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Abstract   In this paper, European option pricing with stochastic volatility forecasted by well known 
GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stock 
price from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved by 
Crank-Nicolson finite difference method for various interest rates and maturity in time. The 
sensitivity measures “Greeks” are also determined to validate the model. It is observed that the value 
of European put option increases with maturity time and decreases with interest rate. 
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در  GARCHدر این مقاله قیمت گذاري اروپایی با استفاده از تغییرات تصادفی توسط مدل معروف    چکیده    

از تاریخ  Relianceدر این مقاله از داده هاي قیمت سهام شرکت . بازار مالی هند پیش بینی شده است
-Crankاستفاده شده و معادله دیفرانسیل جزئی حاصل توسط روش اختلاف محدود  30/3/2009تا  3/1/2002

Nicolson میزان حساسیت . براي نرخ سودهاي متغیر و زمان سررسید حل شده است“Greeks”  نیز به منظور
با میزان سررسید افزایش و با نرخ سود مشاهده شده است که ارزش سهام اروپایی . تایید مدل مشخص شده اند

  .کاهش یافته است
 

1. INTRODUCTION 
 
It is widely acknowledged by financial researchers 
Black, et al [1], Merton [2] that the valuation of 
options leads to mathematical model which has 
long been an intriguing problem in different ways. 
The most fundamental input into an option pricing 
model is volatility, a measure of how much the 
underlying asset price is likely to vary over time. 
In financial markets, volatility presents a strange 
paradox to the market participants, academicians 
and policy makers Nelson [3],even volatility 
estimation is by no means an exact science but a 
lot of efforts have been expended in improving 
volatility model since better forecasts transforms 
into better pricing of option Bollerslev, et al [4], 
and Loudon, et al [5]. 
     Recently, Loudon, et al [5], Mc-Millan, et al 
[6], Yu [7], Klaassen [8], Vilasuso [9] and Balaban 
[10] investigated the forecasting models in various 
markets and found that ARCH class of models 

provide better forecast in terms of statistical error 
and  evidence in favor of  GARCH model over 
shorter intervals. In all these studies, various 
methods for the estimation of volatility and their 
performances were discussed in terms of statistical 
error but none of them used volatility forecasting 
in the valuation of option pricing governed by 
Black-Scholes partial differential equation. 
     Hull, et al [11] determined the numerical 
solution of Black-Scholes partial differential 
equation regarding constant volatility. Later on, an 
alternative approach has been proposed by 
Avellaneda, et al [12-13] in which it is assumed 
that volatility is uncertain but lies within a known 
range of values. Recently, Chawla, et al [14], 
Mayo [15], Tangman, et al [16] and Hu, et al [17] 
developed more efficient finite difference 
numerical methods for pricing of option giving 
better accuracy than normal difference method. 
But, the option prices obtained using Black-
Scholes model with constant volatility is not 
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consistent with observed option prices. One 
possible remedy for this is to make the volatility to 
be a function of time and strike price, which leads 
to a model in terms of parabolic partial differential 
equation in two variables i.e. volatility and 
underlying asset value. 
     In this paper an alternative approach is 
developed for the pricing of option by Black-
Scholes partial differential equation regarding 
variable volatility which is forecasted by GARCH 
(1, 1) method and the resulting one dimensional 
parabolic partial differential equation is solved by 
implicit finite difference method [18]. 
 
