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TECHNICAL NOTE
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Abstract   The primary function of the suspension system of a vehicle is to isolate the road excitations 
experienced by the tires and prevent them from being transmitted to the passengers. In this paper, we 
formulate an optimal vehicle suspension design problem with the quarter-car vehicle dynamic model. A 
new multi-objective genetic algorithm is used for Pareto optimization of a two-degree of freedom 
vehicle vibration model considering the two conflicting functions simultaneously. The important 
conflicting objective functions that have been considered in this work are, namely, sprung mass 
acceleration and relative displacement between sprung mass and tire. Comparison of the results with 
those reported in literature demonstrates the superiority of the presented method. It is shown that the 
results of 2-objective optimization provide more non-dominated choices for designers for optimal design 
of a product to select appropriate choices regarding the condition and purpose of using a vehicle.

Keywords   Multi-objective Optimization, Genetic Algorithm, Pareto Design, Vehicle Vibration 
Model

1. INTRODUCTION

Great amount of research activities during last 

decades has been directed to vibration control of 
machines run by engines. In particular, in 
automobiles, motions are influenced by the harmful 

و بهينه ترين نقطه را انتخاب نمايد  و نوع كاربرد خودرو، مناسب ترين دهد تا طراح بتواند با توجه به شرايط
مي نقاط غيربرتر در نمودار پارتو ارائه شدهاند. اين نمودار گزينه هاي غيربرتر زيادي را در اختيار طراحان قرار
، برتري روش مذكور را نشان مي دهند. نتايج حاصله از بهينه سازي دو تابع هدف، به صورت كارهاي انجام شده
و تاير. مقايسه نتايج بدست آمده از روش پيشنهادي در اين مقاله با ديگر جابجايي نسبي بين جرم فنربندي شده
و و دو تابع هدف متضاد، ارائه مي گردد. اين توابع هدف عبارتند از شتاب جرم فنر بندي شده درجه آزادي
دو بهينه مي گردد. با استفاده از يك الگوريتم ژنتيك چند هدفه جديد، نمودار پارتو براي مدل ارتعاشي مذكور با
و و مسافر مي باشد. در اين مقاله، يك سيستم تعليق داراي معادلات ديناميكي يك چهارم خودرو، مدل سازي بدنه
به و عدم انتقال آن اولين وظيفه سيستم تعليق خودرو، ايزوله كردن ارتعاشات ناشي از تماس تاير با جاده �����
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effects of vibrations caused by engines and roads 
which have a pivotal role in driver's comfort. Griffin 
et al [1], Rakheja [2], and Barak [3] have shown that 
the interior vibration of a vehicle has a significant 
effect on comfort and road holding capability. To 
reduce this type of vibration, manufacturer's efforts 
have led to a suspension system installed between 
road excitation and vehicle body. Bouazara [4] 
studied the influence of suspension system 
parameters on the vibration of a model vehicle. In 
the same year, Hrovat [5] used a three-dimensional 
vibration model instead of the two-dimensional 
model to get more exact results. Crolla [6] applied a 
semi-active suspension model for improving the 
performance of vehicle. Bouazara and Richard [7] 
presented their vibration model in three-dimensional 
space demonstrating that this model has a good 
simulation of the vehicle behavior. Bouazara, et al 
[8] also studied three types of suspension systems 
(active, semi-active and passive) for an eight-degree 
of freedom vibration model. In that work, they 
combined all the performance criteria to form an 
objective function for a single-objective 
optimization process. For this purpose, they used 
weighting coefficients to adjust comfort and road 
holding capability criteria in the single-optimization 
design process. Gundogdu [9] presented an 
optimization of a four-degree of freedom quarter car 
seat and suspension system using genetic algorithms 
to determine a set of parameters to achieve the best 
performance of the driver's seat. The desired 
objective was proposed as the minimization of a 
multi-objective function formed by the combination 
of not only suspension displacement and tire 
deflection, but also the head acceleration and crest 
factor (CF), which is not usually practiced by 
designers. Alkhatib, et al [10] applied genetic 
algorithm to the optimization problem of a linear 
one-degree of freedom (1-DOF) vibration isolator 
mount, and the method was extended to the 
optimization of a linear quarter car suspension 
model. The optimum solution was obtained 
numerically by utilizing GA and employing a cost 
function that sought minimizing absolute 
acceleration RMS (Root Mean Square) sensitivity to 
changes in RMS of relative displacement. 
     In fact, it is necessary for this type of the 
practical engineering applications to solve the 
optimization problems involving multiple design 
criteria. However, the design criteria of these 

