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Abstract   A prismatic beam made of a behaviorally nonlinear material is analyzed under a 
harmonic load moving with a known velocity. The vibration equation of motion is derived using 
Hamilton principle and Euler-Lagrange Equation. The amplitude of vibration, circular frequency, 
bending moment, stress and deflection of the beam can be calculated by the presented solution. 
Considering the response of the beam, in the sense of its resonance, it is found that there is no critical 
velocity when the behavior of the beam material is assumed to be physically nonlinear. 
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ک متحرك با یمونهار يتحت بارها یکیزیف یرخطیساخته شده از مصالح با رفتار غ ير منشوریک تیچکیده       

لر یاو - لتون و معادله لاگرانژیاصل هام با استفاده از یمعادلات حرکت ارتعاش. شود یز میک سرعت معلوم آنالی
، تنش و یخمش لنگر، یود حرکت ارتعاشی، پریدوران یعی، فرکانس طبیدامنه حرکت ارتعاش. دیآ یدست مه ب

 یشود که وقت یآن معلوم مبه رزونانس ر یواکنش ت یبررس. شوند یدست آمده محاسبه مه ر توسط روابط بیز تیخ
 .وجود ندارد یشود سرعت بحران یفرض م یکیزیف یرخطیر غیکه رفتار مصالح ت

 
 

1. INTRODUCTION 
 
The study of the dynamic effect of moving loads at 
highway and railroad bridges has a history of more 
than one and a half century. The collapse of Jester 
Bridge in England in 1847 encouraged both the 
theoretical and experimental studies. The 
Catastrophe caused tremendous human losses and 
created a lot of excitement in civil engineering [1] 
     Presently, there are many structures made from 
materials which are not subject to the Hook’s law. 
The stress and strain diagram of the physically 
nonlinear materials at small deformations against to 
Hook's law is straight line. Therefore, there is a 
great tendency to study stress and strain in elements 
of structures made of physically nonlinear materials 
under various static and dynamic loads. In the linear 
theory, the property of material is not taken into 
consideration, while all relevant parameters are 
taken into consideration in the nonlinear theory. 
Thus, the physical nonlinear theory at small 
deformations demonstrates an exact calculation 

method for the analysis of stress, strain, and other 
internal forces in structural elements. 
     Finally, the relationship between stress and 
strain, in the case of physically nonlinear beams is 
presented by Kauderer [2]. As the formula 
proposed by Kauderer is comprehensive and 
expresses the relationship between the stress and 
strain in three dimensional manners, we preferred 
to use the formula for the analysis of the physically 
nonlinear stress and strain. 
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i, j = 1, 2, 3 
 
where ij∂  is Croneker symbols, and 0σ is average 
stress: 

( )0σK  is average stress function and )( 2
0tl  is shear 

stress function; it can be indicated through the 
following expression: 
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Researchers have demonstrated that ( )0σK  in 
physically nonlinear materials on average relative 
deformations is close to the straight line (i.e., K 
(σ0) = 1). Also, the two first terms of the shear 
stress function are sufficient for most practical 
purposes. 
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In the above expression 2l  is the physically 
nonlinear coefficient, and the following formula is 
obtained from the formula (1) for a two dimensional 
case:  
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The purpose of this paper is to analyze a beam 
made of physically nonlinear material under the 
moving concentrated load discussed through 
analytical examples. 
 
 
 

2. THEORY 
 
It is assumed that the moving load along the 
prismatic beam shown in Figure 1 varies in a 
harmonic manner. The potential and kinetic energy 
of this system can be written as follows [3]: 
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where E, G, L2, ρ and F denote modulus of 

elasticity, shear modulus, nonlinearity coefficient, 
density and cross sectional area respectively. The 
work of external load can also be expressed as:  
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In which where θ1 is circular frequency of external 
load. The principle of Hamilton for this beam is as 
follows [4]: 
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Substituting ξ = πz/l and τ = ωt, the above equation 
may be rewritten as: 
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Figure 1. Schematic view of a prismatic beam Under a 
moving harmonic load. 
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Assuming p(ξ) and q(τ) as the coordinate and 
generalized functions, deformation of the beam can 
be expressed in the following form [5]: 
 

( ) ( ) ( )τξτξ qpw ⋅=,  (10) 
 
Substituting Equation 10 in Equation 9 and further 
simplifications the Hamilton principle is rearranged 
as: 
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where the coefficients a, b, c and d1 are: 
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Using the variation analysis by means of Euler 
method one can write [ 6]. 
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By substituting θ = kπv/l and q
d

X
2
0ω

=  in Equation 

13 it can be written as: 
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Equation 14 is simplified as follows: 
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The above equation is a DUFFING type ordinary 
differential equation and the general solution can 
be assumed in the following form [7]: 
 