 

2. FORMULATION AND SOLUTION OF 
MODEL 

 
In the modeling of option pricing, the physical 
system is the financial market place and the 
particular object of observation is the price of the 
option’s underlying asset. In order to develop a 
model tractable by mathematical and 
computational techniques, it is assumed that price 
of European option V  is a function of current 
value of the underlying asset ‘ S ’ and the time t  
i.e. ( , )V V S t= . The continuous-time, Black-
Scholes model to European option is 
 

[ ] [ ]
2

2 2
2

1 0 0, , 0,
2

V V VrS S rV t T S
t S S

σ
∂ ∂ ∂

+ + − = ∈ ∈ ∞
∂ ∂ ∂

  

 (1) 
 

where, T  is time of expiration, r is a risk-free 
interest rate and σ  is volatility of stock returns. 
     Suppose K  and TS  be strike price and price of 
underlying asset on the date of expiration T , 
respectively.  In case of TS K< , it has a financial 
sense (in-the-money for holder of put option) and 
encourage to the holder of put option for exercise, 
because holder can sell the asset of worth TS at the 
cost of K . Thus, the gain of holder from the call 
option is ( )TK S− . In case of TS K≥ , the holder 
will forfeit the right to exercise the option because 
he can buy the asset at a cost, less than or equal to 
predetermined strike price K . Similarly, in-the-
money position for put option it is TS K< , under 
which, asset is sold at higher price of K  instead of 

TS . Thus, the terminal payoffs from the long 
position in a European call and put options are 
defined as: 
 

( , ) max{ ,0}V S T K S= −  (2) 
 
In put options, the terminal payoffs are non-
negative, which reflect the vary nature of the 
options. This condition is defined at a future point 
in time and we wish to determine values 
backwards to an earlier point in time. 
     The option pricing problem (1) is posed on the 
domain [ ] [ ]0, 0, T∞ ×  with final condition (2). To 
complete the option pricing model, we prescribe 
two spatial boundary conditions at 0S =  and 
S = ∞ . But, in case of numerical solution, infinite 
grids cannot be represented in the computer so we 
truncate the solution domain artificially at point 

maxS S=  and replace the deleted portions with 
boundary conditions that minimize the deleterious 
effects of the truncation. The truncation point maxS  
has to be sufficiently far from the region of interest 
in order to avoid the excessive error due to 
truncation and even if the imposed boundary 
conditions are imperfect, it does not materially 
affect the solution. On the other hand, 
unnecessarily large value of maxS  increases the 
computational cost. The choice of maxS  is consider 
in [19]. Hence, the solution value for the option 
pricing model (1) is [ ] [ ]m ax0, 0,S T× . 
Boundary conditions for put option are as: 
 
• When 0S = for some ( )t T< , S  will stay 

at zero at all subsequent times so that the 
option is sure to expire in-the-money. Hence 

 
( )

max(0, ) r t TV t Ke S− −= −  (3) 
 
• When maxS S= , it becomes almost certain 

that the put value will be in out-of-the–
money. Hence  

 

max( , ) 0V S t =  (4) 
 
More and more researchers have found that the 
option pricing with stochastic volatility is more 
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realistic than Black-Scholes model with constant 
volatility. Thus, volatility is an important issue to 
be addressed properly. From computational point 
of view, it is convenient to handle the pricing 
problem by forecasting the valuation by well 
known GARCH method than regarding volatility 
as function of strike price and time. Now we 
discuss the GARCH model. 
 
2.1. GARCH (1, 1) Model   In 1986, Bollerslev 
[4] proposed GARCH (1, 1) model as 
 

t t ty ε σ=  (5) 
 
with conditional variance 2 2 2

0 1 1t i t i tyσ α α β σ− −= + +  
with 
 

0 1 10, , 0,andα α β> ≥  (6) 
 
Where 

2
tσ , 

2
1tσ −  are volatilities on the day t  and 

previous day, 1ty −  is return on the previous day and 

tε  denotes a real-valued discrete-time stochastic 

process as 2(0, )t tNε σ≈ , ty  is the dependent 
variable of return tx  at a time t  and 0α , 

1 1andα β  are weighted assigned to conditional 
and unconditional variances. The GARCH (1,1) 
regression model is obtained by assuming the tε s 
be innovation in a linear regression 
 

t t ty bx ε= +  (7) 
 
The GARCH (1,1) process as defined in Equations 
5 and 6 is stationary with ( ) 0tE y = , 

