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Abstract  Effect of time dependent normal transpiration U o (t ) on the problem of unsteady viscous

flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder
moving simultaneously with time-depended angular and axial velocities and with time-dependent wall
temperature or wall heat flux are investigated. The impinging free stream is steady with astrain rate X. A
reduction of Navier-Stokes equations and energy equation is obtaned by use of appropriate
transformations. The genera semi-similar solutions are obtained when angular and axid velocities of the
cylinder and also its wall temperature or its wall heat flux vary as certain functions of time. The cylinder
may perform different types of motions. It may move or rotate with constant speed, with exponentially
increasing/decreasing axia/angular velocity, with harmonicaly varying axia/angular speed, or with
accel erating/decelerating oscillatory axia/angular speed. The cylinder surface temperature or its surface
heat flux may have the same type of behavior as the cylinder motion. Semi-similar solutions of the
unsteady Navier-Stokes and energy equations are obtained numerically using a finite-difference scheme.
All the solutions above are presented for different Reynolds numbers (Re=ka?/2u) and different
functions of dimensionless transpiration rate, St ) = U, t) I(ka), Where @ is cylinder radius and V' is

kinematic viscosity of the fluid. Shear stresses corresponding to all the cases increase with the increase of
Reynolds number and decrease with the increase of suction rate. The maximum value of shear stress
increases with increase of oscillation frequency and amplitude. An interesting result is obtained in which
a cylinder moving with certain angular/axial velocity function and & particular values of Reynolds
number is azimuthaly/axially stress-free. Heat transfer rate increases with the increase of the rate of
suction, Reynolds number, and Prandtl number. Interesting means of heating and cooling processes of
cylinder surface are obtained using different rate of transpiration.

Keywords Stagnation-point Flow, Time-dependent Axial/Angular Velocity, Time Dependent Heat
Transfer, Time Dependent Transpiration, Semi-similar Solution, Finite Difference Method.
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1. INTRODUCTION

The task of finding exact solution for Navier-
Stokes equations is the difficult one due to
nonlinearity of these equations. Hiemenz [1] has
obtained exact solution of the Navier-Stokes
equations  governing the  two-dimensional
stagnation-point flow on a flat plate The
analogous axisymmetric stagnation-point flow was
investigated by Homan [2]. Result of the problem
of stagnation-point flow against the flat plate for
axisymmetric cases were presented by Howarth [3]
and Davey [4]. Wang [5] was first to find exact
solution for the problem of axisymmetric
stagnation flow on an infinite stationary circular
cylinder. Gorla [6-10], in a series of papers,
studied the steady and unsteady flows and heat
transfer over a circular cylinder on the vicinity of
the stagnation-point for the cases of constant axial
movement, and then special case of axial harmonic
motion of a nonrotating cylinder. This special case
is only for small and high values of the frequency
parameter using perturbation techniques. Cunning,
Davis and Weidman [11] have considered the
stagnation flow problem on a rotating circular
cylinder with constant angular veocity, including
the effects of suction and blowing with constant
rate. Takhar, Chamkha and Nath [12], have also
investigated the unsteady viscous flow in the
vicinity of an axisymmetric stagnation point of an
infinite circular cylinder when both the cylinder
and the free-stream velocities vary as the same
function of time. Their self-similar solution is only
for the case when both the cylinder and the free-
stream velocities vary inversdy as a linear function
of time and by taking an average value for the
Reynolds number. The study considered by Rahimi
[13] presents a systematic solution of Gorla's
results for high Prandtl number fluids using an
inner-outer expansion of fluid properties. Recently,
Saleh and Rahimi [14-19] have investigated the
unsteady viscous flow and heat transfer in the
vicinity of an axisymmetric stagnation point of an
infinite rotating and moving circular cylinder with
time-dependent angular and axial velocity and
time-dependent wall temperature or wall heat flux
with uniform normal transpiration. The effect of
time-dependent normal transpiration, the cylinder
movement /rotation with time-dependent axial
/angular velocity and time-dependent heat transfer,
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which are of interest in certain manufacturing
processes, have not yet been considered. In the
present analyses, the unsteady viscous flow and
heat transfer in the vicinity of axisymmetric
stagnation point of an infinite circular cylinder
with time-dependent axial movement /rotation with
time-dependent transpiration considered, though
the reduction of Navier-Stokes equations and
energy equation is obtained for the most general
case of time-dependent transpiration rate. Our
motivation is to generadlize the problem of
stagnation-point flow and heat transfer of a fluid
on a moving /rotating cylinder. An exact solution
of Navier-Stokes equation and energy equation is
obtained. The general semi-similar solution is
obtained when the axial /angular velocity of the
cylinder and its surface temperature or heat flux
vary in a prescribed manner. The cylinder may
perform different types of motion / rotation. It may
move with constant speed, with exponentially
increasing- decreasing axial/angular velocity, with
harmonically varying axial/angular speed, or with
accelerating-decelerating oscillatory axial/angular
speed. The cylinder surface temperature or its
surface heat flux may have the same behavior as
the cylinder motion. Sample distribution of shear
stresses and temperature fields at Reynolds number
ranging from 0.1 to 100 are presented for different
forms of cylinder movement and different values
of Prandtl and selected values of uniform suction
and blowing rates. Particular cases of these results
compared with existing results of Wang [5] and
Gorla[6, 7, 9, 10 ], Cunning, Davis and Weidman
[11], correspondingly. For completeness semi-
similar solution of Navier-Stokes equations and
energy equation are obtained and results for
various examples of cylinder motion are presented
for different values of flow parameters.

