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Abstract One of the important issues in the study of steel frames is to find a suitable formulation
for semi-rigid connections. In this paper, the explicit stiffness matrix for a two-dimensional beam-
column element having end-flexibilities is derived. The effects of the lateral uniformly distributed
load on the deflection are considered. Both the tensile and compressive axial loads are also taken into
account by one formula. Using the proposed stiffness matrix, some first-order, second-order,
buckling, and dynamic analyses for semi-rigid frames are performed. The plastic analysis is also
carried out using the plastic hinge approach. Comparing the calculated results with other references
shows the accuracy and capabilities of the utilized element. Furthermore, the influences of the semi-
rigid connections on the static and dynamic responses are investigated.

Keywords Dynamic Analysis, Beam-Column Element, Semi-Rigid Connection, Buckling
Analysis, Plane Steel Frame, Plastic Analysis, Stiffness Matrix, Second-Order Effects
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1. INTRODUCTION

The analysis and design of the steel frames is
usually carried out considering the rigid or pinned
connections. Utilizing the rigid or pinned model is
simple. However, these connections do not show
the actual behavior of the structural joints. The
experimental tests indicate that all connections are
flexible through the loading process [1]. Therefore,
the effect of connection behavior in the analysis
must be considered. Accordingly, various
investigations have been done on this topic so far.
Some researchers have concentrated their attempts
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on the experimental studies [1, 2]. Hasan, et al. [3]
classified the semi-rigid connections. Investigating
the behaviors of the semi-rigid connections, and
proposing new models are the other topic for
research [4,5]. Many researchers have studied the
analysis and design of the steel frames with semi-
rigid connection [6-10] and others have worked on
the design and optimization of these structures [11-
13]. The results of all studies show that the
connection flexibility has the appreciable influence
on the structural responses, and it cannot be
ignored. It should be noted that many Codes take
into account the semi-rigid connections and semi-
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rigid steel frames [14-16].

Heretofore, several finite elements have been
proposed for analyzing the frames, which have
semi-rigid connections. Chen and Lui presented
some methods for analyzing semi-rigid frames
[17]. They adopted rational stiffness values of the
ends' connections for developing the stiffness
matrix. Using the concept of self-equilibrating
element, Zhou and Chan obtained a new element
[17]. This element uses a fifth-order polynomial
function for deflection and its stiffness matrix
includes the effects of axial force and the stiffness
of the ends' connections. Utilizing the end-fixity
factor in turn of directly applying the value of
connection stiffness, Xu presented an element to
simplify the second-order analysis of steel frames
[18]. Moreover, Sekulovic and Salatic used the
exact stability functions and proposed an element
which considered the second-order influences of
the axial force and bowing effect [19]. Recently,
Ihaddoudéne et al. presented a model of the
connection using three springs [6]. The second-
order effects of the axial force were neglected by
these investigators, and the plastic analysis was
performed. Using the proposed element,
Ihaddoudéne et al. studied the forming of the
plastic hinges. Also Liu et al. [7, 20, 21]
investigated the inelasticity behavior of the
structures with semi-rigid connections.

In the present work, a new beam-column
element with semi-rigid connections is proposed.
This element is very general and models a frame
member with any type of connections.
Furthermore, the members of the stiffness matrix
are proposed with the closed-form expressions
which have adequate accuracy. It is worth
emphasizing that the new element has a single
formulation for both the tensile and compressive
axial forces. The influences of the uniformly
distributed loads on the deformation of the
member are also considered in the developed
element. Moreover, it has been utilized for
comparing the responses of steel framing in
different types of analysis having various end-
fixity factors. Static and dynamic analysis of
several benchmark problems certifies the validity
and efficiency of the proposed formulation. These
analyses consist of the first-order, P-delta,
buckling, and plastic behaviors. Furthermore, the
numerical results are used to study the effects of
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connection flexibility on the responses of steel
frames.

2. THE PROPOSED FORMULATION

Considering special effect in the structural analysis
requires a proper formulation and suitable element.
The major target of the present work is to take into
account the connection flexibility and second-order
effects in analyzing the plane steel frames.
Consequently, a new beam-column element is
utilized. Figure 1 shows the element specifications
and the external load. The lateral load does not
produce any torsion. The shear and warping
deformations are also neglected. It should be
emphasized that the rotational deformation is the
only behavior which is considered for the beam to
column connections. In other words, the axial and
shear deformations in the connections are ignored.
The connection flexibilities are simulated by two
rotational springs. The rigidity of these springs is
denoted by R; and R;. The moment-rotation
relation of the spring could be linear, multi-linear
or perfectly plastic. In the plastic analysis, only the
bending moment is considered and the effects of
axial forces are also neglected. Furthermore, the
size of connection, in comparison to the columns
and beams dimensions is ignored.

