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Abstract   Bluff body calculation was accelerated by using a special-purpose computer, 
MDGRAPE-2, that was exclusively designed for molecular dynamics simulations. The three main 
issues were solved regarding the implementation of the MDGRAPE-2 on vortex methods. These 
issues were the efficient calculation of the Biot-Savart and stretching equation, the optimization of the 
table domain, and the round-off error caused by the partially single precision calculation in the 
MDGRAPE-2. Finally this technique was applied to calculation of flow around a circular cylinder. 
The drag and lift coefficient was investigated to check the validity of the proposed method. 
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كه منحصراً براي ) MDGRAPE-2(در اين تحقيق محاسبه بدنه خالي با استفاده از يك كامپيوتر ويژه چكيده     

در  MDGRAPE-2سه مساله مهم مربوط به اجراي . هاي ديناميك مولكولي طراحي شده است تسريع شد سازي شبيه
و معادله كشش، بهينه سازي حوزه جدول و خطاي  Biot-Sarvatاين سه مساله محاسبه كارآمد . هاي گردابي حل شد روش

در نهايت اين تكنيك براي محاسبه جريان در . بود MDGRAPE-2قرد جزئي در گرد كردن حاصل از محاسبه دقيق من
ضريب كشش و بلند كردن براي كنترل اعتبار مدل پيشنهادي مورد بررسي قرار . اطراف يك استوانه مدور به كار رفت

 .گرفت
 
 

 
 

1. INTRODUCTION 
 
Flow around a circular cylinder is a fundamental 
fluid mechanics problem of practical importance. It 
has potential relevance to a large number of 
practical applications such as submarines, off shore 
structures, bridge piers, pipelines etc. The laminar 
and turbulent unsteady viscous flow behind a 
circular cylinder has been the subject of numerous 
experimental and numerical studies, especially 
from the hydrodynamics point of view. External 
flows past objects have been studied extensively 
because of their many practical applications.  For 
example, airfoils are made into streamline shapes 
in order to increase the lifts, and at the same time, 
reducing the aerodynamic drags exerted on the 
wings. On the other hand, flow past a blunt body, 

such as a circular cylinder, usually experiences 
boundary layer separation and very strong flow 
oscillations in the wake region behind the body. In 
certain Reynolds number range, a periodic flow 
motion will develop in the wake as a result of 
boundary layer vortices being shed alternatively 
from either side of the cylinder. This regular 
pattern of vortices in the wake is called a Karman 
vortex street. It creates an oscillating flow at a 
discrete frequency that is correlated to the 
Reynolds number of the flow. The periodic nature 
of the vortex shedding phenomenon can sometimes 
lead to unwanted structural vibrations, especially 
when the shedding frequency matches one of the 
resonant frequencies of the structure. 
     The vortex methods have been developed and 
applied for analysis of complicated, unsteady and 



170-Vol. 23, No. 2, April 2010 IJE Transactions A: Basics 

vortical flows related with problems in a wide 
range of industries, because they consist of simple 
algorithm based on physics of flow [1;4]. Leonard 
[8] summarized the basic algorithm and example 
of its applications. 
     The vortex methods have made remarkable 
advancements in the past decade, but still face 
numerous challenges, especially involving the high 
computation cost. 
     There has always been a strong relationship 
between progress in vortex methods and 
advancements in acceleration techniques that 
utilize this method. When the classical vortex 
methods became popular nearly 30 years ago, the 
calculation cost of the N-body solver was O(N2) 
for N particles. Due to this enormous calculation 
cost, the intention at that time was not to fully 
resolve the high Reynolds number fluid flow, but 
to somewhat mimic the dominant vortex dynamics 
using discrete vortex elements. 
     One of the main difficulties of vortex methods 
to be accepted in the mainstream of computational 
fluid dynamics is the numerical complexity of 
calculating the velocity using the Biot-Savart law, 
which is in fact analogous to an "N-body problem" 
and hence requires O(N2) operations for N vortex 
elements. 
     There are two techniques to reduce the force 
calculation cost of an N-body simulation: hardware 
and software techniques. In the hardware, there are 
two techniques, one is a parallel computer and the 
other is a special-purpose computer. To accelerate 
the vortex methods calculation, parallel 
computation has been widely used in previous 
studies [9;11-14]. Even though accelerate the 
calculation significantly; there are some difficulties 
to use parallel computations for longer 
calculations. It has limitations with parallelization 
according to hardware specifications. The memory 
bandwidth is a big problem to calculate for large 
number of vortex elements, which required special 
consideration. Power consumption and heat 
dissipation interrupt the longer time calculations. 
These problems are becoming serious for advanced 
scientific computation. Shortcomings of parallel 
computers, the special-purpose approach can solve 
parallelization limit thoroughly. It has relaxed 
power consumption according to hardware 
specification.  
     The special-purpose computer has been used in 

