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Abstract   In this article, an exact analytical solution for thermal buckling analysis of thin functionally 
graded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle of 
minimum total potential energy, the stability equations are obtained. Since the material properties in FG 
materials are functions of the coordinates (specially the thickness), the stability equations are coupled in 
terms of in-plane and out-of plane displacements. Introducing a new analytical method, the coupled 
stability equations are converted into independent equations. It is assumed that the plate is simply 
supported on two opposite edges and has arbitrary boundary conditions along the other edges, so the 
Levy solution is considered. Two types of thermal loads, uniform and non-linear temperature rise 
through the thickness are considered as the loading conditions. Finally, the effect of aspect ratio, 
thickness to side ratio, index of FGM and boundary conditions on the critical buckling temperature of 
FG rectangular plates are discussed in details. 
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بر . شده از مواد هدفمند ارائه شده استهاي نازك ساخته در اين مقاله، حل دقيقي براي كمانش ورق   چكيده
از . انداساس تئوري كلاسيك ورق و با استفاده از اصل مينيمم انرژي پتانسيل، معادلات پايداري تعيين شده

خمش - هاي كششباشند، در معادلات پايداري بين مولفهآنجاييكه خواص مواد هدفمند تابع مختصات مي
اين وابستگي، روش تحليلي جديدي پيشنهاد شده است كه معادلات به منظور حذف . وابستگي وجود دارد

گاه ساده در دو فرض شده است كه ورق داراي شرايط مرزي تكيه. كندوابسته را به معادلات مستقل تبديل مي
بنابراين از روش لوي براي حل . ضلع روبرو بوده و در دو لبه ديگر تركيبي از شرايط مرزي مختلف را دارد

شرايط بارگذاري شامل دو نوع توزيع دماي يكنواخت و غير خطي در جهت ضخامت در . ه شده استاستفاد
نهايتاً، تاثير نسبت منظري و ضخامت ورق، انديس ماده هدفمند و شرايط مرزي روي . نظر گرفته شده است

 .دماي بحراني كمانش مورد بررسي قرار گرفته است
 
 

 

1. INTRODUCTION 
 
In recent years, as the result of development in 
materials science, new materials with special 
applications were introduced which has been 
studied by many researchers. Functionally graded 
materials (FGMs) are composite materials that 
their thermal and mechanical properties differ 
smoothly and continuously from one surface to the 

other surface. FGMs are capable of carrying 
thermal loads as well as mechanical loads and they 
are commonly used in engineering structures such 
as beams, plates and shells. These materials were 
introduced for the first time by Japanese 
researchers in 1984 [1]. The FG plates are used in 
power station furnaces, spacecrafts, rocket engines 
and high temperature instruments. Commonly, the 
ceramic surface of the FG plate is exposed to high 
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temperature side and the metal surface is exposed 
to low temperature side. 
     Many models were suggested for buckling 
analysis of isotropic and FG plates. Thermal and 
mechanical buckling analysis of FG plates was 
investigated by many researchers where most of 
the analytical solutions were limited to simply 
supported ones [2-5]. Javaheri and Eslami studied 
the mechanical buckling of FG rectangular plate 
under in-plane compressive loads based on the 
classical plate theory [2]. They determined 
equilibrium and stability equations using the 
variational approach and obtained the closed form 
solution for a rectangular plate. Thermal buckling 
analysis of FG rectangular plate based on the 
classical plate theory was carried out by Javaheri 
and Eslami [3]. In this study, it was shown that the 
critical buckling temperature reduces as the index 
of FGM increases. Also, they studied the thermal 
buckling analysis of FG rectangular plates 
according to the higher order plate theory (HOPT) 
[4]. It was assumed that the boundary conditions 
are simply supported in all edges and the closed 
form solution for the critical buckling temperature 
was obtained. Thermal buckling analysis of FG 
rectangular plates with geometrical imperfections 
was investigated by Samsam shariat and Eslami 
[5]. The equilibrium, stability and compatibility 
equations of imperfect FG rectangular plates were 
derived using the classical plate theory for the case 
of fully simply supported boundary condition and 
different loading conditions were considered. 
Lanhe [6] studied the thermal buckling of simply 
supported moderately thick FG rectangular plates. 
Using the first order shear deformation plate 
theory, the closed form solution for the critical 
buckling temperature was obtained and reported 
that the critical buckling temperature difference for 
a functionally graded plate is increased when the 
plate aspect ratio or the thickness to span ratio 
increases and it is decreased when the power law 
index increases. 
     Wu et al. [7] investigated the post-buckling 
analysis of FG rectangular plates under thermal 
and mechanical loads based on the first order shear 
deformation plate theory. They used fast 
converging finite double Chebyshev polynomials 
for different boundary conditions and considered 
von-Karman nonlinear kinematics. The buckling of 
thick FG rectangular plates under mechanical and 