In the proposed element, a fifth-order
polynomial describes the elastic deformation of the
element as presented in Equation 1. Chan and
Zhou used this function to obtain a semi-rigid
element. It should be noticed that Chan and Zhou's
formulation excluded the effects of the uniformly
distributed load on the structural deflections [17].
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Figure 1. The semi-rigid 2D element in the basic axis.
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v(x)=ay+a 1x+a2x2 +a3x3 + 1
a4x4 +a5x5 , -LR2<x<L/2

The parameter v shows the lateral displacement
which is measured according to the straight line
between the two end points. Satisfying the
compatibility and the equilibrium conditions, the
unknown factors, a;, are obtained. These factors are
presented in Appendix A. The compatibility
conditions of the deformations are written at the
two boundaries of the element as below:

(M1 =0 (2)
dv M,

&% ®
(V)2 =0 4)
dv M,

av =9 - L 5
(dxjxuz ’ R; ©®

Furthermore, the moment and shear equilibrium
equations at the middle point of the element could
be respectively written as follows:

2 M.—M. 2
El d—; MM 9l py (6)
dx -0 2 8
3 M.+ M.
El d_: =4+p(ﬂj 7)
dx =0 L dx ). _o

As shown in Figure 1, the parameters M; and M,
are respectively the internal bending moments of
joints, i and j .The axial force is denoted by P. It is
reminded that the lateral loads enforce no torsion,
and they are assumed to be distributed across the
element. The value of these loads per unit length of
the member is ¢q. The Equations 2 to 7 can be
solved simultaneously and unknown factors can be
found. Afterward, the secant stiffness equations are
obtained using the energy method. To achieve this
goal, the total potential energy function of the
element, II, is calculated using the following
relations:

=U+V (8)

U:JVJ-SUdng ©)
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V:—(Mi9i+Mj9j+Pe+JL q(x) v(x) dx) (10)

where, U and V are the strain energy and the
external work, respectively. The axial deformation
is also denoted by e. Minimizing the total potential
energy and neglecting the axial elongation due to
the bowing effect, the secant stiffness relationships
for the proposed element are obtained as below:

4 0 0 e
5 EIlL
M;=S8;5(qL") = T 0 S S48 (11)
M; +8y3(qL) 0 S S»n| |9

Before writing the matrix entries, some parameters
are described. Primarily, the end-fixity factor is
taken as r, =1/(1+3El/R,L), which is considered

to be the stiffness of the semi-rigid connection in
the joint k=i, j [22]. It is clear that for a rigid
connection the stiffness is infinite and the rigidity
factor becomes 1. On the other hand, the zero
value for 7, describes a pinned connection, which
has zero rotational stiffness. For a semi-rigid
connection, the end-fixity factor changes between
zero and one. Moreover, the dimensionless ratio,

PI*/EI, is marked by p. The other required
parameters are written in the below form:

S| = (58982400 + 5898240 + 14110725 /7 +
321536p° /105 + 716 p* 135+ 2p° /45)/
(p+80)> (p +48)°

S, = (29491200 + 1474560 + 2140165 /7 +

30976p°/105+10p% /21— p° /126) /
(p+80)°(p+48)°

_192+24p/5+11p% /420

s
3 (p +48)

H =0r+ =18 )3r, +(1=7)S, )~ (1=r)(1—r,)S3
(12)

Now, the secant matrix entries, S;; , are written as
follow:

1
Si1 =2 Orir S, +3n(1=r) (5] =)
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1
Sy =8 = E(%r_/sz)

1
S5 = g(9r,-er3 +3r(1=7;)(S; +5,)S3)

1
Sa == 071+ 3r,(1=1)(S! = 57)

1
Sy =47 Oriry Sy +3r;(A=1)(5, +52)85) (13)

The coefficients S, Si», S>; and Sy, are indeed the
stability functions of the semi-rigid member.
Figure 2 illustrates the curves of these coefficients
versus the variations of the axial force for different
values of the end-fixity factors. For simplicity, the
end-fixity factors of the two ends of the element
are considered the same in these figures.
Consequently, the functions S;; and Sy, are also the
same. It should be reminded that the curves of
secant stiffness, which are shown in Figure 2, are
similar to the work of Zhou and Chan [17]. These
researchers presented S in terms of the non-
dimensional axial force, PL*/n’EI, and the
connection-stiffness-control parameter
n=r/(r+4EI/L).

Figure 2 shows that the values of S;; and S5,
change from 0 to four when the connection
stiffness increases from zero to infinite and the
axial force is zero. In this case, the coefficients S,
and S, also change in the range of 0-2. On the
other hand, the critical compressive axial force is
decreased if the connection stiffness decreases.
According to Equation 11, the fixed-end moments
are related to the coefficients S;;3 and S,; and also
to the value of the distributed loads. In other
words, the parameters S); and S,; include the
influence of the end-fixities and second-order
effect of axial force on the fixed-end moments.
The mentioned parameters are plotted in Figure 3.