practical engineering problems, which are called 
objective functions, may conflict with each other 
so that improving one of them will deteriorate the 
other. The inherent conflicting behavior of such 
objective functions lead to a set of optimal 
solutions named Pareto [11-14].
     V. Pareto was the French-Italian economist who 
first developed the concept of multi-objective 
optimization in economics Pareto [15]. The concept 
of a Pareto front in the space of objective functions 
in multi-objective optimization problems (MOPs) 
stands for a set of solutions that are non-dominated 
to each other, but are superior to the rest of solutions 
in the search space. Evidently, changing the vector 
of design variables in such a Pareto optimal 
solutions consisting of these non-dominated 
solutions would not lead to the improvement of all 
objectives simultaneously. Consequently, such a 
change leads to a deterioration of at least one 
objective to an inferior one. Thus, each solution of 
the Pareto set includes at least one objective inferior 
to that of another solution in that Pareto set, 
although both are superior to others in the rest of the 
search space. The inherent parallelism in 
evolutionary algorithms makes them suitably 
eligible for solving MOPs.
     The early use of the evolutionary search has been 
first reported in 1960s by Rosenberg [16]. Since 
then, there has been a growing interest in devising 
different evolutionary algorithms for MOPs. 
Amongst these methods, the vector-evaluated 
genetic algorithm (VEGA) [17], Fonseca and 
Fleming’s genetic algorithm (FFGA) [13], strength 
Pareto evolutionary algorithm (SPEA) [18] and the
Pareto-archived evolution strategy (PAES) [19] are 
the most important algorithms. A very good and 
comprehensive survey of these methods has been 
presented in [20,21]. Coello Coello has also 
presented an Internet-based collection of many 
papers as very good and easily accessible literature 
resources [22]. Basically, both NSGA and FFGA as 
Pareto-based approaches use the revolutionary non-
dominated sorting procedure originally proposed by 
Goldberg [23].
     There are two important issues that have to be 
considered in such evolutionary multi-objective 
optimization methods: 1) driving the search towards 
the true Pareto optimal set, and 2) preventing 
premature convergence or maintaining the genetic 
diversity within the population [24]. The lack of 
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elitism was also a motivation for modification of 
that algorithm to NSGA-II [25], in which a direct 
elitist mechanism, instead of a sharing mechanism, 
has been introduced to enhance the population 
diversity. This modified algorithm represents the 
state-of-the-art in evolutionary MOPs [26]. A 
comparison study between SPEA and other 
evolutionary algorithms on several problems and 
test functions showed that SPEA clearly 
outperforms the other multi-objective evolution 
algorithms [27]. Nariman-zadeh, et al applied a 
new multi-objective uniform-diversity genetic 
algorithm (MUGA) with a diversity preserving 
mechanism to multi-objective optimization of a 
five-degree of freedom vehicle vibration model 
[28].
     In this paper, a new multi-objective uniform-
diversity genetic algorithm with a diversity 
preserving mechanism called the ε-elimination 
algorithm is used for multi-objective optimization of 
a two-degree of freedom vehicle vibration model. 
The conflicting objective functions that have been 
considered for minimization are sprung mass 
acceleration ( 2Z ), relative displacement between 

sprung mass and tire )1Z2Z(  . The design 

variables used in optimization of vibration are 
vehicle suspension damping coefficient ( 2C ) and 

vehicle suspension stiffness coefficient ( 2K ). 

Prominently, it is shown that a trade-off optimum 
design can be verified from those Pareto fronts 
obtained by multi-objective optimization process. 
Finally, the superiority of time domain vibration 
performance of such design point is shown in 
comparison with those given in the literature. 

