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Abstract   A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D 
elasto-static problems. Using the general MLPG concept, this method is derived through the local 
weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step 
function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty 
approach is used to impose essential boundary conditions. The complete study of the effects of radius 
of support domain on the accuracy and efficiency of the solution is performed. The values of this 
parameter leave a great effect on runtime and accuracy. The Genetic Algorithm (GA) is used to 
determine the optimum values of this MLPG parameter to minimize the runtime and maximize the 
accuracy. Several numerical examples are included to demonstrate that the present method is very 
promising for solving the elasto-elastic problems. 
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 به يبعد سه کیاستات -الاستو مسائل حل يبرا(MLPG)  نیگالرک-پترو مش بدون یبوم روشچکیده      

 از یبوم فیعض يهافرم نیب از روش نیا ،MLPG یکل فرم گرفتن نظر در با. شد گرفته کار به یدرست
 یبررس مورد دیسایهو ياپله تابع نام به یشیآزما تابع از استفاده با روش نیا. دیگرد استخراج یتعادل معادلات
 يبرا یپنالت روش. دیگرد انتخاب توابع شکل ساختن يبرا (MLS) متحرك بعاتمر حداقل روش. گرفت قرار
 و دقت يرو بر یبانیپشت يدامنه شعاع اثرات يبر رو یکامل يمطالعه. شد استفاده لازم يمرز طیشرا اعمال
 کیژنت تمیالگور. داشت دقت و حل زمان يرو بر يادیز ریتاث پارامترها نیا ریمقاد. رفتیپذ صورت حل بازده
 را دقت و کاهش را اتیعمل زمان تا شد، گرفته کار به MLPG يپارامترها ينهیبه ریمقاد يمحاسبه يبرا
 مسائل حل يبرا دهیگرد ذکر روش بودن دبخشیام اثبات يبرا يعدد مثال نیچند نیهمچن. دهد شیافزا
  .است شده انیب کیاستات-الاستو

 
 

1. INTRODUCTION 
 
Compared with the Finite Element Method’s 
(FEMs) convenience and flexibility in use, it has 
been plagued for a long time, with the inherent 
problems such as locking, poor derivative 
solutions, etc... It is a well known fact that the 
accuracy of the FEM relies on the quality of the 

mesh and the elements type. First, a good quality 
mesh cannot be always achieved, especially when 
adaptive refinement and adaptive re-meshing are 
required for 3D problems. It has also been found 
that only simple quadrilateral or hexahedral 
elements have achieved considerable success for 
explicit dynamic analysis. However, the use of 
such elements is limited by the mesh generation. In 
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contrast, the truly meshless local Petrov-Galerkin 
(MLPG) approach has become very attractive as a 
very promising method for solving 3D problems. 
The main advantage of this method over the widely 
used finite element methods is that it does not need 
any mesh, either for the interpolation of the 
solution variables or for the integration of the weak 
forms. The many researches in solving PDEs 
demonstrate that the MLPG method, and its 
variants, has become some of the most promising 
alternative methods for computational mechanics. 
Unfortunately, most researches are restricted to 
solving 2D problems. It is more challenging to 
apply the MLPG for solving 3D problems, because 
of the difficulty in handling the local integrals over 
the intersection of the local test function domain 
and the global boundary of the arbitrary 3D 
solution domain. 
     The MLPG method has been demonstrated 
to be quite successful in solving various partial 
differential equations. The MLPG concept was 
presented first by Atluri, et al [1]. They solved the 
elasto-static problems in two dimensional domains. 
Lin, et al [2] introduced an up winding scheme to 
analyze the steady state convection–diffusion 
problems. Liu, et al [3] coupled the MLPG method 
with either the finite element or the boundary 
element method to enhance the efficiency of the 
MLPG method. Ching, et al [4] augmented the 
polynomial basis functions with singular fields to 
determine deformations and stress fields near the 
crack tip for generally 2D mixed-mode problems. 
Gu, et al [5] and Batra, et al [6] used the Newmark 
family of methods to analyze 2D transient elasto-
dynamic problems. The bending of a thin plate has 
been studied by Gu, et al [7] and Long, et al [8]. 
Although several research successes in solving 
boundary value problems in two dimensional 
domains illustrate that the MLPG method and its 
variants are much comparative with the Galerkin 
finite element method, there are only few works that 
study the application of MLPG methods in 3D 
problems. Han, et al [9] used the MLPG approach 
for solving the 3D problems in elasto-statics. They 
also applied the MLPG method in 3D elastic 
fracture [10] and 3D elasto-dynamics problems [11]. 
     The MLPG method in the present study 
employs a Local Symmetric Weak Form (LSWF), 
the MLS approximation as the shape function and 
the Heaviside step function as the test function. 