As shown in Figure 3, the parameters Sj3 and
S5, are in the 0-1/12 domain while the axial load is
zero. Furthermore, the values of these coefficients
change more rapidly, if the connection stiffness
decreases. In common engineering practice, in
addition to the fixed-end moments, the shear
reactions are required for structural analysis. The
suggested formulation does not require the explicit
expressions of these forces. In other words, the
fixed-end shears can be easily calculated utilizing

206 - Vol. 24, No. 3, September 2011

. " 207 .
i h 1 S11- S22
! n ]
! n
J i 1
/ " 10
Vi HE 4
t/’ .r’: T
V2N TR I IR _
e
—————"j e . . P
40 ;z’ / ( g 20 40
Fay ]
Tt 1 r=1.00 -
! 1 T . —f) TE .
[ o] r=0.75
b 4 r=0.50 ----
[on 1 r=025 —
P ]
i T
] L] _20_.
" 207

: 1 Sizo Sy

1 r=1L00 -
10l r=0.75 -
| | r=0.50 ----
Vo 1 r=025 —
1

——
L

Figure 2. The curves of stability functions for different values
of end-rigidities.
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Figure 3. The curves of Sj3 and S3; functions for different
values of end-rigidities.
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the equilibrium equations.

It is worth emphasizing that the proposed
stability functions have some errors near the
critical axial load in comparison to the exact
solutions. However, the developed relations are
simpler than the exact ones and the errors are not
significant. It is reminded that the exact stability
functions are two sets of functions, which are
presented separately for compressive and tensional
axial forces. Another merit of this study is that, the
effect of tension and compression loads are treated
in the same way by the present formulation. The
effects of any kind of loading and the geometric
imperfections can be also modeled by the
suggested scheme.

3. EXPLICIT STIFFNESS MATRIX

The stiffness matrix of a semi-rigid member in the
basic axis was obtained in the previous section.
According to Equation 11, this matrix has three
relations between the element principal forces and
their relative displacements. On the other hand, a
general plane frame element has six degree of
freedom, as shown in Figure 4. By performing
some matrix operations, the secant stiffness of the
mentioned element is obtained utilizing the entries
of the matrix given by Equation 11. The compact
result is presented in the below form:

p=Kix (14)

In this equation, K;’Z is the stiffness matrix of the

semi-rigid member in the local axis. The suggested
matrix takes into account the second-order effects
of the axial force and the connection flexibility.
This matrix can be written in the below form:

'K, 0 0 K, 0 0]
Ky Ky 0 Ky Ky
KR _Er Kz 0 Kis Ky (15)
HL Ky O 0
Sym. Kss  Kss
L Kes

Nonzero arrays of the stiffness matrix are given in
Appendix B. The global stiffness matrix is easily
obtained using the following transform matrix:
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Figure 4. The six-DOF semi-rigid element.

KX =R'K}'R (16)

It is worth emphasizing that the obtained matrix
can explicitly model a frame member with
different types of connections. This element can be
used in the second-order and buckling analysis of
the steel frames as well. Furthermore, the stiffness
formulation explicitly includes the effect of both
tension and compression axial loads in a single
relation. When the axial load is zero, Equation 15
changes to the required matrix for the first-order
analysis of the semi-rigid frame. Furthermore, by
setting the proper values for the end-fixity factors,
the stiffness matrices of the truss or the common
moment resistance frame elements are obtained.
By utilizing this formulation, the special frame
elements with different combination of rigid,
pinned, semi-rigid connections for each end of the
member are easily modeled. It is evident that the
end-fixity factor is more important, since expresses
the real condition of the connection.

4. THE BEHAVIOR OF CONNECTIONS

Commonly, the moment-rotation relationship
describes the behavior of connections [23]. In the
present investigation, it is assumed that the semi-
rigid connections have a linear behavior. The basic
equation for the linear model is defined as follows:

M=RO (17)

In this equation, M is the moment and R and 8 are
the stiffness and rotation of the connection,
respectively. The connection stiffness, R, could be
considered as either the initial stiffness or the
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secant connection stiffness. From this point on,
except for the mentioned members, the connection
stiffness is constant and equals to the initial secant
stiffness. The multi-line and inelastic behaviors of
connections are also considered in this paper. The
inelastic behavior is assumed to be linear elastic
and perfectly plastic.

5. DIFFERENT TYPES OF ANALYSIS

Several kinds of structural analysis are performed
to show the abilities of the recommended element
and also to study the effects of connection
flexibilities on the structural responses. By
neglecting the effects of the axial forces in the
stiffness matrix, the first-order analysis of the
semi-rigid frame is possible. On the other hand, the
second-order analysis is carried out using the
proposed stiffness matrix. It is reminded that the
elements of the stiffness matrix in this case are
affected by the values of the axial loads.
Consequently, the P-delta analysis should be done
by an iterative process up to the point of
equilibrium state. The buckling loads of steel
frames with semi-rigid connections could be also
derived. The mentioned analysis is performed by
evaluating the eigenvalues of the structural
stiffness matrix. In other words, the external loads
are incrementally increased until the lowest
eigenvalue becomes zero or a negative value. The
authors’ experiences show that dividing the frame
members into several elements has no appreciable
effect on the response accuracy for the reason that
the assumed function has the high order terms. To
prove this merit, both examples in Section 7.3 were
reanalyzed with more elements, and the same
results were obtained.

