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Abstract   One of the important issues in the study of steel frames is to find a suitable formulation 
for semi-rigid connections. In this paper, the explicit stiffness matrix for a two-dimensional beam-
column element having end-flexibilities is derived. The effects of the lateral uniformly distributed 
load on the deflection are considered. Both the tensile and compressive axial loads are also taken into 
account by one formula. Using the proposed stiffness matrix, some first-order, second-order, 
buckling, and dynamic analyses for semi-rigid frames are performed. The plastic analysis is also 
carried out using the plastic hinge approach. Comparing the calculated results with other references 
shows the accuracy and capabilities of the utilized element. Furthermore, the influences of the semi-
rigid connections on the static and dynamic responses are investigated.
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1. INTRODUCTION

The analysis and design of the steel frames is 
usually carried out considering the rigid or pinned 
connections. Utilizing the rigid or pinned model is 
simple. However, these connections do not show 
the actual behavior of the structural joints. The 
experimental tests indicate that all connections are 
flexible through the loading process [1]. Therefore, 
the effect of connection behavior in the analysis 
must be considered. Accordingly, various 
investigations have been done on this topic so far. 
Some researchers have concentrated their attempts 

on the experimental studies [1, 2]. Hasan, et al. [3]  
classified the semi-rigid connections. Investigating 
the behaviors of the semi-rigid connections, and 
proposing new models are the other topic for 

analysis and design of the steel frames with semi-
rigid connection [6-10] and others have worked on 
the design and optimization of these structures [11-
13]. The results of all studies show that the 
connection flexibility has the appreciable influence 
on the structural responses, and it cannot be 
ignored. It should be noted that many Codes take 
into account the semi-rigid connections and semi-
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rigid steel frames [14-16].
     Heretofore, several finite elements have been 
proposed for analyzing the frames, which have 
semi-rigid connections. Chen and Lui presented 
some methods for analyzing semi-rigid frames 
[17]. They adopted rational stiffness values of the 
ends' connections for developing the stiffness 
matrix. Using the concept of self-equilibrating 
element, Zhou and Chan obtained a new element 
[17]. This element uses a fifth-order polynomial 
function for deflection and its stiffness matrix 
includes the effects of axial force and the stiffness 
of the ends' connections. Utilizing the end-fixity 
factor in turn of directly applying the value of 
connection stiffness, Xu presented an element to 
simplify the second-order analysis of steel frames 
[18]. Moreover, Sekulovic and Salatic used the 
exact stability functions and proposed an element 
which considered the second-order influences of 
the axial force and bowing effect [19]. Recently, 
Ihaddoudène et al. presented a model of the 
connection using three springs [6]. The second-
order effects of the axial force were neglected by 
these investigators, and the plastic analysis was 
performed. Using the proposed element, 
Ihaddoudène et al. studied the forming of the 

structures with semi-rigid connections.
     In the present work, a new beam-column 
element with semi-rigid connections is proposed. 
This element is very general and models a frame 
member with any type of connections. 
Furthermore, the members of the stiffness matrix 
are proposed with the closed-form expressions 
which have adequate accuracy. It is worth 
emphasizing that the new element has a single 
formulation for both the tensile and compressive 
axial forces. The influences of the uniformly 
distributed loads on the deformation of the 
member are also considered in the developed 
element. Moreover, it has been utilized for 
comparing the responses of steel framing in 
different types of analysis having various end-
fixity factors. Static and dynamic analysis of 
several benchmark problems certifies the validity 
and efficiency of the proposed formulation. These 
analyses consist of the first-order, P-delta, 
buckling, and plastic behaviors. Furthermore, the 
numerical results are used to study the effects of 

connection flexibility on the responses of steel 
frames.

2. THE PROPOSED FORMULATION

Considering special effect in the structural analysis 
requires a proper formulation and suitable element. 
The major target of the present work is to take into 
account the connection flexibility and second-order 
effects in analyzing the plane steel frames. 
Consequently, a new beam-column element is 
utilized. Figure 1 shows the element specifications 
and the external load. The lateral load does not 
produce any torsion. The shear and warping 
deformations are also neglected. It should be 
emphasized that the rotational deformation is the 
only behavior which is considered for the beam to 
column connections. In other words, the axial and 
shear deformations in the connections are ignored. 
The connection flexibilities are simulated by two 
rotational springs. The rigidity of these springs is 
denoted by Ri and Rj. The moment-rotation 
relation of the spring could be linear, multi-linear 
or perfectly plastic. In the plastic analysis, only the 
bending moment is considered and the effects of 
axial forces are also neglected. Furthermore, the 
size of connection, in comparison to the columns 
and beams dimensions is ignored.
     In the proposed element, a fifth-order 
polynomial describes the elastic deformation of the 
element as presented in Equation 1. Chan and 
Zhou used this function to obtain a semi-rigid 
element. It should be noticed that Chan and Zhou's 
formulation excluded the effects of the uniformly 
distributed load on the structural deflections [17].