0

1 1

var( )
1ty α

α β
=

− −
 and cov( , ) 0t sy y for t s= ≠  

if and only if 1 1 1α β+ <  or characteristic roots of 
GARCH (1,1) process are outside the unit circle. 
The likelihood function for estimation of 
parameters is defined as: 
 

2
2

2
1

1 ln(2 ) ln( )
2

T
t

t
t t

yTθ π σ
σ=

  
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2.2. Discretization of Equation   For numerical 
solution of partial differential Equation 1 the 
rectangular domain [ ] [ ]max0, 0,S T×  is divided into 
( 1) ( 1)N M+ × +  uniform grid points. The step 
width S∆  and t∆  are in general independent, 
where 
 

max
1

0 ; 0,1,2,.....i i
SS S S i M

M+
−

− = ∆ = =
 

 

1 ; 0,1,2,.....i i
Tt t t j N
N+ − = ∆ = =  

 

and ,i jV denotes the numerical approximation of 
( , )V i S j t∆ ∆  i.e. at value of V grid point ( , )i j . 

     Keeping view for stability of finite difference 
scheme in mind, we used Crank and Nicolson 
(1947) method, which incorporates both explicit 
and implicit features [20]. The Crank-Nicolson 
scheme for Equation 1 is 
 

1 1 1 1
1 1 1

i i i i i i
j j j j j jaV bV cV xV yV zV− + − +
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2.3. Discretization of Boundary and Initial 
Conditions   We need the discretization of 
boundary and initial conditions for the European 
option. For a put option, boundary conditions are 
 

0 0 0,1,2,.....M
j jV K and V for j N= = =  

 
and initial condition is: 
 

( )max ,0 0,1,2,....i
NV K i S for i M= − ∆ =  

 
2.4. Stability of Scheme   It is unconditionally 
stable and the amplification factor of Crank-
Nicolson scheme for Equation 1 is: 
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which satisfies the von-Neumann stability 
condition ( ) 1 ; 0G β β π≤ ≤ ≤  for any choice of 

t∆  and S∆  where Sβ λ= ∆  and λ  is wave 
number. But the choice of large value for t∆  leads 
to some undesirable results. Despite this, the main 
appeal of the method is its second order accuracy 
and stability which are achieved with minor 
increase in computational cost compared with the 
implicit method. Crank-Nikolson scheme 
ultimately reduced to a sparse system of algebraic 
equation, whose matrix form is 
 

1[ ]{ } [ ]{ }j jA V X V +=  (10) 
 
where 
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and 1{ } jf + , { } jf  are known and unknown 
vectors respectively. It is a tridiagonal system and 
for its efficient numerical computation, well 
known Thomas algorithm is suggested [21]. The 
algorithm is an efficient implementation of the 
Gaussian elimination procedure and is numerically 
stable if 0, 0j j j j ja c and b a c< < > + . Fortunately, 
these conditions are fulfilled by the tridiagonal 
system [21]. 
 
2.5. Sensitivities by Finite Difference Scheme   
Finite difference method provides the price of an 

option price at each ( 1) ( 1)N M+ × +  grids of the 
domain, which have a mathematical relevance and 
importance itself in financial aspects, the (N+1) th 
column is sufficient to determine the option price. 
But, it does not mean that the remaining values are 
useless, it is also significantly important in the 
determination of sensitivity parameters 
i.e.“Greeks”, directly on grid without having to go 
through the lengthy procedure. Since a finite 
difference scheme provide approximation for the 
derivatives with respect to S  and t  at each time 
step. We can calculate the delta ( )∆ , gamma ( )Γ  
and theta ( )θ  using values of associated grids as: 
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3. RESULTS AND DISCUSSION 
 
In this section, the parameters of GARCH (1,1) 
model for Reliance Ltd. areestimated as 

