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Abstract The analysis of viscoelastic materials is one of the most important subjects in engineering
structures. Several works have been so far made for the integral equation methods to viscoelastic
problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual
techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin
viscoelastic solid models. This formulation needs only Kelvin’s fundamental solution of isotropic
elastostatics with material constants prescribed as explicit functions of time. It is able to solve the
quasistatic problems with any load time-dependence and boundary conditions. A system of time-
dependent equations is derived by imposing the convenient approximations and adopting the kinematical
relations for strain rates. This approach avoids the use of relaxation functions and mathematical
transformations. The main feature of the proposed formulation is the absence of domain discretizations,
which simplifies the treatment of problems involving infinite domains. A computer code has been
developed in the programming environment of MATLAB software. At the end of this paper, two
numerical examples have been provided to validate this formulation.

Keywords Viscoelastic Solids, Boundary Element Approach, Kelvin Solid Model

SO Al e i Slaesle 53 Dl s g o e S S StV Sy Jiles Lo oS
Cﬁ‘jb.wlw;r@\J\ﬁ\&y;m;ﬂ:ﬁ&u@%ﬁ)Q@Y\M)L}jw&?}}qujﬁlj
A i SVl sl slaans 3 sl eslanal b S5 sl Js oslo (65,0 laoldl aud e b Sl
Ol ol 4Bl a5 s IS el SV Sy lade Gl S35 Bley d sl 5 SV S s
4S5l 5L Sl Solial oW Bl s eslinad 5550 IS il Ol a5 L s (g 50 3
i aly glasl g a Jlesl Sl el o 5 0L 51 o o 5 Sy Ol 53 g3le il
alsly SV¥slee 51 glas game 35l sy Skl 4 Pl > (gl il ol 53 (5,0 Lol d 5 Ol
o) 33 il el Al S 5 sl Sl Tl e s e Dl 3 Jlesl L 0L
Gladsa b (Shs o ege 2 ab e oaliial sy 5L, OOLAS 5 a L Sasls ol 5l il
o Cmle s b Bl s eslixad (gl 15 OF &S ol (glasls slagslvan S 4 5L phe 3 el &)
453 aa 5 (MATLAB) slo 1530 0,5 oy gitols 2 Jaioms 3 (5 5 30l IS Sl il o sllas

Ll eds aShl dlas OLL 5o hud g0 3 ol (g5l ime 5 gk 4y (63,08 (gode Jle g3 .l

1. INTRODUCTION

rigorous predictions of viscoelastic behavior

Because of the complexity of viscoelastic models
which include time as an independent variable, the
available exact analytical solutions have been
obtained for only a few simplified problems. In the
literature of computational solid mechanics, a large
number of the computational methods to solve the
various mechanical problems can be found. The

1JE Transactions A: Basics

usually rely on numerical approaches such as the
Finite Difference Method (FDM), Finite Element
Method (FEM), and Boundary Element Method
(BEM). During recent years, the BEM has found
considerable applications in the solution of
engineering problems, such as contact mechanics,
viscoelasticity, elastoplasticity, elastodynamics,
fracture mechanics and geomechanics. The more
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importantly, the problems that once seemed
completely inflexible for an analytic study can be
now analyzed by this technique rather easily. BEM
has the advantage of requiring only boundary data
as input and, no division of the domain under
consideration into elements. In addition, the BEM
is ideally suited for the analysis of infinite domains
problems involving because only their surface has
to be discretized and conditions at infinity are
automatically satisfied by the Kelvin's fundamental
solution.

The viscoelastic problems can be effectively
treated by the BEM formulation. Numerous
researchers developed the boundary element
formulations to model the viscoelastic behavior.
The first classical procedure for solving the
viscoelastic problems is the use of mathematical
transformations, in which, based on corresponding
theorem [1-5], viscoelastic solutions are usually
obtained by inverting the transformation of their
associated elastic solutions. The viscoelastic
equations can be transformed into equivalent
elastic ones by means of Laplace transforms. After
solving the transformed problem, a numerical
inversion can be performed recovering the desired
time domain behavior. Due to the complexity of
the viscoelastic behavior, however, such treatment
is feasible only in cases with simple geometry or
idealized boundary conditions. In addition, this
method is too complicated to use unless the
relaxation or creep moduli can be accurately
interpreted by a simple model. This procedure
presents some difficulties when the viscous
parameters are time varying, or when complicated
time dependent boundary conditions are imposed.
Another procedure is also available based on
incremental scheme [6-10]. This kind of procedure
uses the relaxation functions to transform the
convolutional aspect of the viscous behavior in
discrete contributions added to the elastic response.