Figure 1. The semi-rigid 2D element in the basic axis.

plastic hinges. Also Liu et al. [7, 20, 21]  
investigated  the inelasticity behavior of the 
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The parameter v shows the lateral displacement 
which is measured according to the straight line 
between the two end points. Satisfying the 
compatibility and the equilibrium conditions, the 
unknown factors, ai, are obtained. These factors are 
presented in Appendix A. The compatibility 
conditions of the deformations are written at the 
two boundaries of the element as below:
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Furthermore, the moment and shear equilibrium 
equations at the middle point of the element could 
be respectively written as follows:
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As shown in Figure 1, the parameters Mi and Mj

are respectively the internal bending moments of 
joints, i and j .The axial force is denoted by P. It is 
reminded that the lateral loads enforce no torsion, 
and they are assumed to be distributed across the 
element. The value of these loads per unit length of 
the member is q. The Equations 2 to 7 can be 
solved simultaneously and unknown factors can be 
found. Afterward, the secant stiffness equations are 
obtained using the energy method. To achieve this 
goal, the total potential energy function of the 
element, Π, is calculated using the following 
relations:

VUΠ  (8)
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where, U and V are the strain energy and the 
external work, respectively. The axial deformation 
is also denoted by e. Minimizing the total potential 
energy and neglecting the axial elongation due to 
the bowing effect, the secant stiffness relationships 
for the proposed element are obtained as below:
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Before writing the matrix entries, some parameters 
are described. Primarily, the end-fixity factor is 
taken as )/31/(1 LREIr kk  , which is considered 
to be the stiffness of the semi-rigid connection in 
the joint k=i, j [22]. It is clear that for a rigid 
connection the stiffness is infinite and the rigidity 
factor becomes 1. On the other hand, the zero 
value for rk describes a pinned connection, which 
has zero rotational stiffness. For a semi-rigid 
connection, the end-fixity factor changes between 
zero and one. Moreover, the dimensionless ratio, 

EIPL /2 , is marked by  . The other required 
parameters are written in the below form:
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Now, the secant matrix entries, Sij , are written as 
follow:
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The coefficients S11, S12, S21 and S22 are indeed the 
stability functions of the semi-rigid member. 
Figure 2 illustrates the curves of these coefficients 
versus the variations of the axial force for different 
values of the end-fixity factors. For simplicity, the 
end-fixity factors of the two ends of the element 
are considered the same in these figures. 
Consequently, the functions S11 and S22 are also the 
same. It should be reminded that the curves of 
secant stiffness, which are shown in Figure 2, are 
similar to the work of Zhou and Chan [17]. These 
researchers presented Sij in terms of the non-
dimensional axial force, PL2/π2EI, and the 
connection-stiffness-control parameter 

)/4/( LEIrr  .
     Figure 2 shows that the values of S11 and S22

change from 0 to four when the connection 
stiffness increases from zero to infinite and the 
axial force is zero. In this case, the coefficients S12

and S21 also change in the range of 0-2. On the 
other hand, the critical compressive axial force is 
decreased if the connection stiffness decreases. 
According to Equation 11, the fixed-end moments 
are related to the coefficients S13 and S23 and also 
to the value of the distributed loads. In other 
words, the parameters S13 and S23 include the 
influence of the end-fixities and second-order 
effect of axial force on the fixed-end moments. 
The mentioned parameters are plotted in Figure 3. 
     As shown in Figure 3, the parameters S13 and 
S31 are in the 0-1/12 domain while the axial load is 
zero. Furthermore, the values of these coefficients 
change more rapidly, if the connection stiffness 
decreases. In common engineering practice, in 
addition to the fixed-end moments, the shear 
reactions are required for structural analysis. The 
suggested formulation does not require the explicit 
expressions of these forces. In other words, the 
fixed-end shears can be easily calculated utilizing 

Figure 2. The curves of stability functions for different values 
of end-rigidities.

Figure 3. The curves of S13 and S31 functions for different 
values of end-rigidities.
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the equilibrium equations.
     It is worth emphasizing that the proposed 
stability functions have some errors near the 
critical axial load in comparison to the exact 
solutions. However, the developed relations are 
simpler than the exact ones and the errors are not 
significant. It is reminded that the exact stability 
functions are two sets of functions, which are 
presented separately for compressive and tensional 
axial forces. Another merit of this study is that, the 
effect of tension and compression loads are treated 
in the same way by the present formulation. The 
effects of any kind of loading and the geometric 
imperfections can be also modeled by the 
suggested scheme.