thermal loads was represented by Shariat and 
Eslami [8]. They assumed that the non-
homogeneous properties of FG plate vary linearly 
through the thickness. The equilibrium and 
stability equations were derived based on the third 
order shear deformation plate theory and the 
Navier solution was used as the solution method. 
Abrate in different studies [9,10] showed that the 
mechanical and thermal buckling loads, the natural 
frequencies of FG rectangular plates and the 
deflections are always proportional to those of 
homogeneous isotropic plates. Conclusions were 
based on the comparison of the available results 
and since there were no results in buckling of FG 
plates, this case was incomplete. A generalized 
analytical approach to the buckling of simply 
supported isotropic rectangular plates under 
arbitrary loads was represented by Liu and 
Pavlovic [11]. They used the exact solutions for 
the in-plane stresses and the adoption of double 
Fourier series for the buckled profiles which, 
together ensure that accurate results are obtained in 
Ritz energy technique. A two-dimensional higher 
order deformation theory was presented for the 
evaluation of displacements and stresses in simply 
supported FG rectangular plates subjected to the 
thermal and mechanical loads by Matsunaga 
[12,13]. Hosseini-Hashemi et al. [14] reported the 
exact solution for linear buckling of isotropic 
rectangular plates. They used the Mindlin plate 
theory to study the buckling of in-plane loaded 
isotropic rectangular plates with various boundary 
conditions and presented critical buckling loads 
versus different parameters. Mohammadi et al. [15] 
studied the buckling analysis of thin functionally 
graded rectangular plates subjected to different 
mechanical loads. The coupled stability equations 
were decoupled analytically and the equations 
were solved for a plate with two opposite edges 
simply supported. The boundary conditions along 
the other edges were considered as a combination 
of simply supported, clamped and free. They 
inferred that increasing the index of FGM 
decreases the critical buckling load.  An 
approximate method for simulation of natural 
frequencies and buckling loads of thin rectangular 
isotropic plates was represented by Mirzaeifar et 
al. [16]. The first and second order derivatives of 
natural frequencies and buckling loads with respect 
to arbitrary boundary conditions of an isotropic 
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rectangular plate were used in their study. Saidi et 
al. [17] investigated the axisymmetric bending and 
buckling of perfect thick FG solid circular plates 
using the unconstrained third order shear 
deformation plate theory. Saidi and Jomehzadeh 
[18] presented an analytical approach for the 
bending-stretching analysis of linearly elastic FG 
plates with two opposite edges simply supported 
and suggested a new method for decoupling the 
equations.  
     Praveen and Reddy [19] investigated the 
response of functionally graded ceramic-metal 
plates by the plate finite element that accounts for 
the transverse shear strains, rotary inertia and 
moderately large rotations in the Von Karman 
sense. They presented numerical results for the 
deflection and stresses of functionally graded 
plates and discussed on the effect of imposed 
temperature field on the dynamic and static 
response of fgm plate. Woo and Meguid [20] 
studied the plates and shallow shells made of 
functionally graded materials and provided an 
analytical solution for the coupled large 
deflections. They assumed that the structures are 
subjected to transverse mechanical and thermal 
loads and material properties vary through the 
thickness according to the power law distribution 
of the volume fraction of the constituents. They 
investigated the influence of the material properties 
on the dimensionless deflection, stresses and 
bending moments. 
      As was reviewed, all of the previous analytical 
studies for the thermal buckling analysis of 
functionally graded plates were limited to the 
special case of simply supported ones. 
In this paper, the exact analytical solution for 
buckling analysis of FG rectangular plates 
subjected to the thermal loads is presented. Based 
on the classical plate theory and using the principle 
of minimum total potential energy, the stability 
equations are obtained for a rectangular plate. 
Applying an analytical method and introducing 
new functions, the stability equations are 
decoupled. Using Levy solution, the decoupled 
equations are solved analytically for a FG 
rectangular plate with two opposite simply 
supported edges. Finally, the thermal buckling 
analysis of FG rectangular plate subjected to two 
types of thermal loading has been investigated and 
the critical buckling temperatures for a FG 