2. PROBLEM FORMULATION

Flow is considered in cylindrical coordinates
(r,j ,2 with corresponding velocity
components(u, Vv, w) , see Fig.1. We consider the
laminar unsteady incompressible flow and heat
transfer of a viscous fluid of a neighborhood of an
axisymmetric stagnation point of an infinite
circular cylinder when move axially or rotate with
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a veocity variation with respect to time. An
external axisymmetric radial stagnation flow of

strain ratek impinges on the cylinder of radius a
centered a r =0. Timedependent normal

transpiration U, (t ) at the cylinder surface may

occur, where U, (t) >0 correspond to suction

into the cylinder, though the formulation of the
problem is for the more general case of time
dependent transpiration rate. The unsteady Navier-
Stokes and energy equations in cylindrical polar
coordinates governing the axisymmetric flow and
heat transfer are given [5-10]:
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Figure 1. Schematic diagram of an axially moving and
rotating cylinder under radial stagnation flow in the

fixed cylindrical coordinate system (r,j , 2)
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Wherep,r ,u and a are the fluid pressure,

density kinematic viscosity, thermal diffusivity the
boundary condition for velocity fields are:

r=a: u=-U,(t), v=aw(t),w=V(t) (6)

re® ¥:—u=-

q k,limg, rv=0,w=2kz (7)
r

in which, (6) are no-dip conditions on the cylinder
wall. Rdation (7) shows that the viscous flow
solution approaches, in a manner analogous to the
Hiemenz flow, the potential flow solution as
r® ¥[11].

For the temperature field we have:

r=a:i)T=T,(t) fordefinedwalltemperatue

i) ‘ﬂﬂ =- q"’T(t) for definedwal | heat flux
r

re ¥ T®T, ©)

where Kk is thermal conductivity of fluid and
T, (1) and g, (t) are temperature and heat flux at

the wall cylinder, respectively.

A reduction of the Navier-Stokes eguations is
obtained by the following coordinate separation of
thevelocity field [14, 15]:

iiFmt)v__—Gmt)
J_ Jh
((h,t)z+H(h,t),p:rk a’P  (9)
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wheret = 2kt andh :(é)zaredimensionlesstime
and radia variables and prime denotes
differentiation with respect toh . Transformations
(9) satisfy (1) automatically and insertion into (2),
(3) and (4) yields a coupled system of differential
equation intem of F(h,t ),G(h,t)and H(h,t)
an expression for the pressure:

hF®+ F &+ Re1- (F9? + FF ¢ %] =0 (10
hG @+ Re[ FG¢- 11TT_tG] =0 (11)

hH ¢+ H ¢+ Re[FH ¢ F¢-|-1111—|:]=0 (12)

F2 1
R S
2h Re

1 2G*(z)

k2 z?

