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Abstract In this article, an exact analytical solution for thermal buckling analysis of thin functionally
graded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle of
minimum total potential energy, the stability equations are obtained. Since the material properties in FG
materials are functions of the coordinates (specially the thickness), the stability equations are coupled in
terms of in-plane and out-of plane displacements. Introducing a new analytical method, the coupled
stability equations are converted into independent equations. It is assumed that the plate is simply
supported on two opposite edges and has arbitrary boundary conditions along the other edges, so the
Levy solution is considered. Two types of thermal loads, uniform and non-linear temperature rise
through the thickness are considered as the loading conditions. Finally, the effect of aspect ratio,
thickness to side ratio, index of FGM and boundary conditions on the critical buckling temperature of
FG rectangular plates are discussed in details.
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1. INTRODUCTION

In recent years, as the result of development in
materials science, new materials with special
applications were introduced which has been
studied by many researchers. Functionally graded
materials (FGMs) are composite materials that
their thermal and mechanical properties differ
smoothly and continuously from one surface to the
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other surface. FGMs are capable of carrying
thermal loads as well as mechanical loads and they
are commonly used in engineering structures such
as beams, plates and shells. These materials were
introduced for the first time by Japanese
researchers in 1984 [1]. The FG plates are used in
power station furnaces, spacecrafts, rocket engines
and high temperature instruments. Commonly, the
ceramic surface of the FG plate is exposed to high
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temperature side and the metal surface is exposed
to low temperature side.

Many models were suggested for buckling
analysis of isotropic and FG plates. Thermal and
mechanical buckling analysis of FG plates was
investigated by many researchers where most of
the analytical solutions were limited to simply
supported ones [2-5]. Javaheri and Eslami studied
the mechanical buckling of FG rectangular plate
under in-plane compressive loads based on the
classical plate theory [2]. They determined
equilibrium and stability equations using the
variational approach and obtained the closed form
solution for a rectangular plate. Thermal buckling
analysis of FG rectangular plate based on the
classical plate theory was carried out by Javaheri
and Eslami [3]. In this study, it was shown that the
critical buckling temperature reduces as the index
of FGM increases. Also, they studied the thermal
buckling analysis of FG rectangular plates
according to the higher order plate theory (HOPT)
[4]. It was assumed that the boundary conditions
are simply supported in all edges and the closed
form solution for the critical buckling temperature
was obtained. Thermal buckling analysis of FG
rectangular plates with geometrical imperfections
was investigated by Samsam shariat and Eslami
[5]. The equilibrium, stability and compatibility
equations of imperfect FG rectangular plates were
derived using the classical plate theory for the case
of fully simply supported boundary condition and
different loading conditions were considered.
Lanhe [6] studied the thermal buckling of simply
supported moderately thick FG rectangular plates.
Using the first order shear deformation plate
theory, the closed form solution for the critical
buckling temperature was obtained and reported
that the critical buckling temperature difference for
a functionally graded plate is increased when the
plate aspect ratio or the thickness to span ratio
increases and it is decreased when the power law
index increases.

Wu et al. [7] investigated the post-buckling
analysis of FG rectangular plates under thermal
and mechanical loads based on the first order shear
deformation plate theory. They wused fast
converging finite double Chebyshev polynomials
for different boundary conditions and considered
von-Karman nonlinear kinematics. The buckling of
thick FG rectangular plates under mechanical and