rectangular plate with different boundary 
conditions, various aspect ratios and thickness to 
side ratios and some index of FGM are presented 
in tables and figures.  
     The novelty of present work is to decouple the 
stability equations of FG rectangular plate by 
introducing new analytical method and obtaining 
the buckling temperature for thin FG plates with 
Levy boundary condition for the first time. 
 
 
 

2. MATERIAL PROPERTIES 
 

FGMs are usually composed of two parts, ceramic 
and metal where the properties vary by changing 
the volume fraction of these components. It is 
assumed that the material properties of FG plate 
vary through the thickness according to the power 
law function, as follow [19] 
 

mccm
k

cmm PPPhzPPzP  ,)/2/1()(  (1)
 
where P  denotes the material properties of FG 
plate such as modulus of elasticity )(E , the 

coefficient of thermal expansion )(  and the 

thermal conductivity )(K . The subscripts m  and 

c  refer to the metal and ceramic, respectively and 
the parameter k  is known as the index of FGM. 
Also, h  is the thickness of plate and z  is the 
coordinate in the thickness direction. Since the 
variation of Poisson ratio through the thickness is 
negligible [21], the Poisson ratio is considered 
constant. 
 
 

 
3. STABILITY EQUATIONS 

 
According to the classical plate theory, the 
components of displacement field are considered 
as [22] 
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where 0u  and 0v  are the mid-plane displacements 

in x  and y  directions, respectively and w  is the 

transverse displacement which are function of x  
and y  variables. According to this theory, the 
strain components in z  direction are zero. Thus, 
by considering the Von-Karman hypothesis, non-
linear strain components are expressed as 
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     Using the constitutive equations, the stress 
components are written in terms of the strain 
components. Therefore, considering the thermal 
effects on the plate, the stress components are 
expressed as  
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     Using the principle of minimum total potential 
energy, the equilibrium equations of thin 
rectangular plate subjected to the thermal loads are 
obtained as 
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     In equations (5), the parameters iN  and iM  

),,( xyyyxxi   are the force and moment resultants 
which are defined as  
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     Since the strain components are non-linear in 
term of transverse displacement, the force and 
moment resultants and therefore the governing 
equilibrium equations are non-linear. To study the 
pre-buckling state, the linear equations are used 
which are obtained using the adjacent equilibrium 
criterion [22]. According to this criterion, it is 
assumed that the displacement components are 
consist of two states, equilibrium state and 
neighboring of this state which is presented by 
increments in displacement field. Therefore 
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     In equation (7), superscript 0  refers to the 