the present calculations to avoid the difficulties of 
parallel computations with higher speed. Hardware 
accelerators such as MD-GRAPE [6], and 
MDGRAPE-2 [16] have been developed and 
successfully applied to MD simulations [16]. 
Yatsuyanagi [18] has used MDGRAPE-2 to 
accelerate the velocity calculation of Biot-Savart 
integral equation for the simulation of 2D magneto 
hydrodynamics problems using the current vortex 
method. 
     In this paper, MDGRAPE-2 has been discussed 
which are used to accelerate present vortex method 
calculation for the flow around circular cylinder. In 
our previous paper [15] we presented the same 
vortex method for the free boundary flow. The test 
case was the interaction of two vortex rings as 
inclined collisions. In this paper, we considered 
bluff body as a test case. We will see the 
significant of our acceleration method to lead a fast 
vortex method. For details of bluff body 
calculation see in recent works [2-3;5;7;12-13]. 
 
 
 

2. VORTEX METHODS 
 
Vortex methods have been growing in popularity 
in last three decades. As their name indicates, they 
are based on the discretization of variety-a quantity 
that has a compact support in many physical 
problems-thereby making this approach interesting 
[2].  
     The three-dimensional incompressible flow of a 
viscous fluid has been studied here. The evolution 
equation for vorticity is 
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change of vorticity by deformation of vortex lines 
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where x , and x are positions of vortex elements 
and dV is the volume of element. 
    Using the Winckelmans [17] model as a cutoff 
function, Biot-Savart law is as follows 
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where jiij rrr  , j and jγ  are distance of the 

position vector, core radius and strength of 
element. The subscript i stand for the target 
elements, while j stands for the source elements. 
When the stretching term of Eq. (1) can be 
discretized as follows: 
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if we put vortex strength iii d xω 3  in 

equation (4), then it becomes  
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 Hence, the vortex strength of an individual 
element is expressed by Eq. (3) in a discretized 
formulation as  
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where all notations denotes the same meaning as of 
Eq. (3). 
    In this calculation, the viscous diffusion was 
calculated using the core-spreading method 
developed by Leonard [8]. For convection of the 
particles, second order accurate Adams-Bashforth 
numerical method was used for calculation of time 
advance. 
 
 
 

3. THE MDGRAPE 
 
At first an MDGRAPE-2 board has been used to 
develop a fast vortex method. There are some steps 
to make MDGRAPE-2 as a compatible of vortex 

method calculation that will be discussed 
consequently. MDGRAPE-2 is a calculation 
accelerator board that dramatically increases the 
speed of molecular dynamics calculations by 
calculating the general force exerted between all 
pairs of particles in an N-body particle simulations 
[16]. A brief discussion of MDGRAPE-2 
architecture is introduced here, referred Narumi 
[10] for details discussions. 
 
 3.1 Basic Structure 
 
An MDGRAPE-2 board is a PCI long size card 
exclusively designed for MD simulations. This 
board is composed of four MDGRAPE-2 chips, 
interface logic, cell index counter, cell memory, 
particle index counter, and particle memory 
(Figure 3.13 in [10]). A node computer 
communicates with MDGRAEP-2 chips and 
particle memory through interface logic. The index 
of a particle is determined by dual counters to 
support cell-index method. Cell index counter 
specifies the neighboring cell index c, and cell 
memory outputs the range of indices in the cell c. 
Particle index counter indicates the particle index j 
to particle memory. The position, charge, and 
particle type of a particle j are supplied to all of the 
MDGRAPE-2 chips and 8 Mbyte of SSRAM is 
used for the particle memory. 
    An MDGRAPE-2 chip is a data-flow-type 
numerical-processor LSI that is especially 
dedicated for molecular dynamics simulations. It is 
composed of four identical MDGRAPE-2 
pipelines, one Input Unit, one Neighbor List Unit, 
and one Control Unit as shown in Figure 5.1 in 
[10].  Each pipeline keeps data (positional 
coordinates and scale factors) of six i-particles. 
The data of one j-particle are supplied in every six 
clock cycles. A pipeline calculates six forces 
between these six I-particles and one j-particle in 
every six clock cycles. These forces are 
individually accumulated. A pipeline is composed 
of a Distance Vector Unit, a Function Evaluator 
Unit, an Accumulator Unit, a Data Selector Unit, 
and a Control Register (12RGPM) (see details in 
Figure. 5.2 [10]). A Distance Vector Unit outputs 