180 - Vol. 23, No. 2, May 2010

thermal loads was represented by Shariat and
Eslami [8]. They assumed that the non-
homogeneous properties of FG plate vary linearly
through the thickness. The equilibrium and
stability equations were derived based on the third
order shear deformation plate theory and the
Navier solution was used as the solution method.
Abrate in different studies [9,10] showed that the
mechanical and thermal buckling loads, the natural
frequencies of FG rectangular plates and the
deflections are always proportional to those of
homogeneous isotropic plates. Conclusions were
based on the comparison of the available results
and since there were no results in buckling of FG
plates, this case was incomplete. A generalized
analytical approach to the buckling of simply
supported isotropic rectangular plates under
arbitrary loads was represented by Liu and
Pavlovic [11]. They used the exact solutions for
the in-plane stresses and the adoption of double
Fourier series for the buckled profiles which,
together ensure that accurate results are obtained in
Ritz energy technique. A two-dimensional higher
order deformation theory was presented for the
evaluation of displacements and stresses in simply
supported FG rectangular plates subjected to the
thermal and mechanical loads by Matsunaga
[12,13]. Hosseini-Hashemi et al. [14] reported the
exact solution for linear buckling of isotropic
rectangular plates. They used the Mindlin plate
theory to study the buckling of in-plane loaded
isotropic rectangular plates with various boundary
conditions and presented critical buckling loads
versus different parameters. Mohammadi et al. [15]
studied the buckling analysis of thin functionally
graded rectangular plates subjected to different
mechanical loads. The coupled stability equations
were decoupled analytically and the equations
were solved for a plate with two opposite edges
simply supported. The boundary conditions along
the other edges were considered as a combination
of simply supported, clamped and free. They
inferred that increasing the index of FGM
decreases the critical buckling load. An
approximate method for simulation of natural
frequencies and buckling loads of thin rectangular
isotropic plates was represented by Mirzaeifar et
al. [16]. The first and second order derivatives of
natural frequencies and buckling loads with respect
to arbitrary boundary conditions of an isotropic
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rectangular plate were used in their study. Saidi et
al. [17] investigated the axisymmetric bending and
buckling of perfect thick FG solid circular plates
using the unconstrained third order shear
deformation plate theory. Saidi and Jomehzadeh
[18] presented an analytical approach for the
bending-stretching analysis of linearly elastic FG
plates with two opposite edges simply supported
and suggested a new method for decoupling the
equations.

Praveen and Reddy [19] investigated the
response of functionally graded ceramic-metal
plates by the plate finite element that accounts for
the transverse shear strains, rotary inertia and
moderately large rotations in the Von Karman
sense. They presented numerical results for the
deflection and stresses of functionally graded
plates and discussed on the effect of imposed
temperature field on the dynamic and static
response of fgm plate. Woo and Meguid [20]
studied the plates and shallow shells made of
functionally graded materials and provided an
analytical solution for the coupled large
deflections. They assumed that the structures are
subjected to transverse mechanical and thermal
loads and material properties vary through the
thickness according to the power law distribution
of the volume fraction of the constituents. They
investigated the influence of the material properties
on the dimensionless deflection, stresses and
bending moments.

As was reviewed, all of the previous analytical
studies for the thermal buckling analysis of
functionally graded plates were limited to the
special case of simply supported ones.

In this paper, the exact analytical solution for
buckling analysis of FG rectangular plates
subjected to the thermal loads is presented. Based
on the classical plate theory and using the principle
of minimum total potential energy, the stability
equations are obtained for a rectangular plate.
Applying an analytical method and introducing
new functions, the stability equations are
decoupled. Using Levy solution, the decoupled
equations are solved analytically for a FG
rectangular plate with two opposite simply
supported edges. Finally, the thermal buckling
analysis of FG rectangular plate subjected to two
types of thermal loading has been investigated and
the critical buckling temperatures for a FG
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rectangular plate with different boundary
conditions, various aspect ratios and thickness to
side ratios and some index of FGM are presented
in tables and figures.

The novelty of present work is to decouple the
stability equations of FG rectangular plate by
introducing new analytical method and obtaining
the buckling temperature for thin FG plates with
Levy boundary condition for the first time.

2. MATERIAL PROPERTIES

FGMs are usually composed of two parts, ceramic
and metal where the properties vary by changing
the volume fraction of these components. It is
assumed that the material properties of FG plate
vary through the thickness according to the power
law function, as follow [19]

P(z)=P,+P,(@/2+z/h)* P, =P -P, (1)

where P denotes the material properties of FG
plate such as modulus of elasticity (E), the

coefficient of thermal expansion («) and the
thermal conductivity (K). The subscripts M and

c refer to the metal and ceramic, respectively and
the parameter k is known as the index of FGM.
Also, h is the thickness of plate and z is the
coordinate in the thickness direction. Since the
variation of Poisson ratio through the thickness is
negligible [21], the Poisson ratio is considered
constant.