The plastic behavior of the connection is also
studied in the present paper. However, the second-
order effects are neglected for this kind of analysis.
While the multi-line relation is used for the plastic
behavior, the Ihaddoudéne algorithm could be
applied for inelastic analysis of the structure [6].
The mentioned procedure pursues the sequence of
the formation of the plastic hinges based on the
moment-rotation function of connections. This
procedure is a step by step precise process. For a
general moment-rotation function, a common
iterative tactic, such as dynamic relation method
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(DRM) or Newton-Raphson procedure should be
utilized. Because the proposed element has an
explicit stiffness matrix, the connection behavior
does not increase the required time in the linear
analysis. However, the nonlinear problems demand
more computations to include connection effect.
The details of dynamic analysis will be described
in the next section.

6. DYNAMIC ANALYSIS

The dynamic analysis is performed by either the
numerical time integration tactics or the modal
analysis. Linear dynamic analysis is usually
performed by the modal method. On the other
hand, the numerical integration algorithms are
more general and can be used for both linear and
nonlinear system. In this kind of structural
analysis, the total time interval is divided into
finite steps. The dynamic equilibrium equations at
the end of the n™ step are written in the below
matrix form:

M)"(nJrl + Cn+1Xn+1 + Kn+1Xn+1 — Pn+1 (1 8)

where, C and M are damping and the mass
matrices, and P is the applied force vector. The
unknown parameters are displacements, velocities
and the accelerations, which are shown by X,

XandX, respectively. Four numerical time

integration tactic are utilized in the present study.
They are the constant and linear acceleration
algorithms of Newmark [24] Wibsdanchnique
[25] and the 5™-order procedure of Rezaice-Pajand
and Alamatian [23]. These methods are denoted by
NCA, NLA, WTM, IHOA-5, respectively. The
mentioned methods calculate the velocities and the
accelerations at time ¢, in terms of displacements
at this time, and also the previous steps values. The
extrapolations for the WTM, NCA and the NLA
methods are written in the below generalized
functions:

W”——L4XM—X%414mﬁwﬁrDW9m

 BOAt B
.. 1 ) . 1-7 &
Xn+r9 _ Xn+9 _Xn _ Xn
Joar )= (19)
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Technically, the WTM is a generalized process of
the NLA, which evaluates the velocities and the
accelerations at the extended time, ¢,+0At. In
special case, when the value of 4 is 1, the WTM
coincides with the NLA. The stability of the WTM
depends on the time step. However, this is an
unconditionally stable procedure, when the value
of @ is greater than 1.37. The optimal value of 8 is
1.42. Recently, Rezaice-Pajand and Alamatian
suggested a new higher-order time integration
family. The 5"-order member of this family uses
the following extrapolations:

gl 3325 (X X" 2462 ¢, 487883 | <
863A¢ 863 414240

(163723 | g 296671, g2

103560 310680
L 212963\ s 3693 g

621360 69040
X = (—1‘20 (X" —X")—1427X" +798X" ! —
482X" 2 +173X" % —27X"*)/ 475

(20)

In the numerical time integration strategies, the
acceleration and the velocity extrapolation vectors
are substituted in the dynamic equilibrium
equation. As a result, a system of equations in the
terms of X"*' is obtained, which has the below
general form:

5
(Atz

Pt -Mf, -Cf, ~K, X" =P,

M+icn+l +Kn+1)xn+l —
At

e2y)

where, £ and  are the constant parameters and f,
and f, are functions of the displacement, velocity
and the acceleration vectors of step n and the
accelerations of the previous ones. Starting from
initial conditions, the right hand side of Equation 21
is known and the unknown variables are calculated
step by step. In general case, Equation 21 is a
nonlinear system of equation and should be solved
using an iterative method. The Dynamic Relaxation
method (DRM) is a simple and a powerful
procedure to solve the linear and nonlinear
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equations. Because of this merit, the combination of
the numerical time integration and the DRM, are
utilized to solve dynamic problems [26].

7. NUMERICAL EXAMPLES

To show the robustness of the proposed element,
some benchmark problems are analyzed and the
solutions are compared with other references.
Moreover, the effects of connection flexibility on
behavior of the steel frame are investigated.
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Figure S. Portal frame with flexible connections.
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Figure 6. One-storey two-span frame.
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7.1. First-Order Analysis The first-order
analysis of two frames of Figures 5 and 6 are
studied. The structures are loaded with the
horizontal and vertical forces. At first, the portal
frame of Figure 5 is considered. The section areas
of the beam and its columns are respectively 76
cm’® and 110 cm’, and the corresponding moments
of inertia are 21500 cm® and 9460 cm®. The
modulus of elasticity is assumed to be 205GPa.
According to Table 1, a variety of connection
stiffness values are considered for the beam to
column and also for the base-plate connections.
The absolute values of the internal moments at the
end of the members are also computed and
arranged in Table 1. The values in parentheses
show the available solutions by other investigators

[27]. The comparison between two groups of the
results shows the accuracy of the proposed element
for analysis of semi-rigid connections.