Although the MLS approximations have some 
drawbacks in dealing with the essential boundary 
conditions, they can be straightforwardly applied 
to 3D cases. One of the major advantages of the 
MLS is that, the shape functions are constructed 
from the local points only, with the high order 
continuities. Hence, this method leads to less cost 
in assembling the system equations. 
     In the general MLPG approach, the local test 
domains can be selected arbitrarily. Those are such 
as spheres, cubes, and ellipsoids in 3D domains. 
However, the local sub-domains become very 
complicated, for the points which are located on, or 
near the global boundaries. It happens because of 
the complicated intersection between the simple 
sub-domain and the boundary surfaces. In the 
present study, a method is developed to define the 
local sub-domains as spheres, with the use of a 
transformation which maps a circle on a semi-
sphere for numerical integrations. 
     In this paper, the effects of radius of support 
domain are analyzed. Considering several 
examples and using the genetic algorithm, the 
optimum value of this parameter for the minimum 
computation time and the highest accuracy has 
been determined. 
 
 
 

2. THE MOVING LEAST SQUARES (MLS) 
 
The MLS method of interpolation is generally 
considered to be one of the best schemes to 
interpolate random data with a reasonable 
accuracy. Although the nodal shape functions that 
arise from the MLS approximation have a very 
complex nature, they always preserve completeness 
up to the order of the chosen basis, and robustly 
interpolate the irregularly distributed nodal 
information. The MLS scheme has been widely 
used in domain discretization methods. With the 
MLS, the distribution of function u in Ωx can be 
approximated as, 
 

u(x) = pT(x)a(x)   xx Ω∈∀  (1) 
 

where pT(x) = [ 1p (x),P2(x), ... , mp (x)] is a monomial 
basis of order m; and a(x) is a vector containing 
coefficients, which are functions of the global 
Cartesian coordinates [x1, x2, x3], depending on the 
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monomial basis. They are determined by minimizing 
a weighted discrete L2 norm, defined, as: 
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where iw (x) is the weight function associated with 
the node i, N is the number of node in xΩ  and iû  
is the fictitious nodal value respective to node i. 
The matrices P and W are defined as: 
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and 
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The stationary of J in Equation 2, with respect to 
a(x) leads to the following linear relation between 
a(x) and û , 
 
A(x)a(x) = B(x) û  (6) 
 
where matrices A(x) and B(x) are defined by 
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when the coefficients a(x) in Equation 6 are 
determined, one may obtain the approximation 

from the nodal values at the local scattered points, 
by substituting them into Equation 1, as: 

uΦ ˆ)()( xTxu =  (9) 
 

where Φ(x) is the so-called shape function of the 
MLS approximation, defined as: 
 

)()(1)()( xxxTx BApΦ −=  (10) 
 

The weight function in Equation 2 defines the 
range of influence of node i. Numerical practices 
show that a quadratic spline weight function works 
well [1,2]. Hence in this article, the quadratic 
spline weight function is used. Thus we have 
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where di is the distance between points x and node 
xi. ri is the size of support (see Figure 1) for the 
weight functions. It can be seen that the quadratic 
spline weight function C1 is continuous over the 
entire domain. 
 