0 10.0015801, 9.3498 005, 0.61598t eε α α= = − = and 

1 0.35168β =  and used in Equations 5 and 6 for 
forecasting the volatility. The volatility of Reliance 
Ltd. is represented through Table 1 which shows a 
constant volatility after 30 days. Figure 1 
represents the stock price and percentage change of 
stock return from 3/01/2000 to 30/03/2009 of 
Reliance Ltd. taking high price in a day. Option 
prices and sensitivity parameters for different stock 
prices S , strike prices $30,35, 40,45K = , risk-free 
interest rate r = 8 %, 9 %, 10 %, 11 %  at two 
different maturities are discussed through graphical 
and tabular forms. Table 2 shows the option prices 
for strike price K = $30,35,40,45 and interest rates 
r = 8 %, 9 %, 10 %, 11 % at different stock prices 
S with one month and two months maturity life of 
put option. Figures 2-5 show that the put price 
function is a decreasing function with respect to  

TABLE 1. 60 Days Forecasted Volatility of Reliance Ltd. using Parameters of GARCH (1,1) Model. 
 

No. Days 
Volatility 

iσ  No. Days 
Volatility 

iσ  No. Days 
Volatility 

iσ  No. Days 
Volatility 

iσ  

1 0.4247 16 0.4332 31 0.4339 46 0.4339 

2 0.4262 17 0.4333 32 0.4339 47 0.4339 

3 0.4277 18 0.4334 33 0.4339 48 0.4339 

4 0.4284 19 0.4335 34 0.4339 49 0.4339 

5 0.4293 20 0.4336 35 0.4339 50 0.4339 

6 0.4300 21 0.4336 36 0.4339 51 0.4339 

7 0.4306 22 0.4337 37 0.4339 52 0.4339 

8 0.4311 23 0.4337 38 0.4339 53 0.4339 

9 0.4315 24 0.4338 39 0.4339 54 0.4339 

10 0.4319 25 0.4338 40 0.4339 55 0.4339 

11 0.4322 26 0.4338 41 0.4339 56 0.4339 

12 0.4325 27 0.4338 42 0.4339 57 0.4339 

13 0.4327 28 0.4338 43 0.4339 58 0.4339 

14 0.4319 29 0.4338 44 0.4339 59 0.4339 

15 0.4330 30 0.4338 45 0.4339 60 0.4339 

    
 

Figure 1. Stock price and return of Reliance Ltd. from 30/03/2009 to 01/01/2000. 
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TABLE 2. Option Price for Different Stock Prices S, Strike Prices K = $30, $35, $40 and $45,  
Interest Rate r = 8 %, 9 %, 10 %, 11 % with One and Two Months Maturity Period. 

 

(r In %) 
(K) ($) 
 