3. EXPLICIT STIFFNESS MATRIX

The stiffness matrix of a semi-rigid member in the 
basic axis was obtained in the previous section. 
According to Equation 11, this matrix has three 
relations between the element principal forces and 
their relative displacements. On the other hand, a 
general plane frame element has six degree of 
freedom, as shown in Figure 4. By performing 
some matrix operations, the secant stiffness of the 
mentioned element is obtained utilizing the entries 
of the matrix given by Equation 11. The compact 
result is presented in the below form:

xKp SR
EL (14)

In this equation, SR
ELK is the stiffness matrix of the 

semi-rigid member in the local axis. The suggested 
matrix takes into account the second-order effects 
of the axial force and the connection flexibility. 
This matrix can be written in the below form:
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Nonzero arrays of the stiffness matrix are given in 
Appendix B. The global stiffness matrix is easily 
obtained using the following transform matrix:

RKRK SR
EL

TSR
EG  (16)

It is worth emphasizing that the obtained matrix 
can explicitly model a frame member with 
different types of connections. This element can be 
used in the second-order and buckling analysis of 
the steel frames as well. Furthermore, the stiffness 
formulation explicitly includes the effect of both 
tension and compression axial loads in a single 
relation. When the axial load is zero, Equation 15
changes to the required matrix for the first-order 
analysis of the semi-rigid frame. Furthermore, by 
setting the proper values for the end-fixity factors, 
the stiffness matrices of the truss or the common 
moment resistance frame elements are obtained. 
By utilizing this formulation, the special frame 
elements with different combination of rigid, 
pinned, semi-rigid connections for each end of the 
member are easily modeled. It is evident that the 
end-fixity factor is more important, since expresses 
the real condition of the connection. 

4. THE BEHAVIOR OF CONNECTIONS

Commonly, the moment-rotation relationship 
describes the behavior of connections [23]. In the 
present investigation, it is assumed that the semi-
rigid connections have a linear behavior. The basic 
equation for the linear model is defined as follows:

RM  (17)

In this equation, M is the moment and R and θ are 
the stiffness and rotation of the connection, 
respectively. The connection stiffness, R, could be 
considered as either the initial stiffness or the 

Figure 4. The six-DOF semi-rigid element.
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secant connection stiffness. From this point on, 
except for the mentioned members, the connection 
stiffness is constant and equals to the initial secant 
stiffness. The multi-line and inelastic behaviors of 
connections are also considered in this paper. The 
inelastic behavior is assumed to be linear elastic 
and perfectly plastic.

5. DIFFERENT TYPES OF ANALYSIS

Several kinds of structural analysis are performed 
to show the abilities of the recommended element 
and also to study the effects of connection 
flexibilities on the structural responses. By 
neglecting the effects of the axial forces in the 
stiffness matrix, the first-order analysis of the 
semi-rigid frame is possible. On the other hand, the 
second-order analysis is carried out using the 
proposed stiffness matrix. It is reminded that the 
elements of the stiffness matrix in this case are 
affected by the values of the axial loads. 
Consequently, the P-delta analysis should be done 
by an iterative process up to the point of 
equilibrium state. The buckling loads of steel 
frames with semi-rigid connections could be also 
derived. The mentioned analysis is performed by 
evaluating the eigenvalues of the structural 
stiffness matrix. In other words, the external loads 
are incrementally increased until the lowest 
eigenvalue becomes zero or a negative value. The 
authors’ experiences show that dividing the frame 
members into several elements has no appreciable 
effect on the response accuracy for the reason that 
the assumed function has the high order terms. To 
prove this merit, both examples in Section 7.3 were 
reanalyzed with more elements, and the same 
results were obtained.
     The plastic behavior of the connection is also 
studied in the present paper. However, the second-
order effects are neglected for this kind of analysis. 
While the multi-line relation is used for the plastic 
behavior, the Ihaddoudène algorithm could be 
applied for inelastic analysis of the structure [6]. 
The mentioned procedure pursues the sequence of 
the formation of the plastic hinges based on the 
moment-rotation function of connections. This 
procedure is a step by step precise process. For a 
general moment-rotation function, a common 
iterative tactic, such as dynamic relation method 

(DRM) or Newton-Raphson procedure should be 
utilized. Because the proposed element has an 
explicit stiffness matrix, the connection behavior 
does not increase the required time in the linear 
analysis. However, the nonlinear problems demand 
more computations to include connection effect.  
The details of dynamic analysis will be described 
in the next section.