Figure 6 shows the one-storey two-span frame.
The sections of the beams and columns are
W21x57 and W10x22, respectively. The stiffness
the beams to columns connections are 7.8807
kN.m/rad (45000 kip-in/rad). The elasticity
modulus of the material is also 200GPa. The
curves of the bending moment are plotted in Figure
7, for both rigid and semi-rigid connections. Chen
studied this structure with semi-rigid connections
[28]. The numbers in parentheses of Figure 7 are
computed by Chen.

Figure 7 shows that the solutions of the new
element are correct. Furthermore, the results of the

TABLE 1. The Absolute Values of Internal Moments (kN.m) for the frame of Figure 5.

Semi-Rigid Connections

Rigid Connections

Moments 1.=0.25, 1,=0.40 re=1, 1;=0.40 r=1, 1,=0 re=1, =1
(R=EL/L.,Ry=4Ely/Ly)  (R=0,R,=4El/Ly) (R¢=0,R,=0) (R¢=00,Ry=00)
M 0.32 (0.3) 31.67 (31.7) 30.04 (30) 52.23(52.2)
M;, 80.25 (80.3) 93.65 (93.6) 0.00 (0) 127.50 (127.5)
M,y 24.16 (24.2) 71.53 (71.5) 29.96 (30) 87.14 (87.1)
M., 116.41 (116.4) 113.80 (113.8) 0.00 (0) 152.59 (152.6)
Ms, 301.67 (301.7) 296.28 (296.3) 400.00 (400) 260.00 (260.0)
Rigid connection 63.0 55.2
Semi-rigid connection =~~~ 4.4 (4.5)
14.1
9.8(9.7)

10.1 (10.1)

251 ,
56.7 (56.7) p

y/
4

11.5 (11.6)

Figure 7. The bending moment diagrams (kN.m).
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two problems demonstrate that the connection
flexibility has a considerable effect on the frame
internal force distributions.

7.2. Second-Order Analysis To prove the
accuracy of the proposed stiffness matrix, a portal
frame with flexible connections is analyzed. As
shown in Figure 8, the mentioned structure is
subjected to the nodal and distributed loads. The
beam and columns of the frame are made of [PE22
and IPB14 sections, respectively. The value of the
Yang’s modulus is 210GPa.

The P-delta and the first-order analysis are
performed for the four rigid, TSDWA, DWA and
pinned beam to column connections. It should be
reminded that the TSDWA connects the beam to
column by employing top and seat angles with
double web angles. Double web angles also
construct the DWA connection. Based on the
reference [19], the values of the rotational stiffness
for the TSDWA and DWA connections are 11300
and 6100 kN.m/rad, respectively. The values of
P=450kN and q=250kN/m are also selected for
loads. Some of the results for displacements and
moments are presented in Tables 2 and 3. The
structural responses are compared with those
obtained by Sekulovic and Salatic [19].

Tables 2 and 3 show that there is no substantial
difference between the calculated results and those
reported in reference [19]. It is reminded that
Sekulovic and Salatic used the exact stability
functions in terms of hyperbolic sine and cosine
functions, whereas a fifth-order polynomial is
utilized in the proposed method.

Consequently, the proposed stiffness matrix
based on the fifth-order polynomial has a high
accuracy. Moreover, changing the connection
rigidities makes appreciable variations in the
distribution of the internal loads and the nodal
displacements. The second-order analysis also
increases these changes. The variations of some
selected solutions versus the rigidity of the beam to
column connection are plotted in Figures 9 and 10,
for the first-order analysis. Similar curves are also
presented in Figures 11 and 12, for the second-
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order analysis. It should be noticed that the
solutions are normalized based on the outcomes of
using the rigid connections.

7.3. Buckling Analysis = Two braced and un-
braced semi-rigid frames, as shown in Figure 13,
are selected to perform the buckling analysis
utilizing the new element. The mentioned frames
are studied by Raftoyiannis in 2005. This
investigator applied the exact stability analysis to
find the buckling loads [29]. In both structures, the
sections IPE30, HEA24 and L60x6 are used for the
beams, columns and braces, respectively. The
modulus of the elasticity is 210GPa. In addition,
the stiffness of the semi-rigid beam to column
connections is assumed to be constant and equal to
75566.6085 kN.m/rad.