 
 

3. LOCAL SYMMETRIC WEAK FORMS 
(LSWF) OF 3D ELASTO-STATIC 

PROBLEMS 
 
Consider a linear elastic body in a 3D domain Ω , 
with a boundary Ω∂  (Figure 2). The solid is 
assumed to undergo infinitesimal deformations. 
The equilibrium equations are as follows: 
 

i
ijiijifjij ξ

σσσ
∂
∂

≡==+ ,()  and    ,0,  (12) 

 

Where ijσ  is the stress tensor which corresponds 
to the displacement field ii fu  and  is the body 
force. The corresponding boundary conditions are 
given as follows, 
 

iuiu =                              on      uΓ  
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Figure 1. Schematics of the MLS approximation. 
 
 
 

 
Figure 2. Sub domain of a point and support domain of a nod. 

 

itjnijit == σ              on     tΓ  (13) 

where iu  and it  are the prescribed displacements 
and tractions, respectively, on the displacement 
boundary uΓ  and the traction boundary tΓ ; in  is the 
unit outward normal to the boundary Γ  (Figure 1). 
     The strain-displacement relations are: 
 

),,(
2
1

klulkukl +=ε  (14) 
 
The constitutive relations of isotropic linear elastic 
homogeneous solid are: 
 

lkuijklEklijklEij ,== εσ  (15) 
 
where 
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with λ  and µ  being the Lame’s constants. 
     A generalized local weak form of the differential 
Equation 12 over a local sub-domain sΩ  can be 
written as: 
 

0)( , =Ω+∫Ω
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s
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where iu  and iv  are the trial and test functions, 
respectively. By applying the divergence theorem 
and the boundary conditions, Equation 17 may be 
rewritten in a symmetric weak form as: 
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where suΓ  is a part of the boundary sΩ∂  of sΩ , 
over which the essential boundary conditions are 
specified. In general, sss LUΓ=Ω∂  with sΓ  being 
a part of the local boundary located on the global 
boundary and sL  being the other part of the local 
boundary which is inside the solution domain. 

ussu ΓΓ=Γ I  is the intersection between the local 
boundary sΩ∂  and the global displacement 
boundary uΓ . tsst ΓΓ=Γ I  is a part of the boundary 
over which the natural boundary conditions are 
specified. 
     Therefore, a local symmetric weak form 
(LSWF) in linear elasticity can be written as: 
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If a Heaviside step function is used as the test 
function for the nodes on the natural boundary or 
inside the domain, i.e. su

I
iu Γ∉)( , one may 

simplify Equation 19 for )( I
iu  as: 

 

∫Ω Ω+∫Γ ∫Γ Γ=Γ−∫ Γ−
s

difsu st
ditditsL dit  (20) 

 
If the penalty approach is used to impose the 
essential boundary conditions we will have: 
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In this equation coefficient α >>1 is used to 
impose essential boundary conditions. 
     The shape of sub domains in this study is 
chosen spherical and for numerical integrations, 
we use a transformation which maps a circle on a 
semi-sphere. 
 
 
 

4. MULTI-OBJECTIVE OPTIMIZATION 
 
Multi-objective optimization which is also called 
multicriteria optimization or vector optimization 
has been defined as finding a vector of decision 
variables satisfying constraints to give acceptable 
values to all objective functions [12]. In general, it 
can be mathematically defined as: 
     Find the vector 
 

T
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subjected to m inequality constraints 
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and 
 
p equality constraints 
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where nRX ∈*  is the vector of decision or design 
variables, and nRXF ∈)(  is the vector of objective 
functions each of which are to be minimized or 
maximized. However, without loss of generality, it 
is assumed that all objective functions are to be 
minimized. Such multi-objective minimization 
based on Pareto approach can be conducted using 
some definitions [13]: 
 
4.1. Definition of Pareto Dominance   A 

vector ],...,,[ 21 nuuuU = , is dominant to vector 
],...,,[ 21 nvvvV =  (denoted by VU p ) if and only if: 

 
{ } { } jviukjiviuki <∈∃∧≤∈∀ :,...,2,1,,...,2,1  (26) 

4.2. Definition of Pareto Optimality   A point 
Ω∈*X  (Ω is a feasible region in nR  satisfying 

Equations 24 and 25) is said to be Pareto optimal 
(minimal) if and only if there is not Ω∈X  which 
can dominate to *X . Alternatively, it can be readily 
restated as: 
 