 (S) ($) 
6.00 12.00 18.00 24.00 30.00 36.00 42.00 48.00 54.00 

 
Maturity Time T = 30 Days 

r = 8 % 

30.00 23.7927 17.7927 11.7928 5.8632 1.4259 0.1322 0.0060 0.0000 0.0000 

35.00 28.7595 22.7595 16.7595 10.7626 5.0242 1.2587 0.1551 0.0111 0.0006 

40.00 33.7262 27.7262 21.7262 15.7263 9.7515 4.3471 1.1472 0.1757 0.0173 

45.00 38.6930 32.6930 26.6930 20.6930 14.6947 8.7936 3.8167 1.0696 0.1909 

r = 9 % 

30.00 23.7669 17.7669 11.7670 5.8385 1.4129 0.1302 0.0058 0.0000 0.0000 

35.00 28.7295 22.7295 16.7295 10.7327 4.9977 1.2463 0.1527 0.0108 0.0005 

40.00 33.6922 27.6922 21.6922 15.6923 9.7179 4.3200 1.1351 0.1730 0.0170 

45.00 38.6548 32.6548 26.6548 20.6548 14.6565 8.7570 3.7897 1.0577 0.1879 

r = 10 % 

30.00 23.7411 17.7411 11.7412 5.8139 1.400 0.1281 0.0057 0.0002 0.0000 

35.00 28.6996 22.6996 16.6996 10.7028 4.9713 1.2339 0.1503 0.0106 0.0005 

40.00 33.6581 27.6581 21.6581 15.6582 9.6843 4.2930 1.1231 0.1703 0.0166 

45.00 38.6166 32.6166 26.6166 20.6166 14.6184 8.7205 3.7628 1.0460 0.1850 

r = 11 
% 

30.00 23.7153 17.7153 11.7154 5.7893 1.3872 0.1261 0.0056 0.0002 0.0000 

35.00 28.6697 22.6697 16.6697 10.6730 4.9450 1.2216 0.1480 0.0104 0.0005 

40.00 33.6241 27.6241 21.6241 15.6242 9.6508 4.2661 1.1112 0.1676 0.0163 

45.00 38.5784 32.5784 26.5784 20.5784 14.5802 8.6839 3.7360 1.0344 0.1821 

 
Maturity Time T = 60 Days 

r = 8 % 30.00 23.5868 17.5868 11.5924 5.8965 1.9643 0.4259 0.0671 0.0086 0.0010 

 
35.00 28.5205 22.8505 16.5209 10.5695 5.2658 1.8848 0.4948 0.1024 0.0174 

 
40.00 33.4543 27.4543 21.4543 15.4608 9.6394 4.8000 1.8450 0.5602 0.1332 

 
45.00 38.3881 32.3881 26.3881 20.3889 14.4268 8.8368 4.4562 1.8209 0.5631 

r= 9 % 30.00 23.5355 17.5355 11.5413 5.8510 1.9385 0.4176 0.0654 0.0083 0.0009 

 
35.00 28.4611 22.4611 16.4614 10.5113 5.2181 1.8585 0.4853 0.0998 0.0168 

 
40.00 33.3866 27.3866 21.3866 15.3933 9.5755 4.7512 1.8181 0.5494 0.1300 

 
45.00 38.3122 32.3122 26.3122 20.3130 14.3519 8.7692 4.4068 1.7934 0.5521 

r = 10 % 30.00 23.4843 17.4843 11.4903 5.8056 1.9130 0.4095 0.0637 0.0081 0.0009 

 
35.00 28.4017 22.4017 16.4021 10.4531 5.1706 1.8325 0.4759 0.0974 0.0163 

 
40.00 33.3190 27.3190 21.3190 15.3259 9.5119 4.7027 1.7915 0.5388 0.1269 

 
45.00 38.2365 32.2364 26.2364 20.2372 14.2772 8.7018 4.3577 1.7661 0.5413 

r = 11 % 30.00 23.4332 17.4332 11.4394 5.7604 1.8876 0.4015 0.0621 0.0078 0.0009 

 
35.00 28.3424 22.3424 16.3428 10.3951 5.1234 1.8068 0.4666 0.0950 0.0159 

 40.00 33.2515 27.2515 21.2516 15.2586 9.4485 4.6544 1.7652 0.5283 0.1238 

 45.00 38.1607 32.1607 26.1607 20.1616 14.2025 8.6346 4.3090 1.7392 0.5306 
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stock price (S) and present a concavity upward. 
The point S = K (i.e. at-the-money) the curve are 
more concave which referred that option lead to 
either in-the-money or out-of-the-money 
immediately. In case of in-the-money-(S<K) the 
value of option are changing in constant way with 
respect to the stock price (S) decrease, while the 
exponential change occurs when option become at-
the-money as well as out-of-the money (Table 2, 
Figures 2-5). 

     The downward concavity conformed that a 
decrease in the asset price (S) will increase 
probability of a positive terminal payoff, resulting 
in a higher value of option. By keeping r small, t 
constant and increase of strike price from K = $30 
to K = $45, the increment in option price has same 
trends with respect to stock price (S) and option is 
become in-the-money. But, as interest rate 
increases from = 8 % to r = 9 %, 10 % and 11 % 
the interval of positive terminal payoff reduces and 

    
 

Figure 2. Option price for different stock prices S, strike prices K=$30, $35, $40, $45, 
interest rates r = 8 %, 9 % with one month maturity. 

