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Abstract A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D
elasto-static problems. Using the general MLPG concept, this method is derived through the local
weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step
function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penaty
approach is used to impose essential boundary conditions. The complete study of the effects of radius
of support domain on the accuracy and efficiency of the solution is performed. The values of this
parameter leave a great effect on runtime and accuracy. The Genetic Algorithm (GA) is used to
determine the optimum values of this MLPG parameter to minimize the runtime and maximize the
accuracy. Several numerical examples are included to demonstrate that the present method is very
promising for solving the elasto-elastic problems.
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1. INTRODUCTION

Compared with the Finite Element Method's
(FEMs) convenience and flexibility in use, it has
been plagued for a long time, with the inherent
problems such as locking, poor derivative
solutions, etc... It is a well known fact that the
accuracy of the FEM rdies on the quality of the
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mesh and the elements type. First, a good quality
mesh cannot be always achieved, especially when
adaptive refinement and adaptive re-meshing are
required for 3D problems. It has also been found
that only simple quadrilateral or hexahedral
elements have achieved considerable success for
explicit dynamic analysis. However, the use of
such elements is limited by the mesh generation. In
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contrast, the truly meshless local Petrov-Galerkin
(MLPG) approach has become very attractive as a
very promising method for solving 3D problems.
The main advantage of this method over the widely
used finite element methods is that it does not need
any mesh, ether for the interpolation of the
solution variables or for the integration of the weak
forms. The many researches in solving PDEs
demonstrate that the MLPG method, and its
variants, has become some of the most promising
alternative methods for computational mechanics.
Unfortunately, most researches are restricted to
solving 2D problems. It is more challenging to
apply the MLPG for solving 3D problems, because
of the difficulty in handling the local integrals over
the intersection of the local test function domain
and the global boundary of the arbitrary 3D
solution domain.

The MLPG method has been demonstrated
to be quite successful in solving various partial
differential equations. The MLPG concept was
presented first by Atluri, et a [1]. They solved the
easto-static problems in two dimensional domains.
Lin, et a [2] introduced an up winding scheme to
analyze the steady state convection—diffusion
problems. Liu, et a [3] coupled the MLPG method
with either the finite dement or the boundary
edement method to enhance the efficiency of the
MLPG method. Ching, et a [4] augmented the
polynomial basis functions with singular fieds to
determine deformations and stress fields near the
crack tip for generally 2D mixed-mode problems.
Gu, e al [5] and Batra, et al [6] used the Newmark
family of methods to analyze 2D transient easto-
dynamic problems. The bending of a thin plate has
been studied by Gu, e a [7] and Long, et a [8].
Although several research successes in solving
boundary value problems in two dimensional
domains illustrate that the MLPG method and its
variants are much comparative with the Galerkin
finite dement method, there are only few works that
study the application of MLPG methods in 3D
problems. Han, et a [9] used the MLPG approach
for solving the 3D problems in easto-statics. They
aso applied the MLPG method in 3D dastic
fracture [10] and 3D dasto-dynamics problems [11].

The MLPG method in the present study
employs a Local Symmetric Weak Form (LSWF),
the MLS approximation as the shape function and
the Heaviside step function as the test function.
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Although the MLS approximations have some
drawbacks in dealing with the essential boundary
conditions, they can be straightforwardly applied
to 3D cases. One of the major advantages of the
MLS is that, the shape functions are constructed
from the local points only, with the high order
continuities. Hence, this method leads to less cost
in assembling the system equations.

In the general MLPG approach, the local test
domains can be selected arbitrarily. Those are such
as spheres, cubes, and dlipsoids in 3D domains.
However, the local sub-domains become very
complicated, for the points which are located on, or
near the global boundaries. It happens because of
the complicated intersection between the simple
sub-domain and the boundary surfaces. In the
present study, a method is developed to define the
local sub-domains as spheres, with the use of a
transformation which maps a circle on a semi-
spherefor numerical integrations.