2. PARETO MULTI-OBJECTIVE 
OPTIMIZATION

Multi-objective optimization also called multi-
criteria optimization, or vector optimization has 
been defined as finding a vector of decision 
variables satisfying constraints to give acceptable 
values to all objective functions [25]. In general, it 
can be mathematically defined as:

     Find the vector  T
nxxxX **

2
*
1

* ,...,, to optimize 

        T
k XfXfXfXF ,...,, 21 subjected to m 

inequality constraints   mtXgi ,...,2,10  and 
p equality constraints   pjXhi ,...,2,10  . 
Where nRX * is the vector of decision or design 
variables, and   nRXF  is the vector of objective 
functions, each of which are to be minimized or 
maximized. However, without loss of generality, it 
is assumed that all objective functions are to be 
minimized. Such multi-objective minimization 
based on Pareto approach can be conducted using 
some definitions as:

Pareto Dominance: A vector ],...,,[ 21 nuuuU  , is 
dominant to vector ],...,,[ 21 nvvvV  (denoted by 

VU  ) if and only if

    jiii vukjvuki  :,...,2,1,,...,2,1 (1)

Pareto Optimality: A point *X (Ω is a 
feasible region in nR ) is said to be Pareto optimal 
(minimal) if and only if there is not X which 
can dominate over *X . Alternatively, it can be 
readily restated as:

)X(if)*X(if:}k,..2,1{i,*XX,X  (2)

Pareto Set: For a given multi-objective 
optimization problem (MOP), a Pareto set P* is a 
set in the decision variable space consisting of all 
the Pareto optimal vectors:

)}X(F)'X(F:'XX{*P  (3)

Pareto Front: For a given MOP, the Pareto front 
PT* is a set of vector of objective functions which 
are obtained using the vectors of decision variables 
in the Pareto set P* that is:

        




  *:,...,2,1

* PXXkfXfXfXFPT (4)

In other words, the Pareto front PT* is a set of 
vectors of objective functions mapped from P*.
     Evolutionary algorithms have been widely used 
for multi-objective optimization because of their 
natural properties suited for these types of problems. 
This is mostly because of their parallel or 
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population-based search approach. Therefore, most 
of the difficulties and deficiencies within the 
classical methods in solving multi-objective 
optimization problems are eliminated. For example, 
there is no need for either several runs to find the 
Pareto front or quantification of the importance of 
each objective using numerical weights. In this way, 
the original non-dominated sorting procedure given 
by Goldberg [23] was the catalyst for several 
different versions of multi-objective optimization 
algorithms [13,14]. However, it is very important 
that the genetic diversity within the population be 
preserved sufficiently. This main issue in MOPs has 
been addressed by many related research works 
[24]. Consequently, the premature convergence of 
multi objective evolution algorithms is prevented 
and the solutions are directed and distributed along 
the true Pareto front if such genetic diversity is well 
provided. The Pareto-based approach of NSGA-II 
[25] has been used recently in a wide area of 
engineering multi-objective evolution algorithms 
because of its simple yet efficient non-dominance 
ranking procedure in yielding different levels of 
Pareto frontiers. However, the crowding approach is 
not efficient as a diversity preserving operator, 
particularly in problems with more than two 
objective functions [26].

2.1. Multi-Objective Uniform-Diversity Genetic 
Algorithm   The multi-objective uniform-diversity 
genetic algorithm uses non-dominated sorting 
mechanism together with a ε-elimination diversity 
preserving algorithm to get Pareto optimal solutions 
of MOPs more precisely and uniformly. 

2.2. The Non-Dominated Sorting Method   The 
basic idea of sorting of the non-dominated solutions 
originally proposed by Goldberg [23], which has 
been used in different evolutionary multi-objective 
optimization algorithms, as in [25], has been 
adopted here. The algorithm simply compares each 
individual in the population with others to determine 
its non-dominancy. Once the first front has been 
found, all its non-dominated individuals are 
removed from the main population and the 
procedure is repeated for the subsequent fronts until 
the entire population is sorted and non-dominantly 
divided into different fronts.
     A sorting procedure to constitute a front could be 
simply accomplished by comparing all the 

individuals of the population and including the non-
dominated individuals in the front.
     It can be easily seen that the number of non-
dominated solutions in P* grows until no further one 
is found. At this stage, all the non-dominated 
individuals so far found in P*are removed from the 
main population and the whole procedure of finding 
another front may be accomplished again. This 
procedure is repeated until the whole population is 
divided into different ranked fronts. It should be 
noted that the first rank front of the final generation 
constitute the final Pareto optimal solution of the
multi-objective optimization problem.