From Table 4, it is observed that the proposed
method for computing the buckling load has an
acceptable accuracy. It is reminded that
Raftoyiannis used the exact stability functions.
Furthermore, the critical load of stricter is reduced
by decreasing of the connection flexibility. However,
this effect is reduced in the braced frames. It should be
added that only one of the braces is used to obtain
the braced frame critical load. Showing the
influence of connection flexibility on the value of
the critical load, some buckling analyses are
performed on the un-braced frame of Figure 13. The
calculated responses are normalized by those
achieved utilizing the rigid connections. The related
curves are plotted in Figure 14. It can be observed
that the variation of the critical load with respect to
the end-fixity values is approximately linear.
Moreover, when the rigidity of the connection
increases, the slope of the curve is also increased.

7.4. The Plastic Analysis = The rigidities of the
connections are affected by the -elasto-plastic
behavior of a steel structure. Moreover, the sequence
forming of the plastic hinges and also the ultimate
external load are related to the stiffness of the
connections. Verifying these properties, the portal
steel frame of Figure 15 is analyzed. Based on the
reference [6], all sections of this structure are IPE33.
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TABLE 2. The Results of Applying the Nodal Loads
T First-Order Second-Order
ype of
Outcome C i
onnection  pregented Study Ref. [19] Presented Study Ref. [19]
Pinned 75.72 75.73 936.31 936.21
i Horizontal DWA 30.79 30.95 47.12 47.49
Displacement of
Node 3(x10™ m) TSDWA 28.96 28.70 4297 42.39
Rigid 25.79 25.79 36.42 36.42
Pinned 4.502 4.503 46.638 46.629
Bendml\glg\g;“fem Of " pwa 2722 2.728 3.890 3.908
(kN. m) TSDWA 2.649 2.639 3.690 3.663
Rigid 2.524 2.524 3.375 3.376
TABLE 3. The results of Applying the Distributed Load.
First-Order Second-order
Type of
Outcome Connection
Presented Study Ref. [19] Presented Study Ref. [19]
DWA 123.27 122.63 142.93 137.64
Rotation of Node
3(<10° Rad) TSDWA 131.54 132.81 152.13 149.83
Rigid 146.91 146.94 166.84 166.46
DWA 194.87 193.69 242.19 233.08
Bending Moment
of Node 1(kN. m) TSDWA 207.94 209.78 257.78 253.12
Rigid 232.23 232.09 282.70 281.87
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Figure 9. The influence of connection flexibility on the I ) )
bending moment in the second-order analysis.
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203 For the sake of comparison, the plastic moments
£ 02 ez S of the joints and frame elements are considered
R B iy L EE S 2 I " M;,mm =114.13 kN.m and M, =2S,0,=192.96
0 .
0 01 02 03 04 05 06 07 08 09 1 kN.m, respectively.
End-fixity factor ry Four cases of semi-rigid connections are
. . o considered for the mentioned frame. In the first
Figure 11. The influence of connection flexibility on the case, all connections of 1 to 4 are semi-rigid. The

horizontal displacement in the second-order analysis.
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beam to columns and columns to base connections
are rigid for respectively the second and the third
cases, and the other connections remain semi-rigid.
All connections of the final case are assumed to be
rigid. Furthermore, four classes of the moment-
rotation behavior for the semi-rigid connections are
investigated, based on Figure 16.

The first set of analysis is performed for trilinear
model of semi-rigid connections. The obtained
ultimate load and the corresponding horizontal
displacement of joint 2 and also the results of
Ihaddoudéne are arranged in Table 5. The
presented solutions certify the accuracy of the
proposed element.

TABLE 4. The Buckling Load of the Simple Rectangular Frame (kN).

Un-braced, Fixed Support

Braced, Hinged Support

Type Qf Presented Study Number of Element Presented Study Number of Element
Connection Per Member Ref. Per Member Ref.
[29] [29]
1 4 1 4
Pinned 2513 2513 2513 10060 10060 10052
Semi-rigid 4655 4656 4658 11659 11658 11647
Rigid 7227 7227 7244 12823 12823 12805
L R RS ma e
End-fixity factorr; 00 b b et
—0 | e —
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A -=05 | i e - ===
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Figure 14. The influence of the connection flexibility on the critical load.
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Figure 16. The moment-rotation models for semi-rigid connections, (a) Trilinear connection model (T1),
(b) Bilinear connection model (B1), (¢) Bilinear connection model (B2) and
(d) Bilinear connection model (B3).

TABLE 5. The Results of the Trilinear Connection Model.

Horizontal Displacement of Node

Type of 2 (m) Failure Load (kN)
Frame Connections Connections Presented Study Ref. [6] Pr;fsg;ed Ref. [6]
Case 1 Semi-rigid Semi-rigid 0.0963 0.0957 91.3032 91.293
Case 2 Semi-rigid Rigid 0.0953 111.1433
Case 3 Rigid Semi-rigid 0.0555 0.0556 111.1213  111.122
Case 4 Rigid Rigid 0.0539 0.0542 128.6388  128.640
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Figure 17. The load-displacement curves for the trilinear connection model.

TABLE 6. The Step-by Step IThaddoudeéne Analysis for Case 1 and Trilinear Model of Connection.