3. STABILITY EQUATIONS

According to the classical plate theory, the
components of displacement field are considered
as [22]

u(x,y,z)=u —z@
' o " o

v(X, ¥,2) =V, —z% (2)

w(x,y,z) = w(X, )
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where u, and v, are the mid-plane displacements
in x and y directions, respectively and w is the

transverse displacement which are function of x
and y variables. According to this theory, the

strain components in z direction are zero. Thus,
by considering the Von-Karman hypothesis, non-
linear strain components are expressed as

1.2
B = U+ oWy = W,

1 (3)
gy =V, +vay A
Yy =26 =Uy, +V, +W W, —27ZW

Using the constitutive equations, the stress
components are written in terms of the strain
components. Therefore, considering the thermal
effects on the plate, the stress components are
expressed as

_E@
T 1-?
_E@
w2
_ _E@
T = 2(1+v)

(ex tvey —(L+Vv)a(z)AT)

XX

(&g +Vvey —(L+Vv)a(z) AT) (4)

7xy

Using the principle of minimum total potential
energy, the equilibrium equations of thin
rectangular plate subjected to the thermal loads are
obtained as

Nyx + Ny, =0
Nyy+Ngyy=0
M +M +2M

XX, XX Yy, yy Xy, Xy
+2N, w,, + N, w, =0

(®)

+ NxxW,xx

In equations (5), the parameters N; and M,
(i=xx,yy, xy) are the force and moment resultants
which are defined as

h/2
(Ny, Ny, Ny) =j_h/2(axx,ayy,axy)dz
hi2 (6)
(Mys My M) = [ (030,00, )202
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Since the strain components are non-linear in
term of transverse displacement, the force and
moment resultants and therefore the governing
equilibrium equations are non-linear. To study the
pre-buckling state, the linear equations are used
which are obtained using the adjacent equilibrium
criterion [22]. According to this criterion, it is
assumed that the displacement components are
consist of two states, equilibrium state and
neighboring of this state which is presented by
increments in displacement field. Therefore

u=u’+ul
v=v0+ ! (7
w=w’+w

In equation (7), superscript 0 refers to the

equilibrium and superscript 1 refers to the
increment in the neighboring of this state.

Due to replacing equations (7) in the strain
relations and the results in equations (6), the
corresponding force and moment resultants are
expressed as

N; =N2+N!

M; =M +M} ®)
where the terms with superscript 0 are related to
the equilibrium state which contain the non-linear
terms and satisfies the equilibrium equations and
terms with superscript 1 are related to the
neighboring state of equilibrium which contain the
linear terms. So, the stability equations are
obtained as

1 1
Noex + ny’y =0

1 1 _
N oy T ny,x =0

1 1 1 0 1 (9)
M N M Wy T 2M xyy T Nyywyyy

+ 2N3yw}xy +NoWS, =0

Substitution of the force and moment resultants
in terms of displacement components and the
results in the stability equations (9) yields in the
following form of governing stability equations
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1 1 1 1
El(u,xx +V,xy) - E2 (W,xxx + W,xyy)

E(1-v
+%(ulyy ~V5,) =0
E, (V,lyy + u,lxy) -E (W,lyyy + W,lxxy) (10)
PEE )=

+ u}XW + v}yyy +Vvi,) - E;Viw!

XXy

+Nw, +2NJw) + Now, =0

E,(u}

XXX

where the constants E; are related to the material

properties which are obtained by integrating of
properties over the thickness and are expressed as
follow

E.h E._h
1T T o)k +)
E, - 2Ecmh2k 1)
20—)(k+1)(k+2)
E h° E.,n*(k*+k+2)

37 12(1-v?) " 4(1—-vH)(k +1)(k +2)(k +3)

It can be seen from equation (10) that the
stability equations are coupled in terms of
displacement components. In order to decouple
these equations, two new functions are defined as

1 1
P =U, +V
o (12
@, = u,y - V,x
Substituting equations (12) into (10) yields
E E
1_i/2 Prx — 1_12/2 (W,lxxx + W,lxyy)
1
+ (02 y = 0
21+v) ©
E E 1
1_i/2 Ly 1_‘2/2 (W,yyy +W,1xxy)
E (13b)
1
- ¢2,x =0
2(1+v)
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E

7Y AT Y N (13c)
0 0

+2Ngws +Now, =0

In the following, doing some mathematical
calculations, the coupled stability equations are
converted to independent equations. Adding the
differentiation of equation (13a) with respect to x
and equation (13b) with respect to y yields

szﬂl =(E,/ El)V4W1 (14)

Also, by subtracting the differentiation of
equation (13a) with respect to y and equation
(13b) with respect to x, the following equation is
obtained for the function ¢, as