)()(:},..2,1{,, ** XfXfkiXXX ii <∈∃≠Ω∈∀  (27) 
 
4.3. Definition of Pareto Set   For a given 
multi-objective optimization problem (MOP), a 
Pareto set *P  is a set in the decision variable space 
consisting of all the Pareto optimal vectors 
 

)}()'(:'{* XFXFXXP <Ω∈∋/Ω∈=  (28) 
 
4.4. Definition of Pareto Front   For a given 
MOP, the Pareto front *PT  is a set of vector of 
objective functions which are obtained using the 
vectors of decision variables in the Pareto set *P  
that is: 
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In other words, the Pareto front *PT  is a set of 
vectors of objective functions mapped from *P . 
     Evolutionary algorithms have been widely used 
for multi-objective optimization because of their 
natural properties suited for these types of 
problems. This is mostly because of their parallel 
or population-based search approach. Most of the 
issues that exist in conventional methods are 
solved in these algorithms. For example, we can 
gain most of optimal decision vectors with a single 
run. But, in other methods we usually achieve only 
one in each run. 
     Genetic algorithm is one of the evolutionary 
algorithms. It uses direct values of functions and 
does not need to function’s derivations. These and 
other properties of GA caused its comprehensive 
use in optimization problems [13]. 
     The Pareto-based approach of NSGAII [14] has 
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been recently used in a wide area of engineering 
MOPs because of its simple yet efficient non-
dominant ranking procedure in yielding different 
level of Pareto frontiers [15,16]. In this paper 
modified NSGAII algorithm as a MO tool searches 
for the definition space of decision variables and 
returns the optimum answers in Pareto form [17]. 
 
 
 
5. MULTI-OBJECTIVE OPTIMIZATION OF 

MLPG ANALYSIS 
 
The vector [r] is the vector of selective parameter 
of MLPG analysis (r is the support domain radius). 
     The amount of runtime and error of the analysis, 
are functions of the components of this vector. This 
means that by selecting various values for the 
selective parameters, we can make changes in the 
amounts of runtime and error of MLPG analysis. 
     In this paper, we are concerned with choosing 
the value of the selective parameter to minimize 
the two functions, the amount of runtime and error 
of the analysis. Clearly this is an optimization 
problem with two objective functions (runtime and 
error), and a decision variable (r). To solve this 
problem, we can make use of single-objective-
optimization (SOO) or multi-objective optimization 
(MO) algorithms. 
     When using SOO, we must exchange the 
multiple objective functions into one (using weight 
coefficients). Designer must decide about weight 
coefficients for all objective functions in proportion 
to optimality importance of each of them. So, the 
algorithm returns a single answer corresponding to 
weight coefficients. As compared with SOO, MO’s 
results are more complete and flexible. In a single 
run, MO returns a Pareto set of answers which 
includes all SOO’s answers too. 
     A Pareto set is a set of predominant answers 
which are non-dominated to each other (not having 
any dominance to each other). This means that we 
cannot find two members of this set that one is 
better than the other with respect to all of the 
objective functions. A Pareto set of answers 
presents possible different states to which optimal 
answers can be achieved with respect to their 
objective functions. It shows the condition of 
confrontation among objective functions and the 
way they vary from answer to answer. 
     As a result, designers by considering the 

interaction among objective functions can haggle 
over their optimality. So, they can select an 
optimum and multipurpose answer consciously. In 
this paper, we used MO to find the selective 
parameters. 
     The aim of optimization in this section is 
finding the selective parameter of MLPG analysis 
to minimize the error and runtime of the analysis. 
Decision variable and its region are: 
 
r: Support domain radius and (0 ≤ r ≤ 

(maximum distance between two nodes))  
 

Constraints considered in the analysis are non 
singularity of matrix )(XA  and global stiffness 
matrix. We use penalty functions to operate 
constraints. To do this, those objective functions of 
design vectors which violate the constraints are set 
as infinity, to be removed from the cycle in 
evolution process. 
 
 
 

6. RESULTS OF NUMERICAL EXAMPLES 
 
In this section, the meshless local Petrov–Galerkin 
method is applied to solve three-dimensional 
elasto-static problems. Two problems in three-
dimensional linear elasticity are solved to illustrate 
the effectiveness of the present method. Numerical 
results are discussed consequently. 
 