AM," AM," AM; AM,Y AM;"

sep  AWURN) g0 (kN.m) (kN.m) (kN.m) Ny Awm)
1 44.8332 23.806 -74.580 -53.459 72.325 64.277 0.0198
2 1.3105 0.895 -1.290 2,112 2.255 2.423 0.0008
3 8.8977 9.169 -9.218 -19.009 7.091 17.770 0.0070
4 21.5333 29.152 -29.042 -24.761 24.712 43.123 0.0248
5 5.4480 10.293 0.000 -9.198 7.747 16.043 0.0093
6 0.4640 1.265 0.000 -1.054 0.000 1.560 0.0011
7 1.5434 3.180 0.000 -4.537 0.000 4.677 0.0049
8 7.2731 36.370 0.000 0.000 0.000 32.731 0.0286
> 91.3032 114.13 -114.13 -114.13 114.13 182.604 0.0963
When the loads increase, the plastic hinges take moments. Indeed, the values presented in Table 5
form step by step at the points with extreme are related to the final state. Whereas, the effects of
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Figure 19. The load-displacement curves for the B2 bilinear

connection model. 7.5. Dynamic Analysis A one-span
ten-story steel frame, which was studied
by Sekulovic et al. [30], is selected for
the first dynamic analysis. This
structure is shown in Figure 21. No
external forces are applied to this 10-

120 Pt story frame. The weight of structure is

- 10 32 )/'3—:.35//' ¢ also zero. The masses of the.: frame

< . Y, ﬁ/z L concentrated at the nodal points are
i . .

% o /‘E A e shown in Figure 21. The values of the

S - 1 m and m, masses are 8000 and 6000

t

Kg, respectively. The modulus of
elasticity for this system is 210 GPa.
The properties of the sections for this
structure are inserted in Table 7.

The mentioned structure is excited

Figure 20. The load-displacement curves for the B3 by the following ground acceleration:
connection model.

t

o
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Horizental displacement of node 2 (m)
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The rigid, TSDWA and DWA beam-column
connections are considered. It is reminded that the
value of end-rigidities for the TSDWA and DWA
connections are assumed as 0.795 and 0.6765,
respectively. The value of 0.01 second is selected
for the time step and the NCA and WTM time
integration processes are utilized to analyze the
structure. The time-displacement curves for the
index displacement, u, are plotted in Figure 22. It
should be noted that the results of these two
methods are the same. Furthermore, the accuracies
of the responses are checked using the NLA and
also the IHOA-5 tactics, when the value of the time
step is equal to 0.0005 s.

The response of the mentioned structure with
rigid connections was presented by Sekulovic et al.
[30], which is the same as the corresponding curve
of Figure 22. The other curves show the influence
of end-fixities on the responses of the structure.
The reduction of the connection rigidities causes
the appreciable growth of the response magnitudes,
especially when the structure oscillates freely.
Figure 23 shows the other moment resistant steel
frame which is analyzed dynamically. The
structure is loaded by the uniform gravity and the
lateral wind forces. The value of gravity loads at
the roof story and the other stories are 59.45 and
74.14 kN/m, respectively. The sections and the
material properties of this structure are shown in
Table 8.

It should be reminded that this structure was
used by Morris et al. [31] for studying the effect of
semi-rigid connections. Further, Xu analyzed it and
investigated the effect of P-delta effect [18].
Verifying the validity of the proposed element,
three end-rigidity factors, such as 1, 0.8 and 0.5,
are considered for beams in the present work.
Some linear and second-order analyses are
performed and the horizontal displacements of the
middle-top node of building, u, are arranged in
Table 9. It is worth emphasizing that the present
solutions are the same as those obtained by Xu.

In the second part, the merit of the new element
for dynamic analysis is investigated. Consequently,
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TABLE 7. The section Properties of the 10-Story Frame.

Section  member  stories A (m?) I (m*
Cl column 1-4 0.027 1.71x107
C2 column 5-7 0.0218 7.989x10
C3 column 8-10 0.0149 2.517x10*
B beam all 0.306 2.569%107°
0.04
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Figure 22. Time-displacement curve for 10-story frame.
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the gravity loads are assumed to be constants and
the horizontal forces are applied during ten second.
In other words, the equivalent wind loads are zero
at the beginning time. They are increased linearly
until they reach the values of Figure 23 at 10
second. After that, they are constants. Some
lumped masses are also added to the joints and the
weights of the members are ignored. The
concentrated masses for the middle and outer joints
of the roof are 52000 and 26000 kg, respectively.
The similar values for the other stories are 66000
and 33000 kg, respectively.

The first and also second-order dynamic
analyses are performed for the 11-story structure
using the WTM, NCA methods and A = 0.1s . The

results are verified by utilizing the NLA and
IHOA-5 process, withAf=0.005and 0.002

seconds, respectively. The curve of the indicative
drifts of the structure, u, are presented in Figure 24
for the aforementioned values of end-rigidity
factors.

