpy takes 
place. 
     In the preceding sections, the governing 
equations with the method of solution for 
analyzing a single porous layer were described in 
detail. In the structure of the proposed PHE, there 
are three layers that are similar to each other. 
Therefore, to analyze the proposed PHE, the same 
method that was used for a single porous layer in a 
duct can be applied to each of the three sections. 
Moreover, the temperature of the inlet gas into the 
HT, i.e.

0gT , is considered as the reference 

temperature for all sections

     In the numerical solution of each layer, the 
values of incoming radiations 1B and 2B , which are 
the boundary conditions for the radiative transfer 
equation, are needed to solve the RTE. In contrast, 
these incoming radiative fluxes are indeed the 

recaptured radiations )0( 


xradQ  and )1( 


xradQ 
emitted from the adjacent layers, which are 
unknown before solving the set of governing 
equations. Therefore, the coupled set of governing 
equations for all sections must be solved 
simultaneously by an iterative method until the 
convergence criterion is met.  The sequence of 
calculations can be stated as follows:

1. A first approximation of incoming radiations 

1B and 2B to the HT section is assumed.
2. The coupled set of governing equations for 

the HT section are solved to calculate the 

values of


radQ ,


radQ , g and p at each 

nodal point.
3. To analyze the HR1 section, the value of 2B

as a boundary condition is needed. This 
parameter is equal to the emitted radiation 
from exit section of the HT layer, i.e. 

)1( 


xradQ  (obtained in step 2), multiply to 

layers. Using this value, the coupled     
governing equations for the HR1 section are 
solved. A similar procedure is applied to the

the configuration factor between two adjacent     
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HR2 section, but the value of 2B is the 
emitted radiation from the entrance section 

of the HT layer, i.e. )0( 


xradQ  . It is 
assumed that the value of incident radiation 

1B for both HR1 and HR2 sections is the 
reflected part of the incident radiation 
(irradiation) to the insulated walls according 
to the configuration factor between the 
entrance section of the HR1 and HR2 layers 
and insulated walls.

4. Using the computations in step 3, 
assumptions that was made for 1B and 2B

will be modified.
5. Steps 2 to 4 are repeated until convergence 

criteria for all variables are fulfilled.

4. VALIDATION OF THE COMPUTATIONAL 
RESULTS

Since, we could not find any theoretical or 
experimental results for such a two-dimensional 
PHE in literature, the theoretical results of a 2-D 
porous radiant burner are used to validate the 
computer code written for the purpose of 
computations of the porous heat exchanger. It 
should be noted that the non-dimensional form of 
the governing equations for the porous radiant 
burner are the same as those used for the PHE 
apart from an additional term )(6 xP  that 

includes the heat generation term )(Q in the 
combustion zone of the radiant burner which must 
be added to the gas energy equation, where 6P and

)( x are as follows:
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Dimensions of the test case under consideration are 
1.0,1.0  yx LL and the thickness of the heat 

generation zone )( flamex was set to m01.0 . Table

3 shows the values of non-dimensional parameters 
used for this test case.

   The values of gas temperature along the mid-
plane section )5.0( y of the burner are shown in 

Figure 7. It is seen that the incoming air-fuel 
mixture is preheated by radiation in the upstream 
region of the combustion zone. The maximum 
temperature occurs inside the heat generation 
domain after which the gas temperature decreases 
by converting gas enthalpy into thermal radiation. 
As Figure 7 shows, there is a good agreement 
between the present results and those obtained 
theoretically in Ref. [27], even though different 
radiation models are used for radiation 
computations.

5. RESULTS AND DISCUSSION

Based on the principal of energy conversion 
between gas enthalpy and thermal radiation, a new 
type of three-layered porous heat exchanger was 
analyzed here. A schematical illustration of this 
PHE has been shown in Figure 1. Two Quartz 
glass windows are used to separate the porous 
layers from each other. Since the temperature of 
porous layers is not too high, a great part of 
emitted energy from porous media lies in the range 
of long wavelength (infrared). It should be noted 
that the wavelength range in thermal radiation is 
from about 0.1 to 100 m , therefore a special glass 
type as Hoya R-72 IR filter, which passes 
completely the wavelength of 720 nm and above is 
a suitable choice for this application [9]. Regarding 
the high transparency of this glass type for thermal 
radiation, it is assumed in the computations that the 
whole incident radiation towards the glass walls is 
completely transmitted without any reflection, 
absorption or emission.
     The values of non-dimensional parameters of 
the present study have been given in Table 4.
In three sections of the 2-D rectangular PHE under 
consideration, boundaries at locations 0y and 

1y are kept insulated. Working gas temperature 

at the inlet section of the HT layer is 1000 K 
except for the case in which the effect of HT gas 
flow temperature on the performance of the PHE is 
studied. In addition, the value of aspect ratio 

yx LLr  is always kept at 1. In the analysis of the 

present PHE, there are many independent 
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parameters, but it is possible to present only some 

results for a wide range of conditions. 