6. DYNAMIC ANALYSIS

The dynamic analysis is performed by either the 
numerical time integration tactics or the modal 
analysis. Linear dynamic analysis is usually 
performed by the modal method. On the other 
hand, the numerical integration algorithms are 
more general and can be used for both linear and 
nonlinear system. In this kind of structural 
analysis, the total time interval is divided into 
finite steps. The dynamic equilibrium equations at 
the end of the nth step are written in the below 
matrix form:

111111   nnnnnn PXKXCXM  (18)

where, C and M are damping and the mass 
matrices, and P is the applied force vector. The 
unknown parameters are displacements, velocities 
and the accelerations, which are shown by X, 

X and X , respectively. Four numerical time 
integration tactic are utilized in the present study. 
They are the constant and linear acceleration 
algorithms of Newmark [24] Wilson-θ technique 
[25] and the 5th-order procedure of Rezaiee-Pajand 
and Alamatian [23]. These methods are denoted by 
NCA, NLA, WTM, IHOA-5, respectively. The 
mentioned methods calculate the velocities and the 
accelerations at time tn+1, in terms of displacements 
at this time, and also the previous steps values. The 
extrapolations for the WTM, NCA and the NLA 
methods are written in the below generalized 
functions:
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Technically, the WTM is a generalized process of 
the NLA, which evaluates the velocities and the 
accelerations at the extended time, tn+θ∆t. In 
special case, when the value of θ is 1, the WTM 
coincides with the NLA. The stability of the WTM 
depends on the time step. However, this is an 
unconditionally stable procedure, when the value 
of θ is greater than 1.37. The optimal value of θ is 
1.42. Recently, Rezaiee-Pajand and Alamatian 
suggested a new higher-order time integration 
family. The 5th-order member of this family uses 
the following extrapolations:
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In the numerical time integration strategies, the 
acceleration and the velocity extrapolation vectors 
are substituted in the dynamic equilibrium 
equation. As a result, a system of equations in the 
terms of Xn+1 is obtained, which has the below 
general form:
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where, ξ and ηare the constant parameters and f1

and f2 are functions of the displacement, velocity 
and the acceleration vectors of step n and the 
accelerations of the previous ones. Starting from 
initial conditions, the right hand side of Equation 21
is known and the unknown variables are calculated 
step by step. In general case, Equation 21 is a 
nonlinear system of equation and should be solved 
using an iterative method. The Dynamic Relaxation 
method (DRM) is a simple and a powerful 
procedure to solve the linear and nonlinear 

equations. Because of this merit, the combination of 
the numerical time integration and the DRM, are 
utilized to solve dynamic problems [26].

7. NUMERICAL EXAMPLES

To show the robustness of the proposed element, 
some benchmark problems are analyzed and the 
solutions are compared with other references. 
Moreover, the effects of connection flexibility on 
behavior of the steel frame are investigated.
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7.1. First-Order Analysis   The first-order 
analysis of two frames of Figures 5 and 6 are 
studied. The structures are loaded with the 
horizontal and vertical forces. At first, the portal 
frame of Figure 5 is considered. The section areas 
of the beam and its columns are respectively 76
cm2 and 110 cm2, and the corresponding moments 
of inertia are 21500 cm4 and 9460 cm4. The 
modulus of elasticity is assumed to be 205GPa. 
According to Table 1, a variety of connection 
stiffness values are considered for the beam to 
column and also for the base-plate connections. 
The absolute values of the internal moments at the 
end of the members are also computed and 
arranged in Table 1. The values in parentheses 
show the available solutions by other investigators 

[27]. The comparison between two groups of the 
results shows the accuracy of the proposed element 
for analysis of semi-rigid connections.
     Figure 6 shows the one-storey two-span frame. 
The sections of the beams and columns are 
W21×57 and W10×22, respectively. The stiffness  
the beams to columns connections are 7.8807
kN.m/rad (45000 kip-in/rad). The elasticity 
modulus of the material is also 200GPa. The 
curves of the bending moment are plotted in Figure 
7, for both rigid and semi-rigid connections. Chen 
studied this structure with semi-rigid connections 
[28]. The numbers in parentheses of Figure 7 are 
computed by Chen.
     Figure 7 shows that the solutions of the new 
element are correct. Furthermore, the results of the 

TABLE 1. The Absolute Values of Internal Moments (kN.m) for the frame of Figure 5.

Rigid ConnectionsSemi-Rigid Connections

Moments rc=1, rb=1
(Rc=∞,Rb=∞)

rc=1, rb=0
(Rc=∞,Rb=0)

rc=1, rb=0.40
(Rc=∞,Rb=4EIb/Lb)

rc=0.25, rb=0.40
(Rc=EIc/Lc,Rb=4EIb/Lb)

52.23 (52.2)30.04 (30)31.67 (31.7)0.32 (0.3)M13

127.50 (127.5)0.00 (0)93.65 (93.6)80.25 (80.3)M31

87.14 (87.1)29.96 (30)71.53 (71.5)24.16 (24.2)M24

152.59 (152.6)0.00 (0)113.80 (113.8)116.41 (116.4)M42

260.00 (260.0)400.00 (400)296.28 (296.3)301.67 (301.7)M54

31.9
57.8 (57.8)

Rigid connection 

Semi-rigid connection

7.9
10.1 (10.1)

11.0
11.5 (11.6)

3.7
6.4 (6.3)

14.1
9.8 (9.7)0.7

0.8 (0.7)

63.0
11.3 (11.3)

55.2
4.4 (4.5)

29.1
56.7 (56.7)

Figure 7. The bending moment diagrams (kN.m).
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two problems demonstrate that the connection 
flexibility has a considerable effect on the frame 
internal force distributions.