P-PR=-[ For2(%)° -

(13)

dz ]

In these equations prime denotes differentiation
L, A2

with respect to h andRe = ka is the Reynolds

number

From conditions (6) and (7), the boundary
conditions for (10), (11) and (13) are as follows:

h=1:F=St), F=0  G=wt),
H=V(t)

h® ¥: Fe=1  G=0 4
H=0

in which, S(t)= Uo_(t )
ka

is the dimensionless

wall transpiration rate. To transform the energy
equation into a non-dimensional form for the case
of defined wall temperature, we introduce

=T(h,'[)-T¥

Q Tw(t)- T¥

(15)
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Making use of (9) and (15), the energy equation

may be
Written as:
dT,,
Q dt _
hQ®+ Q¢+ Re.Pr(FQ¢- — - =0
Qe¢+Q (FQ it TW_T¥) (16)

with the boundary condition as:
QlLt)=1 Q(¥t)=0 (17)

For the case for defined wall heat flux, we
introduce

— T(h’t )- T¥
aq, (t)
2k

Q (18)

Now, using equations (9) and (18), the energy
equation may be written as:

da,

hQ®+ Q¢+ Re.Pr(FQ¢- 1111—? g—t) =0 (19

w

with the boundary condition as:
QULt) =-1,

Here, equations (10), (11), (12), and (16) or (19)
are for different forms of S(t), w(t), V(t),

Tyt) o q,()functions and were solved
numerically with Reand Pr as parameters.

QH¥t)=0 (20)

3. SELF-SIMILLAR EQUATIONS

There are time-dependent transpiration and also the
term in equation (10) cannot be reduced to a
system of ordinary differential equation, But;
equations (11), (12), (16) and (19) can be reduced
to a system of ordinary differential equation f. So,
we assume that the function G(h,t) in(11),
Hh,t) in(12) andQ(h,t)in (16) and (19) are
separable as:

Vol. 23, Nos. 3 & 4, November 2010



Gh,t)=gM)f ()
Hh,t)=hh)V({) (21)
Qh.t)=q().Q()

Substituting these separation of variable into (11),
(12), (16) and (19), correspondingly gives:
« Q¢ (
h94 9 Rep 9= Re d(t) 22)
g¢ ¢ g f@) o
ht h h(

h—+—+Re(F—- F§=—— Re dvt)

(23)
h¢ h h V) dt

for defined wall temperature:
g®¢ q¢

h=—+
a q
dQ i, (24

+Re. Pr(F—q% =
q

w

Re.pr(dl +_dt
Q T, T

or for defined wall heat flux:

h9° +q_+R Pr(Fq¢)
q q q
daQ dg, (25)

Re.pr(dt_ 4 dt
Q

w

The general solution to the differential equations
(22), (23), (24) and (25), with t as an independent
variable are as the following:
w(t) =b.Exp[(a +ib)t ] (26)
V(t)=bExp[(a +ib)t] (27)
for defined wall temperature

c.Expl(a +ib)t]

QM) ="—1"+ (28)
for defined wall heat_flux
o) = c.Expl(a +ib)t] 29)

q,(t)
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Here, i=+-1landa,b,bandcare constants.

Substituting these equation into the differential
equations in (26), (27) and (28) or (29) with h as
an independent variableresultsin:

hg«+ Re(Fg(- ag- ibg) =0 (30)
hht(+h(+Re(Fh(- Fh- ah- ibh) =0 (32)

hqt+q¢+Re.Pr(Fq(- aq - ibq) =0 (32)

The angular velocity boundary conditions are
G(Lt)=wit)=9@f ¢)® g =1  (33)
G¥t)=0=g¥)ft)® g¥)=0  (34)
The axial velocity boundary conditions are:

HLt)=V(E)=h@V(E)® h@)=1 (35
H(¥,t)=0=h(¥)V(E)® h(¥)=0 (3

For the above defined wall temperature and wall
heat flux, respectively, the result was obtained:

QLt)=1=q(D)Q()

1q@) = 37
b ti((?) :11 ® T.T, =cExi@+iby] "

QLt)=-1=q().Q)

b ‘tiil)):f@ 0,0) =cBpl@ +ibg]

Q¥¥.t)=0=q(¥)Qt)P q(¥)=0 (39)

Note that in (26) b =0 correspond to the case of
non-rotating cylinder, as presented by Wang [5]. If
bt Oanda =b =0, (26) gives the case of
uniformly rotating cylinder with constant angular
velocity, as given by Cunning e a. [11].
b1 0,a!0andb =0 correspond to the case of
a pure harmonic rotation of cylinder. The case of
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al0,b!0,b? 0 isthe most general which is
considered in this paper. In (27) b =0 corresponds
to the case of cylinder with no axial movement,
presented by Wang [5]. If b! Oanda =b =0,
(27) gives the case of uniformly moving cylinder
with constant axial velocity [7]. b 0,a * 0 and
b =0 correspond to the case of a moving cylinder
with harmonic velocity in its own plane, given by
Gorla[9]. Thecaseof a1 0,b 1 0,b1 O isthe
most general which is considered in this paper.

In (37) and (38) the cylinder surface temperature or
its surface heat flux may have the same type of
behavior as the cylinder motion. To obtain
solution of equations (30), (31) and (32), it is
assumed that the functiong(h), h(h)andqh) are
complex functions as:

gh) =g,() +ig,(h) (40)
h() =h{) +ih,() (41)
qh)=q,h) +ig,() (42)

Substituting (30), (31) and (32) into (30), (31) and
(32), respectively, the following couple differential
equations are obtained:

ihg{m' Re(Fgl¢- ag, - ibgz) =0

| . B (43)
ihg$+ Re(Fg$¢- ag, - ibg,) =0

jhh@+ he+ Re(Fhe- F&, - ah, - ibh,) =0

| . (49
thhg+ hg+ Re(Fhg- F @, - ah, - ibh) =0

ihqlm-ql(l:+ Re.Pr(Fg% aq, - ibg,) =0

| . _ (49
ithq#+qg+Re.Pr(Fqg¢- aq, - ibg,) =0

The boundary conditions for functionsF ,G,H
and Q become:

h=1:F=St)F(=0g=0h=1,9=0
(orq¢=-1) (40)

h® ¥ :F(=0,g=0,h=0,g=0 (47)
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U,(t)

where, S(t) :OE is the dimensionless wall

transpiration rate which is time-dependent. Hence,
the boundary condition sonfunctions h,, h,, g,,

9,0, and g, are

h=1:F=St),F(=0,g=0h=1q=0 “8)
(or q¢=-1)

h® ¥ :F(=0,g=0,h=0,g=0 (49)

The coupled system of equations (43), (44) and
(45), along with boundary conditions (48) and
(49), were solved using the forth-order Runge-
Kutta method of numerical integration along with a
shooting method as presente by Press et al.[13].
First, Eq. (9) was solved by guessing initial values
for F«Q) and integrating until the convergence
reached. Then, the initial values of
h((1) . h§ (@) . 9f() . g§(2) anda (1) .q§(1) [ora, (1)

,0,(1)] were guessed and then integration was
repeated until convergence was obtained. Thevalue
of h(h). h,h). 9,(). g,() and q,(h),
g, (h) was assumed initially and then by repeating

the integration of these three system of equations,
final values were obtained.