     The gas and solid temperature distributions, g

and p , and also the variation of radiative fluxes 
 

y

sections of the PHE with 10  have been shown 
in Figure 8. It can be seen that in the HT section, 
the gas enthalpy is converted into thermal radiation 
because of the sharp temperature decrease in the 

gas flow, and the recaptured radiations )0( 


xradQ 

and )1( 


xradQ  are emitted into the porous layers 
in the HR1 and HR2 sections. As Figures 8b, 8c 
show, the porous medium in these sections is 
heated by absorbing the incoming radiations and 
the low temperature airflow is effectively heated 
by the reverse conversion from thermal radiation to 
gas enthalpy in two steps by passing through HR1

and HR2 sections, respectively. It is seen that in all 

greater than the temperature of porous media in HT 
section and the reverse state is seen in HR1 and 
HR2 sections.
     Gas temperature contours of the HR2 section of 
the PHE have been shown in Figure 9. It is seen 
that, there is not any considerable variation in gas 
temperature along the y-axis. Furthermore, the 
non-regular curvature of the isotherms is because 
of the random variation of gas velocity according 
to the random location of square cylinders in 
different locations. In addition, the gas temperature 
rise along the flow direction can easily be seen 
through the porous segment.
     Figure 10 shows schematically an example of 
the inlet and outlet gas temperature in each section 
of the PHE under consideration for 1000 K level of

0gT . Here, in this figure, each section corresponds 

to the space between vertical lines, which 
symbolically represent the separating and insulting 
walls. The arrows represent the flow directions of 
the HT, HR1 and HR2 sections. This figure also 

sections is the same and opposite to the flow 
direction in HR1 section. Besides, it can be inferred 
from Figure 10 that the higher optical thickness 
results in more decrease in the temperature of 

TABLE 3. Non-Dimensional Parameters of the Test Case from 

Talukdar, et al [27].

Parameter Value

1P 102.80

2P 666.45

3P 3.33×104

4P 0.00

5P 0.00

6P 103.48
Pe 38.91
Nu 400.00
Bi 5.00

1B 1.00

2B 1.00
 0.00

Figure 7. Gas temperature distribution along the porous radiant 
burner with uniform heat generation.

TABLE 4. Non-Dimensional Parameters of the Present Heat 
Recovery System [27].

Parameter Value

1P 61073.2 
2P 88.5

3P 61023.10 
4P 00.0
5P 00.0

Pe 34.88
Nu 69.2074
Bi 00.15

1B 00.0
2B 00.0

Q and Q along the mid-plane (  0.5) of three 

shows that the flow direction in the HT and HR2

three sections, the gas and porous temperature  
are very close to each other owing to the large  
convection oefficient such that the gas temperature is 
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working gas of HT section and also more increase 
in the ones of HR1 and HR2 sections.
     In order to show the effect of scattering albedo 
on the gas temperature distribution of HT and 
recovery sections, variation of gas temperature 
along the mid-plane )5.0( y of HT and HR2

sections with scattering albedo has been shown in 
Figure 11. Figure 11a shows that increasing of

(a)

(b)

(c)

Figure 8. Distribution of gas and porous media temperature 
and radiative heat flux along the mid-plane of three layers of 
the PHE.

Figure 9. Gas temperature contours of the HR2 section
3,0 0  

Figure 10. Schematic representation of the effect of optical 
thickness on the gas temperature distribution in each section.
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(a)

(b)

scattering albedo led to less temperature drop of 
working gas along the HT section which causes 
less energy convertion from gas enthalpy to 
thermal radiation. It can also be seen from Figure
11b that scattering albedo results in less 
temperature rise in the HR2 section.
     In the present study, the efficiency of PHE is 

also computed to obtain the thermal performance 
of this system. Figures 12 and 13 show the effect 
of 0 ,  and inlet gas temperature to the HT 

section,
0gT , on the PHE efficiency which is 

generally defined by the following equation:
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ggg
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Where
.

am ,
.

gm , ac and gc are the mass flow rate 

and the specific heat at constant pressure of the air 
and gas flows, respectively. Also, aT is the air 
temperature increase along HR1 and HR2 sections 
and T is the ambient temperature which is equal 
to 300 K. Because in the computations, the 
physical properties of gas and air are considered 
equal to each other, with the same velocity along 
porous layers, the non-dimensional form of 
Equation 51 can be summarized as follows:

)1(
21 ,










 HRHR a

It can be seen from Figure 12 that the PHE 
efficiency decreases with increasing scattering 
albedo. This figure also shows that the PHE 
efficiency increases with increasing the optical 
thickness of porous layers such that the optical 
thickness of about 4 seems to be enough to obtain 
the sufficient efficiency. In addition, the effect of 

0gT on the efficiency of PHE has been shown in 

Figure 13. Comparison between efficiency curves 
shows that the PHE efficiency increases when the 
temperature of inlet gas flow into the HT section 
becomes very high, especially for large optical 
thicknesses. It should be noted that as it is seen in 
Figure 13, this type of heat exchanger has very 
high efficiency which is well above that of 
conventional heat exchangers which is about 25 %.