Vi, =0 (15)

Upon substituting equation (14) into equation
(13c), an independent equation for the unknown

w' is obtained as
N4 0 1 0 1 0 1
~DV*W + NJws +2N2 W, + NJw' =0 (16)

Equation (16) is the governing differential
equation for the stability of thin FG rectangular
plates which is the same as isotropic one if the
isotropic flextural rigidity is replaced by the

equivalent flextural rigidity of FGMs D, where
D=E,—(E;/E).
It is easy to show that the following expressions

for the in-plane components of displacement field
satisfy equations (14) and (15)

u' = (E,/EYW, 5 V' =(E,/E)W, (17)

The above equations show that in FGMs the
mid-plane does not coincide with the neutral
surface. Therefore, relation (16) is the only
equation that must be solved for the buckling of
FG plates.

Vol. 23, No. 2, May 2010 - 183



4. BOUNDARY CONDITIONS

As it was mentioned before, Levy boundary
conditions are considered. So, the plate is simply
supported in x direction and has a combination of
simply supported, clamped or free along the other
edges. In the following, the letters S, C and
F refer to simply supported, clamped and free,
respectively. The conditions for each case are

Simply 1

Supported w =0, M, =0 (18a)
Clamped w=0, w, =0 (18?
Free M, =0V, +Nw, =0  (18c)

In the above equations, the parameters M, and V,
are defined as

1 1
= —D(W’y VW)

M y
(19)
Vy= _D(W,lyyy +(2- V)W,lxxy)
Imposing the above boundary conditions on the
edges y=0 and y=b, a homogenous system of

algebraic equations is obtained. Setting the
determinant of the coefficient equal to zero, the
characteristic equation is obtained. The solution of
this equation leads to find the critical buckling
temperature. The characteristic equations for the
six types of boundary conditions are listed in the
appendix A. In the following, the notations such as
SFSC show the order of boundary conditions (e.g.
SFSC represents a plate with free edge at y=0

and clamped edge at y =b).

5. THERMAL BUCKLING ANALYSIS

Consider a rectangular plate with the length a,
width b, and thickness h, as shown in Fig. 1.

It is assumed that the plate is subjected to thermal
loads. So, the equilibrium resultant thermal forces
are defined as

N% =N, , NG, =Ny , N& =0 (20)
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Ceramic  Z
Surface

Metal Y
Surface /= b

-
/ _J a h
y

Figure 1. Geometry and coordinate system of a FG rectangular
plate.

where N; is pre buckling thermal force and is
defined as

N, = fhh/’zz%zv)a(z)AT(z)dz 21)

Substituting relations (20) into the stability
equation (16) yields in

-DV*W' =N, VW' =0 (22)

It is assumed that the plate is simply supported
along two edges parallel to the y axis and has

arbitrary boundary conditions along the other
edges, so the Levy solution is considered as the
solution method. Thus the Fourier series is
considered for the transverse deflection

functionw® which satisfies the simply supported
boundary conditions. Therefore

wl:ig(y)sin(mzzx/a) (23)

Substituting equation (23) into equation (22), the
following ordinary differential equation is obtained

d*g
dy*

d?g

-D
dy?

(D) = Ny)
- 24)
# (DI + Np (1)) =0

The solution of ordinary differential equation (24)
is expressed as
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g(y) = C, cosh(4,y) + C, sinh(4,y)

+C, cosh(4,y) + C, sinh(4,Y) ()

whereas the constants 4, and A, are defined as

A=mrla and 4, =(mz/a)’—(N; /D) (26)

Substituting equation (25) into the transverse
deflection function (23) results in

W'(X,y) = Y (C, cosh 4,y +C, sinh 4y
2 (27)
. . Mz
+C,cosh 4,y +C, sinh /12y)5|n(7 X)

where the parameters C, to C, are four unknown

constants which are determined by satisfying the
various boundary conditions. Two cases of thermal
loadings, uniform and non-linear temperature rise
through the thickness, are considered.

CASE I: UNIFORM TEMPERATURE RISE
In order to find the parameter N; in equation (26)

for the case of uniform temperature rise, it is
assumed that the temperature is constant through
the thickness. Let the initial temperature of plate be
T, and after thermal loading, temperature increases

to the final value T, , in which the plate buckles.