equilibrium and superscript 1 refers to the 
increment in the neighboring of this state.  
     Due to replacing equations (7) in the strain 
relations and the results in equations (6), the 
corresponding force and moment resultants are 
expressed as 
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where the terms with superscript 0  are related to 
the equilibrium state which contain the non-linear 
terms and satisfies the equilibrium equations and  
terms with superscript 1 are related to the 
neighboring state of equilibrium which contain the 
linear terms. So, the stability equations are 
obtained as 
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     Substitution of the force and moment resultants 
in terms of displacement components and the 
results in the stability equations (9) yields in the 
following form of governing stability equations  
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where the constants iE  are related to the material 
properties which are obtained by integrating of 
properties over the thickness and are expressed as 
follow 
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     It can be seen from equation (10) that the 
stability equations are coupled in terms of 
displacement components. In order to decouple 
these equations, two new functions are defined as 
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Substituting equations (12) into (10) yields 
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     In the following, doing some mathematical 
calculations, the coupled stability equations are 
converted to independent equations. Adding the 
differentiation of equation (13a) with respect to x  
and equation (13b) with respect to y  yields 
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     Also, by subtracting the differentiation of 
equation (13a) with respect to y  and equation 
(13b) with respect to x , the following equation is 
obtained for the function 2  as  
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     Upon substituting equation (14) into equation 
(13c), an independent equation for the unknown 

1w  is obtained as  
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     Equation (16) is the governing differential 
equation for the stability of thin FG rectangular 
plates which is the same as isotropic one if the 
isotropic flextural rigidity is replaced by the 

equivalent flextural rigidity of FGMs D , where 
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2
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     It is easy to show that the following expressions 
for the in-plane components of displacement field 
satisfy equations (14) and (15) 
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     The above equations show that in FGMs the 
mid-plane does not coincide with the neutral 
surface. Therefore, relation (16) is the only 
equation that must be solved for the buckling of 
FG plates. 
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4. BOUNDARY CONDITIONS 
 
As it was mentioned before, Levy boundary 
conditions are considered. So, the plate is simply 
supported in x  direction and has a combination of 
simply supported, clamped or free along the other 
edges. In the following, the letters S , C  and 
F refer to simply supported, clamped and free, 
respectively. The conditions for each case are 

Simply 
Supported 
 

0,01  yMw  (18a)

Clamped 0,0 1
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In the above equations, the parameters yM  and yV  

are defined as 
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     Imposing the above boundary conditions on the 
edges 0y  and by  , a homogenous system of 
algebraic equations is obtained. Setting the 
determinant of the coefficient equal to zero, the 
characteristic equation is obtained. The solution of 
this equation leads to find the critical buckling 
temperature. The characteristic equations for the 
six types of boundary conditions are listed in the 
appendix A. In the following, the notations such as 
SFSC show the order of boundary conditions (e.g. 
SFSC represents a plate with free edge at 0y  

and clamped edge at by  ). 
 
 
 

5. THERMAL BUCKLING ANALYSIS 
 
Consider a rectangular plate with the length a , 
width b , and thickness h , as shown in Fig. 1.  
It is assumed that the plate is subjected to thermal 
loads. So, the equilibrium resultant thermal forces 
are defined as 
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where TN  is pre buckling thermal force and is 
defined as 
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Substituting relations (20) into the stability 
equation (16) yields in 
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     It is assumed that the plate is simply supported 
along two edges parallel to the y  axis and has 
arbitrary boundary conditions along the other 
edges, so the Levy solution is considered as the 
solution method. Thus the Fourier series is 
considered for the transverse deflection 

function 1w  which satisfies the simply supported 
boundary conditions. Therefore 
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Substituting equation (23) into equation (22), the 
following ordinary differential equation is obtained 
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The solution of ordinary differential equation (24) 
is expressed as 
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Figure 1. Geometry and coordinate system of a FG rectangular 
plate. 
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whereas the constants 1  and 2  are defined as 
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     Substituting equation (25) into the transverse 
deflection function (23) results in 
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where the parameters 1C  to 4C  are four unknown 
constants which are determined by satisfying the 
various boundary conditions. Two cases of thermal 
loadings, uniform and non-linear temperature rise 
through the thickness, are considered. 
 
CASE I: UNIFORM TEMPERATURE RISE 
In order to find the parameter TN  in equation (26) 
for the case of uniform temperature rise, it is 
assumed that the temperature is constant through 
the thickness. Let the initial temperature of plate be 

iT  and after thermal loading, temperature increases 

to the final value fT , in which the plate buckles. 

The critical buckling temperature difference is 
defined as 
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where cTzT  )(  is a constant. Substituting 
equation (28) into equation (21), the resultant force 
corresponding to the thermal loading is obtained as 
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where cT  is the critical buckling temperature 
difference. 
 