7.2. Second-Order Analysis   To prove the 
accuracy of the proposed stiffness matrix, a portal 
frame with flexible connections is analyzed. As 
shown in Figure 8, the mentioned structure is 
subjected to the nodal and distributed loads. The 
beam and columns of the frame are made of IPE22
and IPB14 sections, respectively. The value of the 
Yang’s modulus is 210GPa. 
     The P-delta and the first-order analysis are 
performed for the four rigid, TSDWA, DWA and 
pinned beam to column connections. It should be 
reminded that the TSDWA connects the beam to 
column by employing top and seat angles with 
double web angles. Double web angles also 
construct the DWA connection. Based on the 
reference [19], the values of the rotational stiffness 
for the TSDWA and DWA connections are 11300
and 6100 kN.m/rad, respectively. The values of 
P=450kN and q=250kN/m are also selected for 
loads. Some of the results for displacements and 
moments are presented in Tables 2 and 3. The 
structural responses are compared with those 
obtained by Sekulovic and Salatic [19].
     Tables 2 and 3 show that there is no substantial 
difference between the calculated results and those 
reported in reference [19]. It is reminded that 
Sekulovic and Salatic used the exact stability 
functions in terms of hyperbolic sine and cosine 
functions, whereas a fifth-order polynomial is 
utilized in the proposed method.  
     Consequently, the proposed stiffness matrix 
based on the fifth-order polynomial has a high 
accuracy. Moreover, changing the connection 
rigidities makes appreciable variations in the 
distribution of the internal loads and the nodal 
displacements. The second-order analysis also 
increases these changes. The variations of some 
selected solutions versus the rigidity of the beam to 
column connection are plotted in Figures 9 and 10, 
for the first-order analysis. Similar curves are also 
presented in Figures 11 and 12, for the second-

order analysis. It should be noticed that the 
solutions are normalized based on the outcomes of 
using the rigid connections.

7.3. Buckling Analysis   Two braced and un-
braced semi-rigid frames, as shown in Figure 13, 
are selected to perform the buckling analysis 
utilizing the new element. The mentioned frames 
are studied by Raftoyiannis in 2005. This 
investigator applied the exact stability analysis to 
find the buckling loads [29]. In both structures, the 
sections IPE30, HEA24 and L60×6 are used for the 
beams, columns and braces, respectively. The 
modulus of the elasticity is 210GPa. In addition, 
the stiffness of the semi-rigid beam to column 
connections is assumed to be constant and equal to 
75566.6085 kN.m/rad.
     From Table 4, it is observed that the proposed 
method for computing the buckling load has an 
acceptable accuracy. It is reminded that 
Raftoyiannis used the exact stability functions. 

added that only one of the braces is used to obtain 
the braced frame critical load. Showing the 
influence of connection flexibility on the value of 
the critical load, some buckling analyses are 
performed on the un-braced frame of Figure 13. The 
calculated responses are normalized by those 
achieved utilizing the rigid connections. The related 
curves are plotted in Figure 14. It can be observed 
that the variation of the critical load with respect to 
the end-fixity values is approximately linear. 
Moreover, when the rigidity of the connection 
increases, the slope of the curve is also increased.

7.4. The Plastic Analysis   The rigidities of the 
connections are affected by the elasto-plastic 
behavior of a steel structure. Moreover, the sequence 
forming of the plastic hinges and also the ultimate 
external load are related to the stiffness of the 
connections. Verifying these properties, the portal 
steel frame of Figure 15 is analyzed. Based on the 
reference [6], all sections of this structure are IPE33. 

Furthermore, the critical load of stricter is reduced 
by decreasing of the connection flexibility.  However,  
this effect is reduced in the braced frames. It should be 
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Figure 8. Simple portal frame.

TABLE 2. The Results of Applying the Nodal Loads

Second-OrderFirst-OrderType of 
Connection

Outcome
Ref. [19]Presented StudyRef. [19]Presented Study

936.21936.3175.7375.72Pinned
Horizontal 

Displacement of 
Node 3(×10-4 m)

47.4947.1230.9530.79DWA

42.3942.9728.7028.96TSDWA

36.4236.4225.7925.79Rigid

46.62946.6384.5034.502Pinned
Bending Moment Of 

Node 1
(kN. m)

3.9083.8902.7282.722DWA

3.6633.6902.6392.649TSDWA

3.3763.3752.5242.524Rigid

TABLE 3. The results of Applying the Distributed Load.