The critical buckling temperature difference is
defined as

AT(z)=T; -T, =T, (28)

where AT (z) =T, is a constant. Substituting

equation (28) into equation (21), the resultant force
corresponding to the thermal loading is obtained as

N, =T, j_hh’fz EZV) a(2)dz (29)

where T, is the critical buckling temperature
difference.

CASE II: NONLINEAR TEMPERATURE
RISE ACROSS THE THIKNESS

IJE Transactions B: Applications

Let the plate be at the initial temperature T,. When
the plate is subjected to thermal load, the
temperature of ceramic side is increased to a final
value T,, while the temperature of metal surface is
reached to the final value T,,.

In order to obtain the temperature gradient
through the thickness AT (z), the one-dimensional

Fourier steady state heat conduction equation is
considered as follow

d dT
G @ 1=0 (30)

where K(z) is the thermal conduction

coefficient which vary according to the power law
function as mentioned in equation (1). The thermal
boundary conditions are

T(z)=T, at z=h/2

T(z)=T, at z=-h/2 (31)
Solving equation (30) and imposing the
boundary conditions (31), the temperature
distribution function is obtained as [20]
T(z)=
2z+h
( 2h )k Kcm
()"
(22+h)_|_ = K.,
oh M kgl (32)
T, +
(_&)n
~ nk+1

In the above equation, the subscript cm shows
the differences of the corresponding parameters of

ceramic and metal. Also, the temperature
difference is defined as
AT(2)=T(2)-T, (33)

Equation (32) is the exact solution for the one
dimensional temperature distribution for FGMs.
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Table 1. Comparison of the critical buckling temperature for a FG plate subjected to non-linear temperature rise
for simply supported plate.

k alb=1 alb=2 a/lb=3 alb=4 a/b=5
Ref. [3] 24.19821 75.4955 160.9911 280.6848 434.5768
0 Ref. [6] 24.16215 75.3952 160.5901 279.5281 431.8769
Present 24.1982 75.4955 160.9911 280.6848 4345767
Ref. [3] 7.6635 38.6838 90.3842 162.7649 255.8257
1 Ref. [6] 7.6554 38.6328 90.1801 162.1757 254.4500
Present 7.6636 38.6838 90.3843 162.7649 255.8257
Ref. [3] 4.8774 28.3389 67.4414 122.1849 192.5694
5 Ref. [6] 4.8699 28.2918 67.2531 122.6415 191.3010
Present 48774 28.3389 67.4414 122.1849 192.3961

Substituting equation (33) into equation (19) gives
the pre-buckling resultant force for non-linear
temperature rise through the thickness.

6. RESULTS AND DISSCUSION

In order to verify the method and validate the
results, a comparison with the available results has
been done. In table 1, the numerical results
presented in references [3] and [6] have been
compared with the present results.

The results in Ref. [3] are presented for thin
plates, but in Ref. [6], the results are obtained
based on the first order shear deformation plate
theory. In the comparison, the thickness to side

ratio h/a is assumed to be 0.01 and AT, =5 . As

the table shows, there is a good agreement between
the obtained results and the available results in
references.

To obtain the numerical results, it is assumed
that the plate is made of Alumina as the ceramic
part and Aluminum as the metal part with the
following properties

Aluminum properties: a,, =23x10°° (1/°C)
E, =70GPa, K, =204 W /mK

Alumina properties: a, =7.4x107° (1/°C)
E. =380 GPa, K, =10.4W /mK
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Also, it is assumed that the Poisson ratio is a
constant and equal to 0.3. The critical buckling
temperatures of FG rectangular plate are computed
for both, the uniform and non-linear temperature
rise cases.

In Fig. 2, the effect of index of FGM on the
critical buckling temperature is shown for a plate
with aspect ratio 2 and thickness to side 0.02.

500

index of FGM (k)

Figure 2. The critical buckling temperature versus the index of
FGM (a/b=2,h/a=0.02).
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Figure 3. The effect of thickness to side ratio on the critical buckling temperature (under uniform temperature rise) for
square FG plate with a) Symmetric boundary conditions, b) Asymmetric boundary conditions (K = 2) .

Also, the influence of boundary conditions on
the critical temperature is investigated within this
figure. According to this figure, increasing the
index of FGM decreases the critical buckling
temperature. This is due to the higher index of
FGM which corresponds to the higher portion of
metal part in the material. Also, variation of AT,

is more apparent for the smaller index of FGM.