Example 1 
 
In this case a cube under the hydrostatic pressure is 
considered. The MLPG approach is applied for this 
elasto-static problem with boundary conditions 
presented in Figure 3 as 
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The analytical solutions for this problem are: 
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The node distribution with 27 nodes are presented 
in Figure 4 for the case of L = b = h = 2. The 
displacement diagrams are shown in Figures 5-7 
for the case of .

4.2
1and

6.3
1,1 === µλp  

     As shown in these figures, the MLPG results 
agree with the values obtained by analytical 
solution. 

     Figure 8 shows the results of multi-objective 
optimization which all the presented points are 
non-dominated to each other. Each point in this 
figure is a representative of a vector of selective 
parameter. It means that each point on the chart is 
regarded to the objective functions. 
     Table 1 shows the different characteristics 
(error and runtime) of those three selected 
points. 
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Figure 3. Geometric and boundary conditions. 
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Figure 4. The node distribution for example 1. 
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Figure 5. Displacement of X direction at 
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     Achieving several answers, all of which are 

considered to be optimum, is a unique property of 
multi-objective optimization. Designer facing 
several different optimum points from Pareto 
charts, can easily choose a suitable multisided 
design point among them. 
 
Example 2 
 
The second example is a pure bending of a prismatic 
bar as illustrated in Figure 9. The node distribution 
with 225 nodes are presented in Figure 10 for the 
case of L = 4, b = 2 and h = 2. 
     The exact solutions for this problem are: 
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where Iy is the bending stiffness of the plate, as, 
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The displacements are presented in Figures 11-14 
for the plane stress case with E = 1, v = 0.2 and  
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Figure 7. Displacement of Y direction at 
2
h

Z −=  and Y=b. 
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Figure 8. MO Pareto result for example 1. 
 
 
 
TABLE 1. Comparison of Points A, B and C of Figure 8. 
 

Point r Error Runtime (s) 

A 2.1112615  3.5861834e-010 0.26500000  

B 2.7780184  3.5355949e-010 0.31200000  

C 3.4641016  3.5268806e-010 0.34400000  
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M=1. As shown in these figures, the MLPG results 
agree surprisingly well with the values obtained by 
analytical solution. 
     Figure 15 is the chart resulted from multi-
objective optimization which all the presented 
points are non-dominated to each other. As shown 
in Figure 15, there is a Pareto for the design values 
regarded to the objective functions 
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Figure 12. Displacement of X direction at 
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Figure 13. Displacement of Z direction at 
2
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Z −=  and 
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b
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Figure 9. Geometric and boundary conditions for example 2. 
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Figure 10. The node distribution for example 2. 
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Figure 11. Displacement of X direction at 
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     Table 2 also shows the characteristics of the 
three different design points and their comparative 
values. 
 
     Achieving several answers which all of them 
are considered optimum is a unique property of 
multi-objective optimization. Designer in facing to 
Pareto charts, among several different optimum 
points can choose a suitable multisided design 
point easily. 

 

 
 

7. CONCLUSIONS 
 
A meshless Local Petrov-Galerkin (MLPG) method 
is developed for 3D elasto-static problems, based on 
the local symmetric weak forms. The MLS 
approximation is used for constructing the trial 
functions. The penalty approximation is used to 
impose essential boundary conditions. A simple 
Heaviside step function is chosen for the test 
function. Numerical results demonstrate the high 
accuracy of this method while comparing with the 
exact solution. As shown, increasing the size of 
support domain (r) causes the decrease of runtime 
and the increase of error. The presented points in the 
Pareto forms resulted from multi-objective 
optimization. These solutions are non-dominated to 
each other. Each point in these charts is a 
representative of a vector of selective parameter. 
When we choose it for MLPG analysis, the analysis 
tends to objective functions corresponding to that 
point of chart. In fact, achieving several answers 
which all of them are considered optimum is a 
unique property of multi-objective optimization. 
Facing to Pareto charts, among several different 
optimum points, choosing a suitable multisided 
selective parameter is very easy. 
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