In this paper, the effects of radius of support
domain are analyzed. Considering severa
examples and using the genetic agorithm, the
optimum value of this parameter for the minimum
computation time and the highest accuracy has
been determined.

2. THE MOVING LEAST SQUARES (MLS)

The MLS method of interpolation is generally
considered to be one of the best schemes to
interpolate random data with a reasonable
accuracy. Although the nodal shape functions that
arise from the MLS approximation have a very
complex nature, they always preserve completeness
up to the order of the chosen basis, and robustly
interpolate the irregularly distributed nodal
information. The MLS scheme has been widely
used in domain discretization methods. With the
MLS, the distribution of function u in Q, can be
approximated as,

u® =p'gar) " xT w, @D

wherep'(x) = [ p, (X),P(X), ... , P, (¥)] isamonomial

basis of order m; and a(x) is a vector containing
coefficients, which are functions of the global
Cartesian coordinates [X;, X, %], depending on the
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monomial basis. They are determined by minimizing
aweighted discrete L, horm, defined, as.

N
IM= & WP (x)a()- iG]1%=
i=

(2
[Pa(x)- G]" W[Pa(x)- (]

where W, (X) is the weight function associated with
the node i, N is the number of nodein W, and

is the fictitious nodal value respective to node i.
The matrices P and W are defined as:

é pl(xl) Py (%) pm(><1) u
EP(%)  Py(%y) P () i
p:g ' u_(N' m) matrix
e a
e : u
PLON) PO PRy
©)
. 0 ¢
= :
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e U
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(4)
and
al = gal,az,..., aN ;: (1 N )Vecto )

The stationary of J in Equation 2, with respect to
a(x) leads to the following linear relation between
a(x) andd,

A(¥a(X) = B(Xx) U (6)
where matrices A(X) and B(X) are defined by

A(x)=PTWP=B(x)P =éw p§<|°T'§<| @)

o
)

when the coefficients a(x) in Equation 6 are
determined, one may obtain the approximation

B(X)=PTW=éAi o, Swy
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from the nodal values at the local scattered points,
by substituting them into Equation 1, as:

u(x) = 'l (x)a )

where @(x) is the so-called shape function of the
MLS approximation, defined as:

o(x) = p' WA 1xB(X) (10)

The weight function in Equation 2 defines the
range of influence of node i. Numerical practices
show that a quadratic spline weight function works
well [1,2]. Hence in this article, the quadratic
spline weight function is used. Thus we have

i 2 4
. al. 0 aal. 0 al. 0
: 9—: 9—: 3G—': OLd, £v
i &g &iz &g
]
W (x)=1
|0 d 3r
| | |
T
i
(11)

where d; is the distance between points x and node
X. I; is the size of support (see Figure 1) for the
weight functions. It can be seen that the quadratic
spline weight function C' is continuous over the
entire domain.

3.LOCAL SYMMETRIC WEAK FORMS
(LSWF) OF 3D ELASTO-STATIC
PROBLEMS

Consider alinear eastic body in a 3D domain W,
with a boundary fw (Figure 2). The salid is
assumed to undergo infinitesimal deformations.
The equilibrium equations are as follows:

s.. . +f =0, s..=s .. and()i0

T 12
ij,j " ij = ji x (12)

i
Where s;; is the stress tensor which corresponds
to the displacement field u; and f; is the body
force. The corresponding boundary conditions are
given asfollows,

C=U n
uI uI 0 q‘
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t =sjin; =Y

where u, and t, are the prescribed displacements

and tractions, respectivdy, on the displacement

boundary G, and the traction boundary G; n isthe

unit outward normal to the boundary C (Figure 1).
The strain-displacement relations are:

on G (13)

€ :%(“m Y ) (14)

The constitutive relations of isotropic linear eastic
homogeneous solid are:

Sij = Bjk®k = BijaU, 1 (15)
where
Bijig =1 dijdig + My dyy +djyd o) (16)
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with | and n being the Lame's constants.