Since the SCSC plate is more constrained, the

highest temperature refers to this case.

In figures 3 and 4, the critical buckling temperature

is plotted versus the thickness to side ratio.
According to these figures, increasing the

thickness to side ratio (h/a) increases the critical

temperature. Also, in all of the cases, the thermal
loading capacity for the non-linear case is more
than the uniform temperature case.

In tables 2 to 5, the critical buckling
temperatures for plates with different aspect ratios,
various indexes of FGM and symmetric and
asymmetric boundary conditions are presented. It
can be seen that, increasing the aspect ratio causes
increasing the critical buckling mode. Moreover,
the boundary condition has a significant effect on
the variation of buckling mode.
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7. CONCLUSION

In this paper, an exact analytical solution for
thermal buckling analysis of functionally graded
rectangular plates based on the classical plate
theory has been presented. In order to decouple the
stability equations, a new analytical method has
been presented.

This method has been developed for a plate with
two opposite edges simply supported and arbitrary
boundary conditions along the other edges. The
independent equations were solved analytically.

Finally, the critical buckling temperatures for FG

plates with different boundary conditions, some
aspect ratios and various index of FGM have been
presented in figures and tables.So, it is concluded
that the critical buckling temperature decreases as
the index of FGM increases and increasing the
thickness, increases the critical temperature.
As the results show, changing the aspect ratio
and/or boundary condition change the buckling
mode. Also, plates subjected to the non-linear
temperature rise buckle at high temperature in
comparison with those which are under uniform
temperature rise.
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Figure 4. Comparison of the critical buckling temperature for square FG plate with different boundary conditions

(alb=2,k=1).
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Table 2. The critical buckling temperature for a FG rectangular plate subjected to uniform temperature rise with
symmetric boundary conditions.

Boundary k alb=1 a/b=2  al/b=3  al/b=4  alb=5
conditions
0 32.74 130.79 289.90? 513.97% 809.12¢
0.5 18.55 74.11 164.25@ 291.20% 458.42
SCsc 15.21 60.76 134.68?@ 238.78% 373.22¢
2 13.49 53.87 119.40@ 211.69% 313.25¢
0 11.78 20.62 35.31 55.88 82.31
SESE 0.5 6.673 11.68 20.01 31.66 46.64
1 5.472 9.578 16.40 25.96 38.24
2 4.851 8.491 14.54 23.01 33.90
0 17.09 42.45 85.49 145.34 222.29
5855 0.5 9.687 24.22 48.44 82.35 125.94
7.944 19.86 39.72 67.52 103.27
2 7.043 17.62 35.21 59.86 91.55

Numbers in parenthesis indicate the critical buckling mode.

Table 3. The critical buckling temperature for a FG rectangular plate subjected to uniform temperature rise with
asymmetric boundary conditions.

Bouncary k alb=1  alb=2  a/b=3  a/b=4  a/b=5
0 19.52 79.97@ 165.95@ 291.97% 457.38
SCSE 0.5 11.06 45.31® 94.02¢) 165.42¢ 259.14@
1 9.07(1) 36.27? 77.09® 135.64% 212.49%
8.039 32.94@ 68.35( 120.25® 188.38“
0 22.76 73.70 160.69 282.95 440.27
SCSS 0.5 12.89 41.76 91.05 160.31 249.45
10.58 34.24 74.66 131.45 204.54
2 9.381 30.36 66.19 116.54 181.33
0 14.46 36.22 76.73 135.40 211.69
SESS 0.5 8.193 20.52 43.47 67.72 119.94
6.718 16.83 35.65 62.90 98.35
2 5.956 14.92 31.60 55.77 87.19

Numbers in parenthesis indicate the critical buckling mode.
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Table 4. The critical buckling temperature for a FG rectangular plate subjected to non-linear temperature rise with
symmetric boundary conditions.