CASE II: NONLINEAR TEMPERATURE 
RISE ACROSS THE THIKNESS 

 
Let the plate be at the initial temperature iT . When 
the plate is subjected to thermal load, the 
temperature of ceramic side is increased to a final 
value cT , while the temperature of metal surface is 

reached to the final value mT .  
     In order to obtain the temperature gradient 
through the thickness )(zT , the one-dimensional 
Fourier steady state heat conduction equation is 
considered as follow 
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     where )(zK  is the thermal conduction 
coefficient which vary according to the power law 
function as mentioned in equation (1). The thermal 
boundary conditions are  
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     Solving equation (30) and imposing the 
boundary conditions (31), the temperature 
distribution function is obtained as [20] 
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     In the above equation, the subscript cm  shows 
the differences of the corresponding parameters of 
ceramic and metal. Also, the temperature 
difference is defined as 
 

iTzTzT  )()(  (33)

 
     Equation (32) is the exact solution for the one 
dimensional temperature distribution for FGMs. 
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Substituting equation (33) into equation (19) gives 
the pre-buckling resultant force for non-linear 
temperature rise through the thickness. 
 
 
 

6. RESULTS AND DISSCUSION 
 
In order to verify the method and validate the 
results, a comparison with the available results has 
been done. In table 1, the numerical results 
presented in references [3] and [6] have been 
compared with the present results.  
     The results in Ref. [3] are presented for thin 
plates, but in Ref. [6], the results are obtained 
based on the first order shear deformation plate 
theory. In the comparison, the thickness to side 

ratio ah /  is assumed to be 01.0  and  5mT . As 
the table shows, there is a good agreement between 
the obtained results and the available results in 
references.  
     To obtain the numerical results, it is assumed 
that the plate is made of Alumina as the ceramic 
part and Aluminum as the metal part with the 
following properties  
 

mKWKGPaE

CpropertiesumAlu

mm

m

/204,70

)/1(1023:min 6


 

 

mKWKGPaE

CpropertiesaAlu

cc

c

/4.10,380

)/1(104.7:min 6


 

     Also, it is assumed that the Poisson ratio is a 
constant and equal to 3.0 . The critical buckling 
temperatures of FG rectangular plate are computed 
for both, the uniform and non-linear temperature 
rise cases. 
     In Fig. 2, the effect of index of FGM on the 
critical buckling temperature is shown for a plate 
with aspect ratio 2 and thickness to side 0.02.  
 
 

Table 1. Comparison of the critical buckling temperature for a FG plate subjected to non-linear temperature rise 
for simply supported plate.  

5/ ba  4/ ba  3/ ba  2/ ba  1/ ba   k  

434.5768 280.6848 160.9911 75.4955 24.19821 Ref. [3] 

0 431.8769 279.5281 160.5901 75.3952 24.16215 Ref. [6] 

434.5767 280.6848 160.9911 75.4955 24.1982 Present 

255.8257 162.7649 90.3842 38.6838 7.6635 Ref. [3] 

1 254.4500 162.1757 90.1801 38.6328 7.6554 Ref. [6] 

255.8257 162.7649 90.3843 38.6838 7.6636 Present 
192.5694 122.1849 67.4414 28.3389 4.8774 Ref. [3] 

5 191.3010 122.6415 67.2531 28.2918 4.8699 Ref. [6] 
192.3961 122.1849 67.4414 28.3389 4.8774 Present 
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  Figure 2. The critical buckling temperature versus the index of 
  FGM )02.0/,2/(  ahba . 
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    Also, the influence of boundary conditions on 
the critical temperature is investigated within this 
figure. According to this figure, increasing the 
index of FGM decreases the critical buckling 
temperature. This is due to the higher index of 
FGM which corresponds to the higher portion of 
metal part in the material. Also, variation of crT  
is more apparent for the smaller index of FGM. 
Since the SCSC  plate is more constrained, the 
highest temperature refers to this case. 
In figures 3 and 4, the critical buckling temperature 
is plotted versus the thickness to side ratio. 
     According to these figures, increasing the 
thickness to side ratio )/( ah  increases the critical 
temperature. Also, in all of the cases, the thermal 
loading capacity for the non-linear case is more 
than the uniform temperature case.  
     In tables 2 to 5, the critical buckling 
temperatures for plates with different aspect ratios, 
various indexes of FGM and symmetric and 
asymmetric boundary conditions are presented. It 
can be seen that, increasing the aspect ratio causes 
increasing the critical buckling mode. Moreover, 
the boundary condition has a significant effect on 
the variation of buckling mode. 
 