A generalized local weak form of the differential
Equation 12 over a local sub-domain W, can be

written as;
Q, (sij,; + fi)vdw=0 (17)

where uy; and v, are the trial and test functions,

respectively. By applying the divergence theorem
and the boundary conditions, Equation 17 may be
rewritten in a symmetric weak form as:

5 tv.dG+g. tv.dG+g- tv.dG
cLs|| CGSJH sttll (18)

where G, is a part of the boundary Tw, of W,
over which the essential boundary conditions are
specified. In general, W, =G UL, with G being
a part of the local boundary located on the global
boundary and L, being the other part of the local

boundary which is inside the solution domain.
G, =G I G, is the intersection between the local

boundary W, and the global displacement
boundary G,. G, =G 1 G isapart of the boundary

over which the natural boundary conditions are
specified.

Therefore, a local symmetric weak form
(LSWF) inlinear dasticity can be written as:

= 19

If a Heaviside step function is used as the test
function for the nodes on the natural boundary or

inside the domain, i.e u"T Gy, one may
simplify Equation 19 for u" as:

- q 4G g §9G=1g, §dG+gy_fidw  (20)

If the penalty approach is used to impose the
essential boundary conditions we will have:
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- A . - 0 ; +3 3 . - x i
q_s tl di chu tl dG+a CG&J U|dG ch tl dG (21)
+ag idG+ g .

achu ujdG QNS fl dw
In this eguation coefficient a >>1 is used to
impose essential boundary conditions.

The shape of sub domains in this study is
chosen spherical and for numerical integrations,
we use a transformation which maps a circle on a
semi-sphere.

4. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization which is also called
multicriteria optimization or vector optimization
has been defined as finding a vector of decision
variables satisfying constraints to give acceptable
values to all objective functions [12]. In general, it
can be mathematically defined as:

Find the vector

X =X Xy X} T (22)
to optimize
F(X) ={ f1(X), fo(X).eens £y (X0} (23)

subjected to minequality constraints

g (X)E0  t=12..m (24)

and
p equality constraints
h(X)=0  j=12..p (25)

where X'1 R" is the vector of decision or design
variables, and F(x)1 R" is the vector of objective

functions each of which are to be minimized or
maximized. However, without loss of generality, it
is assumed that all aobjective functions are to be
minimized. Such multi-objective minimization
based on Pareto approach can be conducted using
some definitions [13]:

4.1. Definition of Pareto Dominance A
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vector U =[u,,u,,...,u ], IS dominant to vector
V =[v;,V,,...,v,] (denoted by u pv ) if and only if:

il {12k y £y OT {12,k g <y (20)

4.2. Definition of Pareto Optimality A point
X'Tw (Q is a feasible region in R" satisfying
Equations 24 and 25) is said to be Pareto optimal
(minimal) if and only if there isnot x1 w which
can dominateto x". Alternatively, it can be readily
restated as:

“XTW, X1 X5, $iT {12k f (X)) < f.(X)(27)

4.3. Definition of Pareto Set  For a given
multi-objective optimization problem (MOP), a
Pareto set P* isaset in the decision variable space
consisting of all the Pareto optimal vectors

Pr={XT W 7 XT W:F(X')<F(X)} (28)

4.4. Definition of Pareto Front For a given
MOP, the Pareto front PT" is a set of vector of
objective functions which are obtained using the

vectors of decision variables in the Pareto st P’
that is:

N

o7t :i F(X):§1(X)’ fo(X)wn fi (X)

In other words, the Pareto front pT* is a set of
vectors of objective functions mapped from p*.

Evolutionary algorithms have been widely used
for multi-objective optimization because of their
natural properties suited for these types of
problems. This is mostly because of their parallel
or population-based search approach. Most of the
issues that exist in conventional methods are
solved in these algorithms. For example, we can
gain most of optimal decision vectors with asingle
run. But, in other methods we usually achieve only
onein each run.