4. SEMI-SIMILLAR EQUATIONS

Equations (9), (10), (11), (16) and (19) may be
solved directly for every chosenS(t), wi(t),
V), T,t) o q,()functions. These obtained

solutions are called semi-similar solution. These
equations along with boundary conditions, (14),
(17) and (20) were solved by using a central finite-
difference method which lead to a tri-diagonal
matrix. Assuming steady state for t £0, the

solution starts  froms(0),w(0),V (0), T, (O) or
Oy (0) and marching through time, time-

dependent solution for t >0 were obtained.
Sample axial and angular veocity profiles will be
presented in later sections.
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5. SHEAR STRESS

The shear stress at the cylinder surface is
calculated from[11]:

rl(’l

Iw .
ﬂr r Z] r=a (50)

s =nf )8 +We

where I is the fluid viscosity. Using definition
(9), the shear stress at the cylinder surface for
semi-similar solution becomes:

s =21GEL)- WOl + 2 [2GFELOZ+ gy
HELOTR,

Azimuthal surface shear stress for self-similar
solutions is presented by the following relation:

S, :sjl+isj )
= 2mb.Exp(at ){[cos(bt )(g&1) - 1) -
sin(bt )g¥D] +i[sin(bt )(g¢1) - 1) -

cos(bt )g¢(D)]}

Axial surface shear stress for sdf-similar solutions
is presented by the following relation:
S z =S z1 + iS z2
2m
=~ {2GF Lt )2+ bExp(at )[(h€D) cosibt ) (53

- hg(D) sin(bt ))+i(h€Ysin(bt ) +
+hg(1) cos(bt ))]}

(52)

Some numerical values of real part of azimuthal
and axial shear stress will be presented later for
few examples of angular and axial velocities,
respectively. Of coursg, it is noted that the real and
imaginary parts of this quantity are actually the

same but with a phase difference of % .

6- PRESENTION OF RESULT
In this section, the solution results to the sdlf

similar equations (30), (31) and (32) and the semi-
similar equations (10) to (12) and (16) to (19)

IJE Transactions A: Basics

along with surface shear stresses for different
functions of axial/angular velocities and prescribed
values of wall temperature or wall hesat flux. Entire
solution is presented for different Reynolds and
Prandtl numbers and different values of
dimensionless transpiration rate, S(t ) .

Figures (2)-(7) present the semi-similar solution
for dimensionless transpiration rate, St ) =t +1,
in which the function F(h,t ) isshown in terms of

35

30r

iy

Figure 2. Sampleprofilesof F(h,t) function for

S(t)=( +2), for selected values of non-
dimensional time at Re=1.

F(n,)

Figure 3. Surface function F(h,t) for
st)=(t +1) Re=1.
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h and for different non-dimensional time values at

Re=1, 10, and 100. The process of obtaining this
solution is explained in Sec.4. This function, for
the first time, was solved by Wang [5] for the case
of S=0 and later was presented by Cunning [11] for
selected values

of suction rate. It is evident for this figure that, as
non-dimensional time values increase, the F
function increases, because of the dimensionless
transpiration rate is an ascendant function oft . On
the other hand, as

40

Br

nr

5r

Figure 4. Sampleprofilesof F(h,t) function for

S(t)=( +2), for selected values of non-
dimensional time at Re=10.

F(n,7)

Figure 5. Surface function F(h,t) for

294- | JE Transactions A: Basics

st)=( +1) Re=10.

dimensionless transpiration increases, the F function
increases and if S(t) decreases, the F function
decreases.

40

kg

a0t

P

Figure 6. Sampleprofilesof F(h,t) function for

S(t)=( +2), for selected values of non-
dimensional time at Re=100.

F(n.v

Figure 7. Surface function F(h,t) for
st)=(@ +1) Re=100.
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Figures (8)-(11) presents the same function but for
the transpiration rate of S(t)=( +1) ‘and
selected values of Reynolds numbers. Sample
profiles of F« functioninterms of h are depicted

in Figs (12) - (15) for different values of
transpiration rates and selected values of Reynolds
numbers. Figures (16) —

Figure 8. Sample profiles of F(h,t) function for

St)=(@ +1) 'and sdected values of non-
dimensional timeat Re=1.

F(n,7)

Fh,it) for

function

Figure 9. Surface
st)=@ +1) " and Re=1
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Figure 10. Sample profiles of F(h,t) function for,

for S(t)=( +1) 'and sdlected values of non-

dimensional
timeat Re=100

F(n,7)
o

Surface  function
st)=@ +1)* and Re=100

Figure 11.
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Figure 12. Sample profiles of F € function for
various function of dimensonlesstranspiration rate
aRe=1&t =1.5.