Second-orderFirst-Order
Type of

Connection
Outcome

Ref. [19]Presented StudyRef. [19]Presented Study

137.64142.93122.63123.27DWA
Rotation of Node 

3(×10-3 Rad)
149.83152.13132.81131.54TSDWA

166.46166.84146.94146.91Rigid

233.08242.19193.69194.87DWA
Bending Moment 
of Node 1(kN. m)

253.12257.78209.78207.94TSDWA

281.87282.70232.09232.23Rigid
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    For the sake of comparison, the plastic moments 
of the joints and frame elements are considered

13.114int jo
pM kN.m and 96.1922  exp SM 

kN.m, respectively.
     Four cases of semi-rigid connections are 
considered for the mentioned frame. In the first 
case, all connections of 1 to 4 are semi-rigid. The 
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Figure 9. The influence of connection flexibility on the 
horizontal displacement in the first-order analysis.
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Figure 10. The influence of connection flexibility on the 
bending moment in the first-order analysis.
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Figure 11. The influence of connection flexibility on the 
horizontal displacement in the second-order analysis.
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Figure 12. The influence of connection flexibility on the 
bending moment in the second-order analysis.
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Figure 13. The braced and un-braced simple rectangular 
frames.
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beam to columns and columns to base connections 
are rigid for respectively the second and the third 
cases, and the other connections remain semi-rigid.  
All connections of the final case are assumed to be 
rigid. Furthermore, four classes of the moment-
rotation behavior for the semi-rigid connections are 
investigated, based on Figure 16.

The first set of analysis is performed for trilinear 
model of semi-rigid connections. The obtained 
ultimate load and the corresponding horizontal 
displacement of joint 2 and also the results of 
Ihaddoudène are arranged in Table 5. The 
presented solutions certify the accuracy of the 
proposed element. 

TABLE 4. The Buckling Load of the Simple Rectangular Frame (kN).

Braced, Hinged SupportUn-braced, Fixed Support

Type of
Connection Ref. 

[29]

Presented Study Number of Element 
Per MemberRef. 

[29]

Presented Study Number of Element 
Per Member

4141

100521006010060251325132513Pinned

116471165811659465846564655Semi-rigid

128051282312823724472277227Rigid
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Figure 14. The influence of the connection flexibility on the critical load.
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Figure 15. Portal frame
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M 
(kN.m)

114.13

R(1) = 45200

θ (rad)

74.58 R(2) = 5797
R(3) = 0

(a)

M 
(kN.m)

114.13

R(1) = 45200

θ (rad)

74.58

R(2) = 0

(b)
M 

(kN.m)

114.13

R(1) = 25498.5

θ (rad)

74.58

R(2) = 0

(c)

M 
(kN.m)

114.13

R(1) = 13470.6

θ (rad)

74.58

R(3) = 0

(d)

Figure 16. The moment-rotation models for semi-rigid connections, (a) Trilinear connection model (T1), 
(b) Bilinear connection model (B1), (c) Bilinear connection model (B2) and 

(d) Bilinear connection model (B3).

TABLE 5. The Results of the Trilinear Connection Model.

Failure Load (kN)
Horizontal Displacement of Node 

2 (m)Beam to Column 
Connections

Column to Base 
Connections

Type of 
Frame

Ref. [6]
Presented 

Study
Ref. [6]Presented Study

91.29391.30320.09570.0963Semi-rigidSemi-rigidCase 1

---111.1433---0.0953RigidSemi-rigidCase 2

111.122111.12130.05560.0555Semi-rigidRigidCase 3

128.640128.63880.05420.0539RigidRigidCase 4
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     When the loads increase, the plastic hinges take 
form step by step at the points with extreme 

moments. Indeed, the values presented in Table 5
are related to the final state. Whereas, the effects of 
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Figure 17. The load-displacement curves for the trilinear connection model.

TABLE 6. The Step-by Step Ihaddoudène Analysis for Case 1 and Trilinear Model of Connection.

∆u2
(i) (m)

∆M5
(i)

(kN.m)
∆M4

(i)

(kN.m)
∆M3

(i)

(kN.m)
∆M2

(i)

(kN.m)
∆M1

(i)

(kN.m)
∆W(i) (kN)step

0.019864.27772.325-53.459-74.58023.80644.83321

0.00082.4232.255-2.112-1.2900.8951.31052

0.007017.7707.091-19.009-9.2189.1698.89773

0.024843.12324.712-24.761-29.04229.15221.53334

0.009316.0437.747-9.1980.00010.2935.44805

0.00111.5600.000-1.0540.0001.2650.46406

0.00494.6770.000-4.5370.0003.1801.54347

0.028632.7310.0000.0000.00036.3707.27318

0.0963182.604114.13-114.13-114.13114.1391.3032∑
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P-delta are neglected, the structural behavior 
between the two consecutive steps is linear. In 
other words, the curves of load-displacement 
consist of some lines, as shown in Figure 17. The 
numbers on the curves of Figure 17 define which 
point is yielded. It is reminded that the iterative 
analyses are performed based on the Ihaddoudène 
algorithm and using the new element to find the 
special points of the curves. For instance, the 
calculations of the first case, which all connections 
are semi-rigid, are presented in Table 6.
     Some similar analyses are performed for the 
B1, B2 and B3 types of connection, with the 
bilinear behavior. The related load-displacements 
curves are respectively shown in Figures 18, 19
and 20. Based on Figures 17 to 20, changing the 
connection flexibility permutes the forming of 
plastic hinges. The failure point of structure is also 
changed. The existence of the semi-rigid 
connections decreases the ultimate strength of the 
structure. On the other hand, the maximum value 
of displacements prior to the collapse of the 