Genetic algorithm is one of the evolutionary
algorithms. It uses direct values of functions and
does not need to function’s derivations. These and
other properties of GA caused its comprehensive
usein optimization problems [13].

The Pareto-based approach of NSGAII [14] has
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been recently used in a wide area of engineering
MOPs because of its simple yet efficient non-
dominant ranking procedure in yielding different
level of Pareto frontiers [15,16]. In this paper
modified NSGAII algorithm asa MO tool searches
for the definition space of decision variables and
returns the optimum answers in Pareto form [17].

5.MULTI-OBJECTIVE OPTIMIZATION OF
MLPG ANALYSIS

The vector [r] is the vector of selective parameter
of MLPG analysis (r is the support domain radius).

The amount of runtime and error of the analysis,
are functions of the components of this vector. This
means that by sdecting various values for the
sdlective parameters, we can make changes in the
amounts of runtime and error of MLPG analysis.

In this paper, we are concerned with choosing
the value of the selective parameter to minimize
the two functions, the amount of runtime and error
of the analysis. Clearly this is an optimization
problem with two objective functions (runtime and
error), and a decision variable (r). To solve this
problem, we can make use of single-objective-
optimization (SOO) or multi-objective optimization
(MO) agorithms.,

When using SOO, we must exchange the
multiple objective functions into one (using weight
coefficients). Designer must decide about weight
coefficients for all objective functions in proportion
to optimality importance of each of them. So, the
algorithm returns a single answer corresponding to
weight coefficients. As compared with SOO, MO's
results are more complete and flexible. In a single
run, MO returns a Pareto set of answers which
includes all SOO’ s answers too.

A Pareto set is a set of predominant answers
which are non-dominated to each other (not having
any dominance to each other). This means that we
cannot find two members of this set that one is
better than the other with respect to all of the
objective functions. A Pareto set of answers
presents possible different states to which optimal
answers can be achieved with respect to their
objective functions. It shows the condition of
confrontation among objective functions and the
way they vary from answer to answer.

As a result, designers by considering the
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interaction among objective functions can haggle
over their optimality. So, they can select an
optimum and multipurpose answer conscioudly. In
this paper, we used MO to find the selective
parameters.

The am of optimization in this section is
finding the selective parameter of MLPG analysis
to minimize the error and runtime of the analysis.
Decision variable and its region are:

r: Support domain radius and (0 < r <
(maximum distance between two nodes))

Constraints considered in the analysis are non
singularity of matrix A(X) and global stiffness
matrix. We use penaty functions to operate
constraints. To do this, those abjective functions of
design vectors which violate the constraints are set
as infinity, to be removed from the cycle in
evolution process.

6. RESULTSOF NUMERICAL EXAMPLES

In this section, the meshless local Petrov—Galerkin
method is applied to solve three-dimensional
elasto-static problems. Two problems in three-
dimensional linear elasticity are solved to illustrate
the effectiveness of the present method. Numerical
results are discussed consequently.

Example 1

In this case a cube under the hydrostatic pressureis
considered. The MLPG approach is applied for this
elasto-static problem with boundary conditions
presented in Figure 3 as

Sx~sy=sz=-P

30
t x=t yzt 2=0 ( )
The analytical solutions for this problem are:
P | @
Ux=" g am™ 2
b
0y g ) (31
___p
Uz 3 +2m
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Figure 3. Geometric and boundary conditions.

Figure 4. The node distribution for example 1.

The node distribution with 27 nodes are presented

in Figure 4 for thecaseof L = b= h = 2. The

displacement diagrams are shown in Figures 5-7
for thecaseof p=1,1 =L andm=-1
3.6 24

As shown in these figures, the MLPG results

agree with the values obtained by analytical

solution.
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Figure 5. Displacement of X directionat Z =- g andY =b.
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Figure 6. Displacement of Z direction at X :% and Y :g.

Figure 8 shows the results of multi-objective
optimization which all the presented points are
non-dominated to each other. Each point in this
figure is a representative of a vector of selective
parameter. It means that each point on the chart is
regarded to the objective functions.