Boundary k alb=1 al/b=2  al/b=3  a/b=4  alb=5
conditions
0 55.49 251.59 569.80? 1017.94® 1569.74%
SCSC 05 47.25 240.92 555.18¢) 997.77® 1569.39¢
1 34.08 186.08 432.73@ 780.09® 1228.75%
2 24.92 143.50 335.929) 606.90®) 956.89
0 13.56 32.23 60.62 101.75 154.64
SESF 05 5.835 23.29 52.31 92.93 145.15
1 1.575 15.28 38.05 69.94 110.93
0.013 10.25 28.02 52.89 84.86
0 24.19 75.01 160.99 280.68 43458
5558 0.5 16.34 67.01 151.85 269.65 421.64
1 9.823 49.58 115.85 208.63 327.92
2 5.99 37.02 88.71 161.09 254.15

Numbers in parenthesis indicate the critical buckling mode.

Table 5. The critical buckling temperature for a FG rectangular plate non-linear temperature rise with symmetric
boundary conditions.

Boundary k alb=1 a/lb=2  al/b=3  al/b=4  alb=5
conditions
0 29.04 146.15@ 321.91@ 573.94® 904.77%
SCSF 05 21.12 136.77%? 310.36@ 559.27¢) 885.99
1 1357 104.36@ 240.58 435.96% 692.37%
8.92 79.749 186.02? 334.420 538.47%
0 35.53 137.40 311.39 555.89 870.54
SCSS 05 27.54 128.15 299.98 554.46 852.19
1 18.61 97.57 232.42 421.95 665.84
12.85 74.45 179.66 32751 517.77
0 18.92 62.44 143.46 260.81 413.39
SESS 05 11.13 54.11 134.12 255.02 400.72
1 5.739 39.48 102.36 193.23 311.51
2 2.81 29.12 78.11 149.07 241.34

Numbers in parenthesis indicate the critical buckling mode.
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8. APPENDIX A

The characteristic equations for various boundary
conditions are

Case 1. SSSS plate

Case 2. SCSC plate

(2D 4. + VD N; sinh(4,b) sinh(,b)
— 2Dy cosh(4,b) 4, cosh(A,b)) /v D* =0
Case 3. SCSS plate

(2D A2y sinh(4,b) cosh(A,b) -
y sinh(4,b) cosh(4,b) N,
— 2/ sinh(4,b) cosh(4,b)
+ /D sinh(4,b) cosh(4,b)N; )/+/D =0

Case 4. SFSF plate

A ({-32C*'D Ay +16C°D &N, —8C*D2EN;?
_32C* DN, +32C2D° Ay —32C D2 AN,
+16CD* )N, —16CD°2)NZ +8C* D AN?Z
+4CD? A N3 +8CD* N7 —4CD3N;
—8C*D* )N} cosh(4,b) cosh(4,b)

+{16CD° 2N, —16CVD” N2 +4/D7 N4
+4CD NS + 4D AN - 4D N3
~8CVD° 2N2 +4CD7 2N3 -64C3D*
+64C°D° N, +16C3/D34N2 +4C2\D N3
+16C*vD N, —16C*VD N2 +16C2VD° &N,
—48C%\D7 2N, —16C2VD2A*N2 —8C*\D° 2N2
+4C2\D° 2N? +40C2\D° N2} sinh(4b)sinh(4,b)
+32C*D Ay —32C*D%A y + 4CD 34 N2 +8C2D 23N 2
+8C*D3N?Z ~16CD* )N, —~16C°D 3£ N,
+16CD° 4 N? —4CD 24y N2 +32C°D° £y N,
+32C*D? Ly N, —8C°DALyN?

—8CD* £y N2)/4[D% =0

Case 5. SCSF plate
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— 2, (-4CD?2?y Ny + DN7 —8C*DAly
—4D2 2y N; +2D°Fy Ny —D*N7 +4D°2%y
+{8C*D 'y —2D° %Ny + DN
+4CD 2N, }cosh(4,b) cosh(4,b)
+{-4C?VD 2N, +2CVD4N? +2cyD7 N,
~ 2D 4NZ —D* 4N2 +8CD &
~8C\D° AN, Ysinh(4b)sinh(4,0))/y/D? =0

Case 6. SFSS plate

A ({—/D*N2 —4C2VD AN, —2C\/D° 22N2
—8C+/D° 2 +8CyD AN,

+8C2VD3 A + 4D N2 —a/D7 AN,
—2CD2N2 +4CyD° 2N, }sinh(4,b) cosh(4;b)

+{-8C°D Ay +4C*22N,; —8CALD?y +8CAD N,
~2C2 N7 —4CD * N,
+2CD A, N2}sinh(4,b)cosh(4,b)) /D =0

where y =N; —D A and C:%'
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