7. CONCLUSION 

 
In this paper, an exact analytical solution for 
thermal buckling analysis of functionally graded 
rectangular plates based on the classical plate 
theory has been presented. In order to decouple the 
stability equations, a new analytical method has 
been presented. 
    This method has been developed for a plate with 
two opposite edges simply supported and arbitrary 
boundary conditions along the other edges. The 
independent equations were solved analytically.  
   Finally, the critical buckling temperatures for FG 
plates with different boundary conditions, some 
aspect ratios and various index of FGM have been 
presented in figures and tables.So, it is concluded 
that the critical buckling temperature decreases as 
the index of FGM increases and increasing the 
thickness, increases the critical temperature. 
As the results show, changing the aspect ratio 
and/or boundary condition change the buckling 
mode. Also, plates subjected to the non-linear 
temperature rise buckle at high temperature in 
comparison with those which are under uniform 
temperature rise. 
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Figure 3. The effect of thickness to side ratio on the critical buckling temperature (under uniform temperature rise) for 
square FG plate with a) Symmetric boundary conditions, b) Asymmetric boundary conditions )2( k . 
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Figure 4. Comparison of the critical buckling temperature for square FG plate with different boundary conditions 
)1,2/(  kba . 
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Table 2. The critical buckling temperature for a FG rectangular plate subjected to uniform temperature rise with 
symmetric boundary conditions. 

Boundary 
conditions 

k  1/ ba  2/ ba  3/ ba  4/ ba  5/ ba  

SCSC  

0 32.74 130.79 289.90(2) 513.97(3) 809.12(4) 

0.5 18.55 74.11 164.25(2) 291.20(3) 458.42(4) 

1 15.21 60.76 134.68(2) 238.78(3) 373.22(4) 

2 13.49 53.87 119.40(2) 211.69(3) 313.25(4) 

SFSF  

0 11.78 20.62 35.31 55.88 82.31 

0.5 6.673 11.68 20.01 31.66 46.64 

1 5.472 9.578 16.40 25.96 38.24 

2 4.851 8.491 14.54 23.01 33.90 

SSSS  

0 17.09 42.45 85.49 145.34 222.29 

0.5 9.687 24.22 48.44 82.35 125.94 

1 7.944 19.86 39.72 67.52 103.27 
2 7.043 17.62 35.21 59.86 91.55 

          
Numbers in parenthesis indicate the critical buckling mode. 

Table 3. The critical buckling temperature for a FG rectangular plate subjected to uniform temperature rise with 
asymmetric boundary conditions. 

Boundary 
conditions 

k  1/ ba  2/ ba  3/ ba  4/ ba  5/ ba  

SCSF  

0 19.52 79.97(2) 165.95(2) 291.97(3) 457.38(4) 

0.5 11.06 45.31(2) 94.02(2) 165.42(3) 259.14(4) 

1 9.07(1) 36.27(2) 77.09(2) 135.64(3) 212.49(4) 

2 8.039 32.94(2) 68.35(2) 120.25(3) 188.38(4) 

SCSS  

0 22.76 73.70 160.69 282.95 440.27 

0.5 12.89 41.76 91.05 160.31 249.45 

1 10.58 34.24 74.66 131.45 204.54 

2 9.381 30.36 66.19 116.54 181.33 

SFSS  

0 14.46 36.22 76.73 135.40 211.69 

0.5 8.193 20.52 43.47 67.72 119.94 

1 6.718 16.83 35.65 62.90 98.35 
2 5.956 14.92 31.60 55.77 87.19 

         
        Numbers in parenthesis indicate the critical buckling mode. 
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Table 4. The critical buckling temperature for a FG rectangular plate subjected to non-linear temperature rise with 
symmetric boundary conditions. 