100 T T T T T

-+ Re=1
— Re=10
— Re=10 ||

w

| 1 1 1
1 1.05 1.1 1.15 12 1.25 1.3 1.35 1.4

Figure 13. Sample profiles of F € function at different
Reynolds number for St ) =t +1&t =15
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— 8=1+
sees Gep a
—- 5=t

-a0 .
1 1M 102 103 104 106 106 107 108 108 14
7

Figure 14. Sample profiles of F € function for
various function of dimensonlesstranspiration rate

atRe=100 &t =1.5.

=11 T T T T T
— B=1+1
---- 5=t
—- B=11 ]
.
_1D 1 1 1 1 1
1 1.1 12 1.3 14 14 1.6

Figure 15. Sample profiles of F € function for various
function of dimensionless transpiration rate at Re=10
&t =15
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G

Figure 16. Sample profiles of G(h,t ) function for
cylinder with angular velocity,W(t ) =1, for selected

values of non-dimensional time at Re=1,
St)=t +1

G(n.7)

Figure 17- Function G(h,t) intemsof h st for
circular functionw(t ) =1and Re=1

IJE Transactions A: Basics

)

Figure 18. Sample profiles of G(h,t ) function for
cylinder with angular velocity,w(t ) =t , for selected
values of non-dimensional time at Re=1.

G(n.n)

Figure 19. Function G(h,t ) inteemsof h st for
circular functionw(t ) =t and Re=1
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1 12 1.4 16 18 2 22 24 i

Figure 22 Sample profiles of G(h,t ) function for
cylinder with angular velocityw(t ) = exp(t ), for
selected values of non-dimensional time at Re=1.

Figure 20. Sample profiles of G(h,t ) function for

cylinder with angular velocity, W(t ) = (L+t )", for
selected values of non-dimensional time at Re=1.

G(n,7)
G(n,v)

Figure 23. Function G(h,t) intemsof h st for
Figure 21. Function G(h,t ) intermsof h 5t for circular functionw (t ) = exp(t )and Re=1.
circular functionw/(t ) = (1+t ) *and Re=1.
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08 1

0.8 1

0.7 1

0.6 1

G

Figure 24.Sample profiles of G(h,t ) function for
cylinder with angular velocity,w(t ) = exp(-t ), for
selected values of non-dimensional time at Re=1.

G(n,t)

Figure 25. Function G(h,t) intemsof h st for
circular functionw(t ) = exp(-t )and Re=1.
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02 T T T T T

e

Figure 26. Sample profiles of G(h,t ) function for
cylinder with angular
velocity,W(t ) = exp(-t ).sin(t ), for selected values
of non-dimensional time at Re=1.

06

G(n.7)

Figure 27 Function G(h,t) intermsof h st for
circular functionw(t ) = exp(-t ).sin(t ) and
Re=1.
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0.a

S e

1 12 14 16 18 2 22 24 26 28

Figure 28. Sample profiles of G(h,t ) function for
cylinder

with angular velocityw (t ) = exp(t ).sin(t ) for
selected values of non-dimensional time at Re=1

G(n.7)

Figure 29. Function G(h,t) intermsof h st for
circular functionw(t ) = exp(t ).sin(t ) and Re=1.
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)

Figure 30. Sample profiles of G(h,t ) function for
cylinder with angular velocityw (t ) =sin(t ) in terms
of h for sdlected values of non-dimensiond time at
Re=1.

G(n,1)

Figure 3L Function G(h,t) intermsof h st for
circular functionw(t ) = sin(t ) and Re=1.

(31) present the functionG(h,t)for cylinder with

selected values of angular velocity along with its
corresponding surface function for different values of
non-dimensional time a Re=1, and transpiration rate
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of S(t ) =t +1. Different situations occur which are
depicted in the diagrams.

Figures (32) to (41) show sample profiles 1+
of H (h,t ) function for cylinder with selected values of

axial velocity in termsof h and for different values of 08
non-dimensional time at Re=1and for transpiration rate
of S(t) =t +1. Different situations can be observed
in these diagrams depending on the different factors.