 
 
 

    
 

Figure 3. Option price for different stock prices S, strike prices K = $30, $35, $40, $45,  
interest rates r = 10 %, 11 % with one month maturity. 
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the option prices also reduce that means the 
possibility of positive terminal payoff decreases 
and portfolio become more sensitive with respect 
to interest rate increment, resulting a less option 
price. Hence, as the interest rate (r) increases, the 
option price decreases and the positive terminal 
payoff increase at only deep in-the-money. But, 
comparison of maturity life i.e. a short lived option 
with a long lived option depicts very strange 
results (Table 2). If option become deep in-the-

money, the option price decreases when maturity 
time increases, while in case of at-the-money and 
out-of the money option price increases with 
maturity time increase. Intuitively, in case of put 
option, probability of positive payoff increases as 
maturity time and interest rate increases. 
     The delta (Δp) of put option shows the negative 
values and lies (-1, 0). The negativity of delta (Δp) 
for put option function confirmed the decreasing 
nature of the function with stock price (S) i.e. the 

    
 

Figure 4. Option price for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 8 %, 9 % with two month maturity. 

 
 
 

    
 

Figure 5. Option price for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 10 %, 11 % with two month. 
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increment in the asset price causes a decrease in 
the value of put option prices and probability of a 
positive terminal payoff and then a long position 
for put option will be hedged by a continuously 
varying long position in the underlying asset. 
     The effect of strike price is also significant to 
hedge to the portfolio. Figures 6-9 show the curves 
of delta (Δp) against stock price ( )S , change in 
concavity appears where option is at-the-money 

( )S K=  so that the curve concave upward for in-
the-money (0 )S K< <  and downward for out-of-
the-money ( )K S< < ∞ .When option values 
become out-of-the-money ,the concavity increases 
as strike price (K) increases, which means the 
option price for a higher strike price (K) has a 
small changes in corresponding delta (Δp) i.e. the 
delta (Δp) hedge dynamic for a higher strike price 
(K) is less than as compared with low strike price 

    
 

Figure 6. Delta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 8 %, 9 % with one month maturity. 

 
 
 

    
 

Figure 7. Delta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45,  
interest rates r = 10 %, 11 % with one month maturity. 
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(K).The effect of interest rate on delta (Δp) also 
represents an interesting result. It is observed that 
when strike price is sufficiently small (K=$30) the 
interest rate (r) has very small changes as r = 8 % 
to 9 %, 10 % and 11 % then the delta (Δp) 
increases only when option become at-the-money, 
but it remains same for option being deep in-the-
money and out-of-the-money. If we peer in the 
data of delta for K=$35, $40 and $45 for different 
interest rate, it has enough change with respect to 

interest rate. 
     The impact of maturity life of option is 
countable in this problem as maturity life increases 
then the absolute values of delta decreases for each 
case of stock price, strike price and interest rate as 
result option is less sensitive i.e. increments in 
strike price, interest rate and maturity time increase 
the probability of positive terminal payoff increase. 
Further, the delta can be shown easily that 

    
 

Figure 8. Delta (Δp) of the put option for different stock prices S, strike prices K=$30, $35, $40, $45, 
interest rates r = 8 %, 9 % with two  month maturity. 

 
 
 

    
 

Figure 9. Delta
 
(Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 

interest rates r = 10 %, 11 % with two  month maturity. 
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Figures 10-13 represent the values of theta (Δp) for a 
put option against stock prices (S) are negative and 
positive. The curve of theta (Δp), tends 

asymptotically as option become deep in-the-
money. This means the results discussed above 
through Table 2 (i.e. the value of option decreases 
when option becomes out-of-the-money (S>K) and 
increases if option is in-the-money (S<K).While 
option becomesdeep in-the-money then the change 
in option price appears in a constant way) are 
validated from these figures. The negative sign of 

 
 
 

    
 

Figure 10. Theta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 8 %, 9 % with one month maturity. 