(52)

2Air temperature rise of the HR layer at mid-plane section.
temperature drop of the HT layer at mid-plane section and (b) 
Figure 11. The effect of scattering albedo on the: (a) Gas 
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6. CONCLUSIONS

Fluid flow simulation and thermal analysis of a 2-
D porous heat exchanger was performed in the 
present study. This system, which works based on 
energy conversion between gas enthalpy and 
thermal radiation, has three distinct layers that are 
separated from each other by two quartz glass 

walls. The energy conversion from gas enthalpy to 
thermal radiation takes place in HT section and the 
reverse conversion process occurs in recovery 
sections. The lattice Boltzmann method was used 
to simulate fluid flow through porous layers. 
Besides, heat transfer characteristics of the 
proposed PHE were investigated by solving the 

to determine the radiative heat flux distribution 
along porous layers. Furthermore, the effect of 
optical thickness and scattering albedo on the gas 
temperature distribution of HT and recovery 
sections and the efficiency of PHE was studied. It 
was found that this type of PHE has higher 
efficiency when porous layers with higher optical 
thickness and lower scattering albedo are used in 
the structure of the PHE. Finally, the effect of inlet 
gas temperature into HT section on the PHE 
efficiency was studied. Overall, the results show 
that this type of heat exchanger is efficient, 
although it has a very simple structure.

7. NOMENCLATURE

A surface area per unit volume ( 3

2

m
m )

2,1B incoming radiations  ( 2/ mW )

2,1B
non–dimensional  incoming radiations, 

4
g 0

T/2,1 B

Bi Biot number, px khL

sc sound speed

gc specific heat of gas  ( CkgJ / )

pd obstacle size )(m
e total energy

e discrete particle velocity in LBM
f density distribution function

F fraction function

h
convective heat transfer coefficient 
( CmW 2/ )

I intensity ( 2/ mW )
*I non-dimensional intensity, 4

g 0
T/I

j index of grids in y-direction

maxj number of grids in y-direction

Figure 12. The effect of  ,0 on the PHE efficiency

Figure 13. The effect of
0

,0 gT on the PHE efficiency 

0 .

governing equations with the discrete ordinates method 
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xj flow momentum in x direction

yj flow momentum in y direction

g
K gas thermal conductivity  ( CmW / )

p
K solid thermal conductivity  ( CmW / )

x
L length of the porous medium )(m

y
L height of the porous medium )(m

m moment
Nu Nussult number, gx khL

P non-dimensional pressure, 2
0

~
guP 

P
~ pressure )( pa

xxp diagonal component of the stress tensor

xyp off-diagonal component of the stress 
tensor

1P
dimensionless group, 

).(
0

yxucAhL gggx 

2P dimensionless group,
3

0g

L
K

T
x

p



3P dimensionless group, ).(3
0

yxTAhL gx 

4P dimensionless group, pxw kLh
p

5P dimensionless group,  gxw kLh
g

Pe Peclet number, gxggg kLcu
0



radq radiative heat flux  ( 2/ mW )

xq heat flux in x direction

yq heat flux in y direction

radQ
dimensionless radiative heat flux, 

4
0grad Tq 

r aspect ratio, yx LL

xLRe Reynolds number, xg Lu
0

pdRe Reynolds number, pg du
0

iŝ direction vector in RTE

T temperature ( C )

T ambient temperature ( C )

`0gT gas temperature at duct's inlet ( C )

gu velocity along x direction ( sm / )

0gu gas velocity at duct's inlet  ( sm / )

gv velocity along y direction ( sm / )


U non-dimensional x velocity, 
0guu



V non-dimensional y velocity, 
0guv

x
coordinate along the flow direction 

)(m

X non-dimensional length, yx LL

y coordinate perpendicular to the flow 
direction )(m

Greek Symbols

 particle velocity direction
 extinction coefficient, sa  
*


non-dimensional gradient operator,  

xL

x grid spacing along x-axis )(m
y grid spacing along y-axis )(m

x
 non-dimensional grid spacing along x-

axis, xLx

y
 non-dimensional grid spacing along y-

axis, xLy

t time step
x lattice spacing
 energy square
 emissivity

x non–dimensional x coordinate, xLx

y non–dimensional y coordinate,  xLy

 kinematical viscosity )( 2 sm
 porosity
 scattering phase function

g gas density )( 3 kgm

w wall reflection coefficient


Stephan-Boltzmann coefficient

)( 42Kmw

a absorption coefficient )( 1m

s scattering coefficient  )( 1m

pg ,
non–dimensional temperature,   

0, gTpgT

 non-dimensional relaxation time

0 optical thickness, xL

1 non-dimensional parameter, xaL
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2 non-dimensional parameter, xsL
w weighting constant

Subscripts

b black body
B bottom
e exit of the porous matrix
g gas
i inlet of the porous matrix
p solid
T top

Superscripts

eq equilibrium
in incoming velocity direction
m outgoing radiation direction
m incoming radiation direction
out outgoing velocity direction
 downstream direction
 upstream direction

Abbreviations

DOM discrete ordinates method
HR heat recovery
HT high temperature
LBM lattice Boltzmann method
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