Him)

3

25+

E r 2 | | | | | | | | |
1 11 12 13 14 15 16 17 18 13 2
0sk 7
Figure 34. Sample profilesof H (h,t ) function for
s, T Y R T — . - cylinder with axial velocity, V(t ) = (L+t )", in
7 terms of h and for selected values of non-dimensional
Figure 32. Sample profiles of H (h,t ) function for time at Re=1.

cylinder with axial velocity,V (t ) =t ,in termsof h
and for sdected values of non-dimensional time at
Re=1, S(t) =t +1.

Hn,v)

Hm,7)

Figure 33. FunctionH(h’t ) intermsofh st for

axial Figure 35. Function Hht) in terms of
velocity V() =t ;ngRe=1 velocity V(t) = (1+t)* jpgRe=1

h,t axia
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Figure 38. Sample profiles of H (h,t ) function for
cylinder with axial velocity,V(t) =exp(-t) , in
terms of N and for selected values of non-dimensional
timeat Re=1

Figure 36 Sample profiles of H (h,t ) function for
cylinder bwith axial velocity,V (t ) =exp(t ) ,in
terms of h and for selected values of non-dimensiona
timeat Re=1.

Hn,7)

H(n,o)

Figure 39. FunctionH (h,t)

. . HMht). h,t
Figure 37. Function ht) intermsof "' 9~ for and for axial velocityV/ (t ) = exp(-t ) and Re=1
axial velocity V() =exp(t) Re=1

in terms of
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Figure 40. Sample profiles of H (h,t ) function for 0 05 1 15 2 25 3
cylinder with axial velocity, V (t ) = exp(-t ).sin(t )
in tems of hand for selected values of non
dimensional timeat Re=1.

Figure 42. Effect of transpiration on tangential
shear stress for cylinder rotation with w(t ) =1

W e |

H(n,z)

o (¢ direction)

|
224 J

Figure 41. Function H(h,t )in terms of h , t for -24D . L I . w
axial velocity V(t ) = exp(-t).sin(t ) and Re=1. v

Figures (42) to (53) present the effect of transpiration Figure 43. Effect of Reynolds number on tangential

on tangential shear stress for the cylinder rotating with li . ithw(t ) =1
selected angular velocity and for different values of shearsiress for elinder rotetion withw(t )

transpiration rate along with different values of
Reynolds numbers.
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Figure 44. Effect of trangpiration on tangential shear

stress for cylinder rotation withw(t ) =t
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Figure 45. Effect of Reynolds number on tangential

shear stress for cylinder rotation withw(t ) =t
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o (¢ direction)
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Fig.ure 46. Effect of trangpiration on tangential shear
stress for cylinder rotation with w(t ) = (t +1)™*
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Figure 47. Effect of Reynolds number on tangentia
shear

wt)=t wt)=@ +1*

stress

for cylinder rotation  with
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Figure 48. Effect of transpiration on tangential shear

stress for cylinder rotation with w(t ) = exp(t )
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Figure 49. Effect of Reynolds number on tangential
shear stress for cylinder rotation withw(t ) = exp(t )
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o (¢ direction)

o s | s

Figure 50. Effect of transpiration on tangential shear
stress for cylinder rotation with w(t ) = sin(t )

o (¢ direction)

-4
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Figure 51. Effect of Reynolds number on tangentia
shear stress for cylinder rotation withw(t ) = sin(t )
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Figure 52. Effect of transpiration on tangential shear

stress for cylinder rotation with
w(t ) =exp(t ).sin(t)
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Figure 53. Effect of Reynolds number on tangentia
shear  stress  for cylinder rotation  with

w(t ) =exp(t ).sin(t)