Boundary 
conditions 

k  1/ ba  2/ ba  3/ ba  4/ ba  5/ ba  

SCSC  

0 55.49 251.59 569.80(2) 1017.94(3) 1569.74(4) 

0.5 47.25 240.92 555.18(2) 997.77(3) 1569.39(4) 

1 34.08 186.08 432.73(2) 780.09(3) 1228.75(4) 

2 24.92 143.50 335.92(2) 606.90(3) 956.89(4) 

SFSF  

0 13.56 32.23 60.62 101.75 154.64 

0.5 5.835 23.29 52.31 92.93 145.15 

1 1.575 15.28 38.05 69.94 110.93 

2 0.013 10.25 28.02 52.89 84.86 

SSSS  

0 24.19 75.01 160.99 280.68 434.58 

0.5 16.34 67.01 151.85 269.65 421.64 

1 9.823 49.58 115.85 208.63 327.92 

2 5.99 37.02 88.71 161.09 254.15 
 
         Numbers in parenthesis indicate the critical buckling mode. 

Table 5. The critical buckling temperature for a FG rectangular plate non-linear temperature rise with symmetric 
boundary conditions. 

Boundary 
conditions 

k  1/ ba  2/ ba  3/ ba  4/ ba  5/ ba  

SCSF  

0 29.04 146.15(2) 321.91(2) 573.94(3) 904.77(4) 

0.5 21.12 136.77(2) 310.36(2) 559.27(3) 885.99(4) 

1 13.57 104.36(2) 240.58(2) 435.96(3) 692.37(4) 

2 8.92 79.74(2) 186.02(2) 334.42(3) 538.47(4) 

SCSS  

0 35.53 137.40 311.39 555.89 870.54 

0.5 27.54 128.15 299.98 554.46 852.19 

1 18.61 97.57 232.42 421.95 665.84 

2 12.85 74.45 179.66 327.51 517.77 

SFSS  

0 18.92 62.44 143.46 260.81 413.39 

0.5 11.13 54.11 134.12 255.02 400.72 

1 5.739 39.48 102.36 193.23 311.51 
2 2.81 29.12 78.11 149.07 241.34 

          
        Numbers in parenthesis indicate the critical buckling mode.    
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8. APPENDIX A 
 
The characteristic equations for various boundary 
conditions are 
 
Case 1. SSSS  plate 
 

Case 2. SCSC  plate 
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Case 3. SCSS  plate 
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Case 4. SFSF  plate 
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Case 5. SCSF  plate 
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Case 6. SFSS  plate 
 

0/))cosh()sinh(}2

42

8848{

)cosh()sinh(}42

448

88

24({

21
2

1

3
1

22
1

3
1

25
1

3
1

25
1

2

12
4
1

522
1

4
1

722
1

56
1

32

4
1

36
1

5

22
1

34
1

233
1















DbbNDC

NDCNC

NDCDCNCDC

bbNDCNDC

NDNDDC

NDCDC

NDCNDCND

T

TT

TT

TT

TT

T

TTT















 

where 2
1 DNT   and 

2

)1( D
C


 . 

 
 
 

9. REFRENCES 
 
1. Koizumi, M., “FGM activities in Japan”, Compos. B, 

Vol. 28, (1997), 1-4. 
2. Javaheri, R. and Eslami, M.R., “Buckling of 

functionally graded rectangular plates under in plane 
compressive loading”, ZAMM, Vol. 82, No. 4, (2002), 
277-283. 

3. Javaheri, R. and Eslami, M.R., “Thermal buckling of 
functionally graded rectangular plates”, AIAA Journal, 
Vol. 40, No. 1, (2002), 162-169. 