2.3. The ε-Elimination Diversity Preserving 
Approach   In the ε-elimination diversity approach 
that is used to replace the crowding distance 
assignment approach in NSGA-II [25], all the 
clones and ε-similar individuals are recognized and 
simply eliminated from the current population. 
Therefore, based on a value of as the elimination 
threshold, all the individuals in a front within this 
limit of a particular individual are eliminated. It 
should be noted that such ε-similarity must exist 
both in the space of objectives and in the space of 
the associated design variables. This will ensure that 
very different individuals in the space of design 
variables having ε-similarity in the space of 
objectives will not be eliminated from the 
population. The clones and ε-similar individuals are 
replaced from the population by the same number of 
new randomly generated individuals. Meanwhile, 
this will additionally help to explore the search 
space of the given MOP more effectively. It is clear 
that such replacement does not appear when a front 
rather than the entire population is truncated for ε-
similar individual.

3. MULTI-OBJECTIVE OPTIMIZATION OF 
VEHICLE VIBRATION MODEL

A two-degree of freedom vehicle with passive 
suspension adopted from Ref. [4] is shown in Figure 
1. This model is composed of one sprung mass 
joined to one unstrung mass (indicate tire and 
chassis). Moreover, the effect of degrees of 
freedom, linear motion (in vertical direction for 
sprung and unstrung masses), in terms of 
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Figure 1. Vehicle vibration two-degree of freedom model 
with passive suspension adopted from Ref. [4].
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Figure 2. Double bumps excitation.

TABLE 1. The values of Fixed Parameters of the Model.

Parameters’ ValueParameters’ Name

36 kg1M

240 kg2M

160 kN/m1K

acceleration, velocity and movement, are considered 
in formulation of motion equations.
     Parameters M1, M2, K1, K2, and C2 which denote 
the vehicle’s fixed parameters are expressed as tire 
mass, sprung mass, tire stiffness coefficient, 
stiffness coefficient for vehicle suspension, and 
damping coefficient for vehicle suspension, 
respectively.

3.1. The Governing Dynamic Differential 
Equations of Motion   The linear differential 
equations of motion with respect to the degrees of 
freedom are derived by the dynamic of this model 
and excited by a double bump as shown in Figure 2.
     Newton-Euler equations can be written as 
follows [4]:

)1Z2Z(2C)1Z2Z(2K2Z2M   (5)

)Z1Z(1K)1Z2Z(2C)1Z2Z(2K1Z1M   (6)

where Z1 and Z2 are vertical tire displacement and 
vertical displacement of the sprung mass, 
respectively. Further, 1Z and 2Z represent vertical 

tire velocity and vertical velocity of the sprung 
mass, respectively. 1Z and 2Z denote vertical tire 

acceleration and vertical acceleration of the sprung 
mass, respectively. Lastly, Z represents the 
excitation via road double bumps, as shown in 
Figure 2. The input values of fixed parameters are 
presented in Table 1 [4]. In this paper, 10000 < K2 < 
16000 and 500 < C2 < 2000  are two design 
variables to be optimally found based on multi-
objective optimization of two different objective 
functions, namely, sprung mass acceleration 2Z and 

relative displacement between sprung mass and tire 
(Z2 – Z1).

3.2. Two-Objective Optimization of Vehicle 
Vibration Model   In this section, the multi-
objective uniform-diversity genetic algorithm 
presented in previous sections is used for multi-
objective design of vehicle model shown in Figure 
1. A population of 100 individuals with a crossover 
probability of 0.9 and mutation probability of 0.1
has been used in 1024 generations. It is clear from 
Figure 3 that obtaining a better value of one 
objective would normally cause a worse value of 
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Figure 4. Chassis acceleration for optimum design points.
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Figure 5. Relative displacement for optimum design points.