 
 
 

    
 

Figure 11. Theta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 10 %, 11 % with one  month maturity. 
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P
t

∂
∂

 confirms the long lived counterparts (Table 2). 

     The positive sign of P
t

∂
∂

 depicts the put values 

should be below their intrinsic values (K-S) and 
option should be grown to (K-S) at expiry. The 
tendency of asymptotic of curve also validatesthe 
change in option price, when option become deep 
in-the-money, constant way. It is also clear that the 
theta ( )pθ has its greatest absolute value when the 

option is at-the-money (S<K) since the option may 
become in-the-money (S<K) or out-of-the-money 
(S>K) at an instant later. Also, the theta ( )pθ  has 
a minimum absolute value when the option is 
sufficiently out-of-the-money (S>K). Hence, the 
absolute value of theta ( )pθ  increases as strike 
price increases but decreases as interest rate (r) and 
maturity time increase (Figures 10-13). 
     The gamma ( )pγ  for put option are positive, this 

    
 

Figure 12. Theta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 8 %, 9 % with two  month maturity. 

 
 
 

    
 

Figure 13. Theta (Δp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 10 %, 11 % with two month maturity. 
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explain why the curves of the option price function 
with respect to stock price (S) are concave upward. 
From the figures, it is clear that, generally the 
absolute values of gamma are maximum as option 
become at-the-money (S=K) for each strike price 
(K), interest rate (r) and maturity time (T). This 
implies that the concavity of the curve for the option 
prices should be maximum as option become at-the-
money (S=K) (Figures 2-6). The absolute values of 

the gamma ( )pγ decreases as strike price increases 
i.e. the change of delta (Δp) is small when strike 
price increases, this means a portfolio could be 
hedged by taking long position in put option. From 
Figures 14-17, it is clear that the gamma ( )pγ  
shows a bell shape curve which have a left long tail 
and right long tail when option becomes in-the-
money (S<K) and out-of-the-money (S>K), 

 
 
 

    
 

Figure 14. Gama (γp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 8 % , 9 % with one month maturity. 

 
 
 

    
 

Figure 15. Gama (γp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45, 
interest rates r = 10 %, 11 % with one month maturity. 
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respectively. From the figures of gammas ( )pγ  it is 
quite clear that the area of left long tail is less than 
the area of right long tail. This means the changes of 
deltas ( )p∆  with respect to stock price (S) should 
be more dynamic when option becomes in-the-
money whenever, option becomes out-of-the-
money. This also shows that option has a positive 
terminal payoff in the case of in-the-money. 
     The results depict that the change of interest 

rate is insignificant on gamma values (Figures 14 
and 15). But increase in the maturity time i.e. long 
lived option results in less values of gamma as 
compared to short lived option (Figures 14 and 
16). So, the curvature of long lived option is less 
than short lived option, while the option prices for 
an option become at-the-money and out-of-the-
money, long lived option are greater than short 
lived option which has a financial sense that 
hedging is less dynamic for long lived put option 

    
 

Figure 16. Gama (γp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45,  
interest rates r = 8 %, 9 % with two  month maturity. 

 
 
 

    
 

Figure 17. Gama (γp) of the put option for different stock prices S, strike prices K = $30, $35, $40, $45,  
interest rates r = 10 %, 11 % with two  month maturity. 
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with short lived option. 
 
 

4. CONCLUSION 
 
Due to stochastic nature of financial market, the 
volatility is a crucial variable in option pricing and 
hedging strategies. The alternative approach for the 
stochastic volatility used in this paper form a one 
dimensional partial differential equation, where 
volatility is regarded as a function of stock price 
(S) and time (t), leads to a partial differential 
equation in two variables. From the computational 
point of view, the present model is more economic 
as compared to model with σ(S, t) The results may 
be useful for the financial engineers in order to 
understand the effect of stochastic volatility on the 
hedging movement. 
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