Figures (54) to (67) show the effect of
transpiration rate on axial shear stress for the
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cylinder moving in selected values of axial
velocity and different values of Reynolds numbers.
Finally, Figures (68) to (70) depict Q(h,t)
function for selected values of transpiration rate
and different temperature functions. So in cooling
process, high Prandtl number and Reynolds
number fluid are preferred. Also, higher suction
rates provide a means for cooling surface and
higher blowing rates provide a means for heating
the surface of the cylinder. Therefore in a defined
wall heat flux case, to prevent high wall
temperature, higher rates of suction can be
provided and vice-versa.
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Figure 54. Effect of transpiration on axia shear stress
for cylinder axial velocity of V(t ) =1
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Figure 55. Effect of Reynolds number on axial shear
stress for cylinder axial velocity of V(t ) =1
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Figure 56. Effect of transpiration on axial shear stress
for cylinder axial velocity of V(t ) =t
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Figure 57. Effect of Reynolds number on axial shear

stress for cylinder axial velocity of V(t ) =t
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Figure 58. Effect of transpiration on axial shear stress
for cylinder axial velocity of V(t ) = (t +1)*
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Figure 59. Effect of Reynolds number on axial shear
stress for cylinder axial velocity of V(t ) = (t +1)™*
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Figure 60. Effect of transpiration on axial shear stress Figure 62. Effect of transpiration on axial shear stress
for cylinder axial velocity of V/ (t ) = exp(t ) for cylinder axial velocity of V (t ) =sin(t )
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Figure 61. Effect of Reynolds number on axial shear Figure 63. Effect of Reynolds number on axial shear
stress for cylinder axial velocity of V (t ) = exp(t ) stress for cylinder axial velocity of V(t ) =sin(t )

308- I1JE Transactions A: Basics Vol. 23, Nos. 3 & 4, November 2010



160 : : : : 4 ; : : :
- G R

— &1

o [z direction)
o [z direction)

-100 L L L ‘ L 0 04 1 18 P 25 3
0 04 1 158 2 24 3

) o ) Figure 66. Effect of transpiration on axial shear stress
F|gurg 64. Eff_ect of tr_ansplratlon on axia shear stress for cylinder axial velocityV/ (t ) = exp(-t ).sin(t )
for cylinder axial velocity V (t ) = exp(t ).sin(t )
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Figure 65. Effect of Reynolds number on axial shear Figure 67. Effect of Reynolds number on axial shear
stress  for  cylinder axiad  velocity  of stress  for  cylinder axiad  velocity  of

V() =expt).snt) V(t)=exp(-t).sin(t)
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Figure 68. Q(h,t ) function for S(t ) =t +1and the
caseof T - T, =constant

Figure 69. Q(h,t ) function for S(t) = (t +1) *and
thecaseof T - T, = Exp(t )
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Figure 70. Q(h,t) function for S(t ) = cost and the
caeof T- T, = Exp(-t).

6. CONCLUTION

A numerical solution of the Navier-Stokes
equations and energy equation is obtained for the
problem of stagnation—point flow on a circular
cylinder with time-dependent normal transpiration.
A general semi-similar solution is obtained when
cylinder has different forms of axial/rotational
motions including: constant axial/angular velocity,
exponential axial/angular velocity, pure harmonic
movement/rotation, both  accelerating and
decelerating oscillatory motion. Since the heat
transfer is axisymmetric in theq direction, the
cylinder rotation has no effect on temperature field.
Results for different time-dependent wall
temperature and heat flux functions including:
constant wall temperature or heat flux, exponential
and oscillatory form of wall temperature or wall
heat flux are presented. Axia and azimuthal
component of fluid velocity and surface axial and
azimuthal shear stress on the cylinder are obtained
in al above situations, and for different values of

Vol. 23, Nos. 3 & 4, November 2010



Reynolds numbers  and
transpiration.

Absolute value of axial /azimuthal shear
stresses corresponding to all cases increase with
the increase Reynolds humber and suction rate. In
defined wall temperature case, heat transfer
increases with the increase of Reynolds number,
Prandtl number and suction rate, where as the
depth of the diffusion of temperature field
decreases. So, an increase of suction rate can be
used as means of cooling the surface and increase
if blowing can be used as a means of heating
surface. It is shown that by providing blowing on
the surface of a cylinder, reduction of resistance
against its axial/rotational movement inside a fluid
can be achieved. It is also found that higher suction
rates are means for cooling the surface and higher
blowing rates are a means of heating the surface of
cylinder.

time-dependent
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