another objective. In other words, if a set of decision 
variables is chosen, the corresponding values of 
objectives will locate a point inferior to the 
corresponding Pareto front. Such inferior area in the 
space of the objective functions for Figure 3 is in 
fact top right sides.
     Using NSGAII method and taking into 
consideration the two objective functions (f1, f2), the 
result of multi-objective optimization named Pareto 
curve is shown in Figure 3. When compared to each 
other, it can be seen that all the points on Pareto 
curve are non-dominated. 
     Moving from point B with lowest relative 
displacement and highest chassis acceleration 
toward point A with lowest chassis acceleration and  
highest relative displacement on Pareto curve, 
objective function of chassis acceleration decreases, 
but that of relative acceleration will increase and 
vice versa. 
     As it is clear from the coordinate system of 
points in relation to objective function, in the face of 
selecting point B as optimal point and designing of 
suspension system using spring and damper 
coefficient according to point B, we will have a 
vehicle with good handling. However, riding 
parameter will not be good, and when that vehicle 
passes over uneven places and obstacles on the road, 
high force and acceleration will be exerted to the 
driver and this is not desirable in production and use 
of that vehicle. The opposite is true for point A.
     Compared to points A and B, the point C is 
positioned in better place. This could be a good 
position to select for designing the suspension 
system of vehicle, since there is no noticeable 
change from one objective function point of view, 
but the other objective function will become 
noticeably optimized. It worth to notice that each 
of the points in Pareto chart are related to K2 and 
C2 and obtained by exerting optimized parameters 
in equations performance. The system response 
will be obtained as time chart. Time performance 
curve for points A, B and C as obtained from 
Pareto chart, and point D (as proposed in Ref. [4]) 
that stand for relative displacement, chassis 
acceleration, tire velocity, chassis velocity, tire 
displacement and chassis displacement, respectively, 
are shown in Figures (4-9).
     Point D is taken from Ref. [4]. It is clear from 
Pareto chart in Figure 3 that point B is a better point 
from the handling point of view; A is good for
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Figure 6. Chassis velocity for optimum design points.
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Figure 7. Tire velocity for optimum design points.
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Figure 8. Chassis displacement for optimum design points.

riding, but point C is the best point, and compared 
to point D, it has better time performance from the 
riding and handling viewpoint. These figures and 
charts are clearly shown that all Pareto points have 
better time response regarding to one or both of the 
objective functions as compared to point D.
     Response of suspension system for each 
selected point from passing of the system over 
obstacle till the time of reaching its motionless 
position have been shown  on the above mentioned 
charts. It is clear from the charts that suspension 
system with coefficients A, B and C obtained from 
Pareto chart has better time response and 
performance than point D.
     Corresponding values of points A, B, C, and D 
are shown in Table 2:
     In Table 3 the maximums and minimums of 
objective functions are separately shown. It is 
obvious from Table 3 that relative displacement 
decreased from 93.85 (mm) in point D to 52.84
(mm) in point C and chassis acceleration is
decreased from 7.08654 (m/s2) to 3.97995 (m/s2) .

4. CONCLUSION

Genetic algorithm optimization is a global 
optimization technique, searching for a design that 
minimizes an objective function subject to 
constraints. In this paper a multi-objective genetic 
algorithm with a recently developed diversity 
preserving mechanism called as NSGA-II, has 
been used to optimally design vehicle vibration 
model. The objective functions which conflict with 
each other were selected as sprung mass 
acceleration and relative displacement between 
sprung mass and tire. The multi-objective 
optimization of vehicle model led to the 
discovering of some important trade-offs among 
those objective functions. The superiority of the 
obtained optimum design points was shown in 
comparison with those reported in the literature. 
Such multi-objective optimization of vehicle 
model could unveil very important design trade-
offs between conflicting objective functions which 
would not have been found otherwise. Further, it 
has been shown that the results of two-objective 
optimization in terms of Pareto frontiers provide 
more choices for optimal design. These results are 
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Figure 9. Tire displacement for optimum design points.

TABLE 2. Coefficients of Pareto Points.

2C (Ns/m)2K (N/m)Point

1988.23510000A

200015529.41B

200012305.88C

100016000D

TABLE 3. Parameters Related with Pareto Points.

Chassis 
Acceleration (m/s2)

Relative 
Displacement (m)

Point

3.660350.05336A

7.086540.09385D

encouraging and suggest that GA can be easily 
used in other complex and realistic designs often 
encountered in the engineering.
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