the distance vector ij rrr   and the squared 

distance 2r . A Function Evaluator evaluates 
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)( 2raG j by 4-th order polynomial interpolation as 
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Accumulator Unit accumulates forces in the force 
mode and potentials in the potential mode. A Data 
Selector Unit switches the sources of 

handba jj ,, . Four Pipelines calculate the 

forces on 24 different i-particles from one j-
particle and accumulate them in every six clock 
cycles. Using Neighbor flags, supplied by 
Pipelines, Neighbor List Unit makes lists of 
neighbor particles of 24 i -particles. Control Unit 
controls the multiplexers and registers in the chip. 
Input Unit receives coordinates of j -
particles  jjj zyx ,, , and scale factors  jj BA , , 

respectively. These data are stored in registers and 
kept in the next six clock cycles. Peak performance 
of an MDGRAPE-2 chip corresponds to about 16 
GFlops at a clock frequency of 100 MHz. 
An MDGRAPE-2 pipeline calculates the pair wise 

force jif , as: 
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where g() is an arbitrary central force, and aij and 
bij are coefficients determined by particle types of 
particles i and j. The function g() for an arbitrary 

value a|rij|
2 is calculated by interpolation, from 

values that are tabulated prior to the execution of 
the main program. If the interparticle distance is 
such that a|rij|

2 falls out of this tabulated domain, 
the MDGRAPE-2 assumes g() is zero. The number 
of tabulated points is constant. Thus, defining the 
table in a large domain would result in larger 
spacing between the tabulated points, and therefore 
a larger interpolation error. On the contrary, 
defining the table in a small domain would yield a 
higher probability that the inter particle spacing 
would fall outside the tabulated domain, which can 
also cause errors. 
     Figure 1 shows the block diagram of the 
pipeline of an MDGRAPE-2 chip. The pipeline 

calculates ijr
 
and 

2

ijij ra , and then evaluate g() in 

the function evaluator. Function evaluator 
performs fourth-order interpolation segmented by 
1,024 regions. The coefficients of the interpolation 
function are stored in the RAM in function 
evaluator. Therefore, it can be used any arbitrary 
central force by changing the contents of the RAM. 
After the function evaluator, the pipelines 

multiplies bij and ijr , and then accumulates them. 
The relative accuracy of a pair wise force is about 
10-7, since most of the arithmetic units in the 
pipeline use IEEE754 single floating point format. 

 
 

 
 
 

Figure 1. Block diagram of a pipeline of an MDGRAPE-2 chip 
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The double floating point format is used for 
accumulating the force in order to prevent the 
underflow when large number of particles is used. 
 
3.2 Calculation Procedures 
 
Figure 2 represent the system that performs vortex 
method calculations, consisting of a host and 
MDGRAPE-2. The host is a PC or a workstation. 
MDGRAPE-2 consists of one or multiple 
MDGRAPE-2 boards. Each board is connected to 
the host as an extension board via a PCI bus (or 
PCI buses linked by PCI-PCI bridges). A special-
purpose computer work as a back-end hardware 
and the host PC work as a front-end processor. The 
host computer calculates and updates the positions 
of particles and sends it to special-purpose 
computer. The special-purpose computer then 
calculates the induced velocity by using Biot-
Savart law and stretching term, which dominate the 
total calculation cost.  
     Since the load on MDGRAPE-2 is much 
heavier than those for host computer and 
communication interfaces between them, the total 
performance of the system is determined by the 
super-high-speed special-purpose computers rather 
than the host computer or communications, for a 
large number of particles. When the system 
performs VM simulations, MDGRAPE-2 
calculates velocity from Biot-Savart law and 
Stretching term from vorticity equation. The host 
performs the other tasks such as giving the initial 

state of particles, time integration and the control 
of MDGRAPE-2. The host sends necessary data 
for velocity or potential calculation to MDGRAPE-
2 and receives velocity or potential from it via PCI 
bus (or the PCI buses).  
     A single board increases the computing speed 
of an ordinary PC to 64GFlops comparable to a 
supercomputer. The calculation of interactions 
between particles as represented by potential and 
force are carried out in MDGRAPE-2. In case of 
calculating the potential, 
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are treated similarly, where g(w) is an arbitrary 
function equivalent to an intermolecular force, and 
aij, bij, and ij are arbitrary coefficients which are 

settled down for every model. To apply these 
libraries to the calculation of a vortex method, 
Biot-Savart law in Eq. (3) is expressed as follows. 
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where Aj, Bj are arbitrary constants and g() is an 
arbitrary function which has been explained 

 
 
 

 
 

Figure 2. The basic structure of vortex methods calculation in MDGRAPE-2 system 
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previous section 3.1. The details mathematical 
formulations are introduced in [15]. 
 