As shown in Figure 24, the lateral
displacements are increased when the end-rigidity
factors of beams are decreased. Therefore, the
second-order effects on the drifts of structure
become appreciable. Moreover, the declines in the
connection rigidity intensify the response
amplitudes. In addition, the periods of solutions
increase if the values of the end-fixities decrease.
The P-delta effects for this frame also increase the
period of solutions.

8. CONCLUSIONS

At first, a new formulation for the second-order
elastic analysis of the plane steel frame was
employed. The suggested element has semi-rigid
connections and can take the nodal and uniformly
distributed loads. The developed stiffness matrix
can model the tensile and compressive members
with one formulation, whereas the other
researchers use different relations for comparison
and tension. Moreover, the exact solutions which
are in terms of hyperbolic sine and cosine
functions are approximated employing a fifth-order
interpolation. In addition, the stiffness matrix has a
closed form. Consequently, the solution accuracy
is preserved and the analysis duration decrease and

IJE Transactions A: Basics

TABLE 8. The Properties of Sections and Materials.

Section  member  stories I (mm®) E (GPa)

(mm?®)

Cl column 1-2 52200  1.89x10°

C2 column 3-4 35000 1.3x10°

C3 column 5-6 34800 1x10°

200
Cc4 column 7-8 31000 8.94x10*
Cs5 column 9-11 22700 6.86x10*
B beam all 15700 7.61x10®

TABLE 9. The Middle-Top Node Displacements.

Displacement , u (mm)

Rigidity Factor
Linear Analysis  Second-Order Analysis
1 126 140
0.8 168 196
0.5 286 377

0.50

Linear _— - N , AN

0.40 {{ P-delta

0.30

u (m)

0.20

0.10

0.00

10
Time (s)

Figure 24. The curves of the parameter u for different values
of the end-rigidity.

the element become efficient. It should be noted
that the proposed stiffness matrix is very general
and can be utilized in the analysis of the frame
member with different types of connections.
Accordingly, the responses of steel framing with
adoption of wvarious end-fixity factors are
accessible. The developed element is also suitable
for dynamic analysis. Both linear and nonlinear
frame analysis can be performed by this element.
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In the second part of the paper, several first-
orders, P-delta, buckling, plastic and dynamic
analyses are performed using the benchmark semi-
rigid structures. The comparisons of the solutions
with those obtained by other researchers certify the
high accuracy and capabilities of the employed
element. In addition, the effects of connection
flexibility on the responses of structures are
studied. From the numerical solution point of view,
the following results are concluded:

1. Changing the connection rigidities makes
appreciable variations in the distribution of
the internal loads and the nodal
displacements. The second-order effects and
non-linear behavior of connection also
intensify these variations.

2. The connection flexibility reduces the
structural critical load. However, this effect
in the braced frames is lower than the un-
braced one. The variation of the critical load
with respect to the end-fixity values is
approximately linear.

3. The sequence formation of the plastic hinges
in frames, and their failure points depend on
the connection flexibility and the
corresponding ~ moment-rotation  curve.
Among the different places of the
connection, the foundation connections have
more effect on the collapse point of
structure. On the other hand, the flexibilities
of the beam to column connections have
little influence on the ultimate drifts and
only decrease the fracture load. Moreover,
the wultimate loads of the frames are
independent of the moment-rotation model
of the connection and are only depended on
the moment capacity of the connections or
members.

4. The outcomes of dynamic analysis show that
the reduction of the connection rigidities
softens the structure. Consequently, the
magnitude and period of structural vibration
are appreciably increased, which intensify
the lateral displacements and also the
second-order effects of axial loads. It should
be added that the P-delta effects also
increase the period of structure.
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9. NOMENCLATURE

stiffness matrix

force vector

transformation matrix

mass matrix

damping matrix

displacement, velocity and acceleration
vectors

rotational stiffness value and end-
fixity factor

internal moment and axial force
stability functions of the semi-rigid
connection

10. APPENDIX

10.1. Appendix A  Coefficients of interpolation

function

The factors of the interpolation function, which
is defined in Equation 1, are derived as below:

4
ay = (LH,-—L@)—L
(p+48) 8EI(p+48)
=20
a;=———(L6,+L0;)
p+80
4
0oL (g gy aE
2(p+48) EI(p+48)
1
a3 =2_0(p_80)a1
4
v=2 1010y 2
(p+48) EI(p+48)
1
as =—§(p)a1

10.2. Appendix B Nonzero terms of the stiffness

matrix

The parameters of the stiffness matrix, which is
used in Equation 13, are defined as below:
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Ky =
Kss =[3(S, + S) {61 + (r; +1; =211, )(S, —Sz)}>+,o]/L2

Ky =—Kys=—Ks5 =
310851 +8)Bry+(A=r)(S =S}/ L

K26 = _K56 =
37,(S, +8,) B3+ (1= 1,)(S, = S,)}/ L
K3 =908, +1;(1=r,)(S] = S3)

K6 = 9”1‘”_/52

Koo =911,8, +r,(1=1)(S] = S37)
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