Table 1 shows the different characteristics
(error and runtime) of those three selected
points.
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Figure 8. MO Pareto result for example 1.

TABLE 1. Comparison of Points A, B and C of Figure 8.

Point r Error Runtime (s)
A | 21112615 | 3.5861834e-010 | 0.26500000
B | 27780184 | 3.5355949e-010 | 0.31200000
C | 34641016 | 3.5268806e-010 | 0.34400000

Achieving several answers, all of which are
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considered to be optimum, is a unique property of

multi-objective  optimization.

Designer facing

severa different optimum points from Pareto
charts, can easily choose a suitable multisided
design point among them.

Example 2

The second exampleis apure bending of a prismatic
bar asillustrated in Figure 9. The node distribution
with 225 nodes are presented in Figure 10 for the
caseof L=4,b=2andh= 2.

The exact solutions for this problem are:

_ Xz
Ux—" —

nz b
Uy:'?(y'a

A 2
b.c.U

Uz—-—éxz’fv(z "3 (32)
i_ M
R EIy

wherel, is the bending stiffness of the plate, as,

y

_ph3

12
(= for plane strain

E for plane sress

|

|

|

!

: 1+ 2u
j:j (1+n)2
D

iu  for plane strain

i 1u_ for plane stress

|
|
|
|
1
|
1 1+u
1

|

(33)

The displacements are presented in Figures 11-14
for the plane stress casewithE= 1, v= 0.2and
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Figure 9. Geometric and boundary conditions for example 2.

Figure 10. The node distribution for example 2.
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Figure 11. Displacement of X direction at x:E

Y:E.
2
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L

and

M=1. As shown in these figures, the MLPG results
agree surprisingly well with the values obtained by
analytical solution.

Figure 15 is the chart resulted from multi-
objective optimization which all the presented
points are non-dominated to each other. As shown
in Figure 15, thereis a Pareto for the design values
regarded to the objective functions

35

(] MLPG
- Exact Solution

2.5r

displacement
P
a1

0 1 2 3 4
X

N h
Figure 12. Displacement of X direction a& z=-— and
2

b
Y =—
2

O MLPG
-1k Exact Solution | |

displacement

Figure 13. Displacement of Z direction a z=- and

Y:E.
2
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TABLE 2. Comparison of PaintsA, B and C of Figure 15.
Point r Error Runtime (s)
A 2.1314686 0.11063043 0.48400000

B 3.7980912 0.10491221 0.82800000

C 4.8989795 | 0.098077076 | 0.92200000
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Figure 14. Displacement of Y direction a8 z=-— and
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Figure 15. MO Pareto result for example 2.

Table 2 also shows the characteristics of the
three different design points and their comparative
values.

Achieving several answers which all of them
are considered optimum is a unique property of
multi-objective optimization. Designer in facing to
Pareto charts, among several different optimum
points can choose a suitable multisided design
point easily.
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7. CONCLUSIONS

A meshless Local Petrov-Galerkin (MLPG) method
is developed for 3D dasto-static problems, based on
the loca symmetric weak forms. The MLS
approximation is used for constructing the trial
functions. The penalty approximation is used to
impose essential boundary conditions. A simple
Heaviside step function is chosen for the test
function. Numerical results demonstrate the high
accuracy of this method while comparing with the
exact solution. As shown, increasing the size of
support domain (r) causes the decrease of runtime
and theincrease of error. The presented pointsin the
Pareto forms resulted from multi-objective
optimization. These solutions are non-dominated to
each other. Each point in these charts is a
representative of a vector of sdective parameter.
When we chooseit for MLPG analysis, the analysis
tends to objective functions corresponding to that
point of chart. In fact, achieving several answers
which all of them are considered optimum is a
unique property of multi-objective optimization.
Facing to Pareto charts, among several different
optimum points, choosing a suitable multisided
sdlective parameter isvery easy.
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