3.3 Performances 
The peak performance of the MDGRAPE-2 board 
is 64GFlops at 250MHz PC when the board 
calculates Coulomb forces for 30000 or more 
particles. This performance is not the same when 
vortex method has been calculated using this 
board. The CPU-time is shown in Figure 3. 
     The computation time has been preformed and 
compared with ordinary PC (Intel Pentium 4 
2.66GHz). The CPU-time has been calculated from 
Biot-Svart law (Eq. 3) and run for one time step 
while the number of particles is increased. Figure 3 
shows the calculation time against the number of 
vortex elements N with and without the use of 
MDGRAPE-2. The CPU-time has been achieved 
for the calculation of flow around a circular 
cylinder. The legends 'Intel P4 (2.66GHz)' and 
'MDGRAPE-2' represent the calculation time 
without and with the use of MDGRAPE-2, 
respectively. It is clearly observed that the 
calculation time is reduced by a factor of 100 for 
N~105. This acceleration rate is below the expected 
rate, but it can be improved by reducing the 
number of calls to the MDGRAPE-2 library for 
cross product calculations. 
 
 
 

4. NUMERICAL RESULTS AND 
DISCUSSION 

 
We have applied our method to calculate the flow 
around a circular cylinder. The flow around a 
(geometrically) two-dimensional circular cylinder 
is case that has been used both as a validation case 
and as a legitimate research case. At very low 
Reynolds numbers, the flow is steady and 
symmetrical. As the Reynolds number is increased, 
asymmetries and time-dependence develop, 
eventually resulting the famous Von Karmann 
vortex street, and then on to turbulence. The 
problem geometry is two-dimensional and there is 
some variation in the details (both geometry and 
boundary conditions) that can be used. The exterior 
boundaries are generally placed very far from the 
cylinder surface to avoid interaction between the 
boundary conditions. 

 

Figure 3. Performance of bluff body calculation 
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(b) Induced velocity 
 

Figure 4. Vortex shedding and induced velocity 
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     We first calculate the convection of vortex 
elements using Adams-Bashforth time 
advancement. Then we calculate the induced 
velocity using Biot-Savart law (Eq. 3). Finally we 
investigate numerical error by calculating the 
difference between particles in different steps and 
drag and lift force coefficient to validate our 
proposed scheme.  
     Vortex elements were shed from each element 
on the wall. For this case, the vortex elements were 
shed only once and the convection of these 
elements were evaluated. The Karman vortex street 
has been observed from the vortex shedding shown 
in figure 4(a). Figure 4(b) represents the 
corresponding induced velocity of convection of 
vortex elements. It has been observed that the host 
PC gives better results until 512 vortex elements 
and beyond that it has coincided with MDGRAPE-
2 calculation. It means that for accurate 
calculations large number of vortex elements is 
required. 
     Cutoff function for host calculation and 
function evaluator for MDGRAPE-2 calculation 
has been considered. Both calculated results 
compared each other. The Figure 5 represent 
compared error and error difference between host 
and MDGRAPE-2 computer.  It can be observed 
from the error calculations that host machine gives 
better results until 512 vortex elements and beyond 
that it has coincide with MDGRAPE-2 calculation. 
     Drag (Cd) is a mechanical force generated by a 
solid object moving through a fluid. The lift 
coefficient (Cl) is a dimensionless coefficient that 

relates the lift generated by a body, the dynamic 
pressure of the fluid flow around the body, and the 
platform area of the body. It may also be described 
as the ratio of lift pressure to dynamic pressure.   
     Figures 6 and 7 represent the drag and lift 
coefficients for both calculations and compared the  
results. It is observed that for 50,000 elements they 
almost coincide for both calculations. 

 
 
 

5. CONCLUSION 
 
Special purpose computer MDGRAPE-2 for 
molecular dynamics was applied to calculation of 
vortex method, and improvement in the speed was 
attained. It has been calculated for up to 50,000 
vortex elements and accelerated the calculation 
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Figure 6. Cd and Cl for 25,000 elements 
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using MDGRAPE-2 machine. Error has been 
compared and compared for drag and lift 
coefficients for every cases. Fluid-structure 
interaction must be considered in flows around 
flexible structures. It was observed that 
MDGRAPE-2 has reduced computation cost 100 
times compared to Intel P4(2.66GHz) PC.  
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Figure 7. Cd and Cl for 50,000 elements 
 