( ) ∑= ηττητ sin.1cosnXX  (16) 
 
Substituting Equation 16 in Equations 15, and 
comparing the results with similar cases of 
coefficients of ηττη sin.1cos , many algebraic 
equations result, To our knowledge there is no 
exact solution for these equations and it would be 
appropriate to employ an approximate method, and 

1≥n  when 1XX n ≤ , n > 1 so it is applied the first 
constraint of Equation 16 that is:  
 

( ) ηττητ sin.1cos1XX =  (17) 
 
By substitution of Equation 18 in Equation 15 and 
comparing the same coefficients, it will be: 
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22 ηηµ += , Equation 18 can be rewritten as 
follows: 
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From where the vibration amplitude can be 
determined. 
      From Equation 19 it can be concluded that the 
resonance of the system depends on the velocity 
and the circular frequency of load. Knowing X1 
and considering Equation 10, the deflection of 
beam can be derived as below[8]:  
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Where 2ω
d  is defined as follows: 
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Stress at any cross section of the beam can be 
found as:  
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Where 2

2

z
wyz ∂

∂
=ε  and L2 is physical nonlinearity 

coefficient. 
     The bending moment of the beam at any cross 
section can also be found as follows [9]: 
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When the load is out of the beam which represents 
the free vibration of the beam, the equation of 
motion can be written as:  
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Finally, by solving Equation 24, the period of 
vibration can be calculated by the following 
equation: 
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Therefore, the circular frequency of the system will 
be[10]: 
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where Q is the amplitude of vibration and )(θk  is 
a second order elliptic integral. 
     To better demonstrate this analysis, an example 
is presented in this part. It is necessary to mention 
that in the present solution the theory of Konform 
Inkas is used. It is assumed that the beam under 
study is made of copper. 
     From the Konform-Inkas solution and taking 
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     The moment of inertia J° and parameter J1 are 
obtained as follows [112]: 
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Figure 2. Section of a beam. 
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TABLE 1. Amplitudes of Vibration. 
 

µ2 1
1X  1

2X  1
3X  

0.0 40.56 -39.56 -1.00 

0.89 -18.61 9.31  

1 -11.73   

2 -1.0   
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x

 
 

Figure 3. Resonance curve. 
 
 
 

TABLE 2. Deflection in the Point of Load. 
 

0Z  
8
l  

4
l  

8
3l  

2
l  

8
5l  

4
3l  

8
7l  

T(sec) 0.00227 0.0045 0.0081 0.0091 .011 .013 .016 

W(cm) -0.065 -0.205 -0.3 -0.28 -0.18 -0.06 .001 

 
 
 

TABLE 3. Bending Moment in the Middle Section of Beam. 
 

8
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4
31 

8
51 

2
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l  Z0 

-0.7 23.2 66.1 100.6 106.8 75.2 24.4 M 

 



112 - Vol. 24, No. 4, June 2011 IJE Transactions A: Basics 

 For the beam under study which is shown in 
Figure 2, the parameters used are as follows: 
 

61018.0200.2,35

51046.0,510241.1

641044.581,2410236.1

616.6,101,
8
9

1

588.0
1

,4,
9
1

1

×===

×=×=

×=×=

===

==−=

LlKNP

MPaGMPaE

cmJcmJ

RcmbA

A
Rqm

o  

The amplitudes of vibration are then obtained as 
shown in Table 1. 
     Based on the data in Table 1, the resonance 
curve is as shown in Figure 3. 
     Consequently stress, deflection, and bending 
moments are obtained and presented in Tables 
2-4. 
     Distribution of the stress caused by bending 
moment in the mid-beam’s cross section is shown 
in Figure 4. 

 
 

3. CONCLUSION 
 
The effect of material nonlinearity on the response 

parameters of beam under concentrated harmonic 
load are investigated analytically. By using 
Hamilton principles and Euler's equations the 
nonlinear vibration equation of the system are 
obtained. The Fourier series is used to decompose 
the deflection as a multiplication of functions in 
time and space. The resulting equation in time is 
the well known Duffing's equation. Solving the 
Duffing equation by perturbation method the 
response parameters of the system is evaluated. 
     In the case of linear material under concentrated 
moving load, theoretically with increasing the 
speed of the moving load resonance might happen. 
However, considering the material nonlinearity, 
resonance does not happen and the internal forces 
will have definite values. Taking into account the 
material nonlinearity, the internal forces for 
velocities blew critical velocity reduce as much as 
10-15 percent in comparison with the linear case. 
Using these results, the dynamic amplification 
factors for the system are calculated. Increasing the 
material nonlinearity results in decreasing in the 
value of vibration amplitude. 
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TABLE 4. Stress in the Middle Section of Beam. 
 

Y(cm) 6.61 8.3 10 
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Figure 4. Section of beam. 
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