4. Javaheri, R. and Eslami, M.R., “Thermal buckling of 
functionally graded rectangular plates based on higher 
order theory”, J. Thermal Stresses, Vol. 25, (2002), 
603-625. 

5. Samsam Shariat, B.A. and Eslami, M.R., “Thermal 
buckling of imperfect functionally graded plates”, 
International journal of solids and structures, Vol. 43, 
(2005), 4082-4096. 

6. Lanhe, W., “Thermal buckling of a simply supported 
moderately thick rectangular FGM plate”, Composite 
Structures, Vol. 64, (2004), 211-218. 

7. Wu, T.L., Shukla, K.K. and Huang, J.H., “Post buckling 
analysis of functionally graded rectangular plates”, 



192 - Vol. 23, No. 2, May 2010 IJE Transactions B: Applications 

Composite Structures, Vol. 81, (2007), 1-10. 
8. Shariat, B.A.S. and Eslami, M.R., “Buckling of thick 

functionally graded plates under mechanical and 
thermal loads” Composite Structures, Vol. 78, (2005), 
433-439. 

9. Abrate, S., “Free vibration, buckling and static 
deflections of functionally graded plates”, Composites 
Science and Technology, Vol. 66, (2005), 2383-2394. 

10. Abrate, S., “Functionally graded plates behave like 
homogeneous plates”, Compos B, Vol. 39,(2008),151-
158. 

11. Liu, Y.G. and Pavlovic, M.N., “A generalized analytical 
approach to buckling of simply-supported rectangular 
plates under arbitrary loads”, Engineering Structures, 
Vol. 30, (2008), 1346,1359. 

12. Matsunaga, H., “Free vibration and stability of 
functionally graded plates according to a 2-D higher 
order deformation theory”, Composite Structures, Vol. 
82, (2008), 499-512. 

13. Matsunaga H. Stress analysis of functionally graded 
plates subjected to thermal and mechanical loading. 
Composite Structures, Vol. 87, (2009), 344-357. 

14. Hosseini-Hashemi, S., Khorshidi, K. and Amabili, M., 
“Exact solution for linear buckling of rectangular 
Mindlin plates”, Journal of Sound and Vibration, Vol. 
315, (2008), 318-342. 

15. Mohammadi, M. Saidi, A.R. and Jomehzadeh, E. “Levy 
Solution for Buckling Analysis of Functionally Graded 
Rectangular Plates”, Appl Compos Mater, Vol. 17, 
(2010), 81-93. 

16. Mirzaeifar, R., Shahab, S. and Bahai, H., “An 
approximate method for simultaneous modification of 
natural frequencies and buckling loads of thin 
rectangular isotropic plates”, Engineering Structure, 
Vol. 31, (2009), 208-215. 

17. Saidi, A.R., Rasouli, A. and  Sahraee, S., 
“Axisymmetric bending and buckling analysis of thick 
functionally graded circular plates using unconstrained 
third order shear deformation plate theory”, Composite 
Structures, Vol. 89, (2009), 110-119. 

18. Saidi, A.R. and Jomehzadeh, E., “On analytical 
approach for the bending/stretching of linearly elastic 
functionally graded rectangular plates with two opposite 
edges simply supported”, IMechE part C, Journal of 
Mechanical Engineering science, Vol. 223, (2009), 
2009-2016. 

19. Praveen, G. N., and Reddy, J. N., “Nonlinear transient 
thermoelastic analysis of functionally graded ceramic-
metal plates”, Int. J. Solids Structures, Vol. 35, (1998), 
4457-4476. 

20. Woo, J., and Meguid, S. A., “Nonlinear analysis of 
functionally graded plates and shallow shells”, Int. J. 
Solids Structures, Vol. 38, (2001), 7409-7421. 

21. Jomehzadeh, E., Saidi A.R. and Atashipour S.R., “An 
analytical approach for stress analysis of functionally 
graded annular sector plates”, Materials & Design, Vol. 
30, (2009), 3679-3685. 

22. Brush D.O. and Almroth B.O. “Buckling of bars, plates, 
and shells”. McGraw-Hill, New-York, (1975), 75- 
120. 

 