structure is related to the positions of semi rigid-
connections. Among the studied cases, the non-
rigid columns to foundations connections increase 
the final displacement. Furthermore, the semi-rigid 
beams to column connections have no appreciable 
effects on the mentioned value.

     It should be noted that all multi-linear models 
of semi-rigid connections have the same ultimate 
capacity. Consequently, the failure loads are the 
same even for the frames which have connections 
with different behavior. In other words, the 
ultimate loads of the frame only depend on the 
capacity of the connections. However, the 
horizontal displacements of node 2 for different 
models are not the same. Furthermore, the 
sequences of forming the plastic hinge are also 
dissimilar in some examples. As a result, the 
displacement and sequence of the formation of 
hinges depends on the moment-rotation modeling 
of the connection.
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Figure 18. The load-displacement curves for the B1 bilinear 
connection model.
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Figure 19. The load-displacement curves for the B2 bilinear 
connection model.
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Figure 20. The load-displacement curves for the B3 bilinear 
connection model.

Figure 21. The 10-story frame.

7.5. Dynamic Analysis   A one-span 
ten-story steel frame, which was studied 
by Sekulovic et al. [30], is selected for 
the first dynamic analysis. This 

external forces are applied to this 10-
story frame. The weight of structure is 
also zero. The masses of the frame 

m and mr masses are 8000 and 6000
Kg, respectively. The modulus of 
elasticity for this system is 210 GPa. 
The properties of the sections for this 

     The mentioned structure is excited
by the following ground acceleration:

structure is shown in Figure 21. No 

concentrated at the nodal points are
shown in Figure 21. The values of the 

structure are inserted in Table 7.
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TABLE 7. The section Properties of the 10-Story Frame.

Section member stories A (m2) I (m4)

C1 column 1-4 0.027 1.71×10-3

C2 column 5-7 0.0218 7.989×10-4

C3 column 8-10 0.0149 2.517×10-4

B beam all 0.306 2.569×10-3

Figure 22. Time-displacement curve for 10-story frame.

Figure 23. The 11-story structure.
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The rigid, TSDWA and DWA beam-column
connections are considered. It is reminded that the 
value of end-rigidities for the TSDWA and DWA 
connections are assumed as 0.795 and 0.6765, 
respectively. The value of 0.01 second is selected 
for the time step and the NCA and WTM time 
integration processes are utilized to analyze the 
structure. The time-displacement curves for the 
index displacement, u, are plotted in Figure 22. It 
should be noted that the results of these two 
methods are the same. Furthermore, the accuracies 
of the responses are checked using the NLA and 
also the IHOA-5 tactics, when the value of the time 
step is equal to 0.0005 s.
     The response of the mentioned structure with 
rigid connections was presented by Sekulovic et al. 
[30], which is the same as the corresponding curve 
of Figure 22. The other curves show the influence 
of end-fixities on the responses of the structure. 
The reduction of the connection rigidities causes 
the appreciable growth of the response magnitudes, 
especially when the structure oscillates freely. 
Figure 23 shows the other moment resistant steel 
frame which is analyzed dynamically. The 
structure is loaded by the uniform gravity and the 
lateral wind forces. The value of gravity loads at 
the roof story and the other stories are 59.45 and 
74.14 kN/m, respectively. The sections and the 
material properties of this structure are shown in 
Table 8.
     It should be reminded that this structure was 
used by Morris et al. [31] for studying the effect of 
semi-rigid connections. Further, Xu analyzed it and 
investigated the effect of P-delta effect [18]. 
Verifying the validity of the proposed element, 
three end-rigidity factors, such as 1, 0.8 and 0.5, 
are considered for beams in the present work. 
Some linear and second-order analyses are 
performed and the horizontal displacements of the 
middle-top node of building, u, are arranged in 
Table 9. It is worth emphasizing that the present 
solutions are the same as those obtained by Xu.
     In the second part, the merit of the new element 
for dynamic analysis is investigated. Consequently, 
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the gravity loads are assumed to be constants and 
the horizontal forces are applied during ten second. 
In other words, the equivalent wind loads are zero 
at the beginning time. They are increased linearly 
until they reach the values of Figure 23 at 10
second. After that, they are constants. Some 
lumped masses are also added to the joints and the 
weights of the members are ignored. The 
concentrated masses for the middle and outer joints 
of the roof are 52000 and 26000 kg, respectively. 
The similar values for the other stories are 66000
and 33000 kg, respectively.
     The first and also second-order dynamic 
analyses are performed for the 11-story structure 
using the WTM, NCA methods and st 1.0 . The 
results are verified by utilizing the NLA and 
IHOA-5 process, with 005.0t and 0.002
seconds, respectively. The curve of the indicative 
drifts of the structure, u, are presented in Figure 24
for the aforementioned values of end-rigidity 
factors. 
     As shown in Figure 24, the lateral 
displacements are increased when the end-rigidity 
factors of beams are decreased. Therefore, the 
second-order effects on the drifts of structure 
become appreciable. Moreover, the declines in the 
connection rigidity intensify the response 
amplitudes. In addition, the periods of solutions 
increase if the values of the end-fixities decrease. 
The P-delta effects for this frame also increase the 
period of solutions.

8. CONCLUSIONS

At first, a new formulation for the second-order 
elastic analysis of the plane steel frame was 
employed. The suggested element has semi-rigid 
connections and can take the nodal and uniformly 
distributed loads. The developed stiffness matrix 
can model the tensile and compressive members 
with one formulation, whereas the other 
researchers use different relations for comparison 
and tension. Moreover, the exact solutions which 
are in terms of hyperbolic sine and cosine 
functions are approximated employing a fifth-order 
interpolation. In addition, the stiffness matrix has a 
closed form. Consequently, the solution accuracy 
is preserved and the analysis duration decrease and 

the element become efficient. It should be noted 
that the proposed stiffness matrix is very general 
and can be utilized in the analysis of the frame 
member with different types of connections. 
Accordingly, the responses of steel framing with 
adoption of various end-fixity factors are 
accessible. The developed element is also suitable 
for dynamic analysis. Both linear and nonlinear 
frame analysis can be performed by this element.

TABLE 8. The Properties of Sections and Materials.

Section member stories
A 

(mm2)
I (mm4) E (GPa)

C1 column 1-2 52200 1.89×109

200

C2 column 3-4 35000 1.3×109

C3 column 5-6 34800 1×109

C4 column 7-8 31000 8.94×108

C5 column 9-11 22700 6.86×108

B beam all 15700 7.61×108

TABLE 9. The Middle-Top Node Displacements.

Rigidity Factor
Displacement , u (mm)

Linear Analysis Second-Order Analysis

1 126 140

0.8 168 196

0.5 286 377

Figure 24. The curves of the parameter u for different values 
of the end-rigidity.



220 - Vol. 24, No. 3, September 2011 IJE Transactions A: Basics

     In the second part of the paper, several first-
orders, P-delta, buckling, plastic and dynamic 
analyses are performed using the benchmark semi-
rigid structures. The comparisons of the solutions 
with those obtained by other researchers certify the 
high accuracy and capabilities of the employed 
element. In addition, the effects of connection 
flexibility on the responses of structures are 
studied. From the numerical solution point of view, 
the following results are concluded:

1. Changing the connection rigidities makes 
appreciable variations in the distribution of 
the internal loads and the nodal 
displacements. The second-order effects and 
non-linear behavior of connection also 
intensify these variations. 

2. The connection flexibility reduces the 
structural critical load. However, this effect 
in the braced frames is lower than the un-
braced one. The variation of the critical load 
with respect to the end-fixity values is 
approximately linear.

3. The sequence formation of the plastic hinges 
in frames, and their failure points depend on 
the connection flexibility and the 
corresponding moment-rotation curve. 
Among the different places of the 
connection, the foundation connections have 
more effect on the collapse point of 
structure. On the other hand, the flexibilities 
of the beam to column connections have 
little influence on the ultimate drifts and
only decrease the fracture load. Moreover, 
the ultimate loads of the frames are 
independent of the moment-rotation model 
of the connection and are only depended on 
the moment capacity of the connections or 
members.

4. The outcomes of dynamic analysis show that 
the reduction of the connection rigidities 
softens the structure. Consequently, the 
magnitude and period of structural vibration 
are appreciably increased, which intensify 
the lateral displacements and also the 
second-order effects of axial loads. It should 
be added that the P-delta effects also 
increase the period of structure. 

9. NOMENCLATURE

K = stiffness matrix
P= force vector
R= transformation matrix
M= mass matrix
C= damping matrix 
X, X , X = displacement, velocity and acceleration

vectors
R, r= rotational stiffness value and end-

fixity factor
M, P= internal moment and axial force
Sij = stability functions of the semi-rigid 

connection

10. APPENDIX

10.1. Appendix A   Coefficients of interpolation 
function
     The factors of the interpolation function, which 
is defined in Equation 1, are derived as below:
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10.2. Appendix B   Nonzero terms of the stiffness 
matrix
     The parameters of the stiffness matrix, which is 
used in Equation 13, are defined as below:
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