The other available formulation follows the
same scheme applied to viscoplastic ones [11-13].
These techniques are based on the quasistatic
incremental schemes where the time behavior of
the solution is recovered by the stress decay,
therefore, imposing the external loads with
arbitrary time dependence presents some
difficulties. In the following, several important
works are investigated .

The usual approach, originally adopted by
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Rizzo and Shippy [1], has been to formulate a
BEM solution for the Laplace transforms of all
variables satisfying an associated elastic problem,
and then the solution in time domain is obtained by
numerical inversion. Also, incremental BEM
solutions in the time domain were first formulated
by Shinokawa, et al [6]. Kusama and Mitsui [14]
analyzed the linear viscoelastic problems using the
boundary element method together with the
numerical inversion of the Laplace transform.
Their method reduced the amount of manual and
computing time as compared with the finite
element method.

The weighted residual technique, the indirect
BEM, the truncated indirect BEM, and the direct
BEM can be used to analyze nonlinear soil-
structure interaction in time domain. They
illustrated and compared by using 1-D dynamic
problem of the spherical cavity in an infinite space
by Wolf and Dorbe [15]. For realistic time steps,
all formulations led to accurate results, but the
weighted residual technique and the truncated
indirect BEM were much more efficient than the
direct BEM in time domain. Sim and Kwak [16]
formulated isotropic, linear viscoelastic problems
in time domain by BEM. The viscoelastic
fundamental solutions were represented in terms of
the constant coefficients of relaxation functions.
From the reciprocal work theorem, an alternative
form of boundary integral equations was derived
by integration by parts. This form required the
regularity of field variables to be one order less
than that in the usual formulation. A time marching
process was incorporated in the numerical method.

Shinokawa and Mitsui [17] presented a
combined BEM/FEM method to analysis of
viscoelastic problems using the time marching
method without the provision of cells. They
represented some numerical examples with the
tunnel and trench excavation problems in the
viscoelastic ~ analysis and confirmed the
applicability of BEM to geotechnical analysis.
Carini and De Donato [18] obtained the
expressions of the fundamental solutions due to
unit force, displacement and strain discontinuities
for the general viscoelastic model. They derived
full set of fundamental solutions for the linear
viscoelastic problems from the relevant elastic
fundamental solutions using the well-known
correspondence principle. Fundamental solutions
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were given for 3D-continua, 2D-plane strain and
the 2D-plane stress problems using the wide range
of linear viscoelastic constitutive law models. An
elaborate scheme, generating the time domain
fundamental solution in a more general case, was
developed by Lee, et al [19]. They proposed the
method based on the Laplace transform and the
correspondence principle. The relaxation function
was expanded in a sum of exponentials, and the
transformed fundamental solutions were inverted
numerically into real time space.

Pan, et al [20] presented a BEM formulation
for 3D linear and viscoelastic bodies subjected to
the body force of gravity. First, Laplace
transformation was used to suppress the time
variable, and then the solutions of displacements
and stresses were found in transformed domain.
The time domain solutions were then found using
an accurate and efficient numerical inversion
method which required only real calculations for
all quantities. The Green’s functions in Laplace
domain were obtained through the correspondence
principle.

Schanz [21] applied a quadrature rule for the
convolution integrals, and/or the convolution
quadrature method (CQM). With this numerical
quadrature formula, he determined the integration
weights from the Laplace transformed fundamental
solution and a linear multi-step method. Finally, he
obtained a BE formulation in time domain using all
the advantages of the Laplace domain formulation.
Even materials with complex Poisson’s ratio,
leading to time-dependent integral free terms in the
boundary integral equation, can be treated by this
formulation. Mesquita and Coda [22 — 23]
implemented Kelvin and Boltzmann viscoelastic
models in a 2-D BE atmosphere. Their general
methodology was based on differential constitutive
relations for viscoelasticity. First part of their work
described a methodology using the internal cells.
This methodology makes it possible to consider
viscous parameters, which are not proportional to
elastic tensor. They obtained a simple time-
marching process from the kinematical relations.
In second part, the important algebraic operations
were introduced into the formulation allowing
analysis of the viscoelastic problems without
internal cells.

Wang and Birgisson [24] presented a time
domain BEM to model the quasistatic linear
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viscoelastic behavior of asphalt pavements. In this
viscoelastic analysis, the fundamental solution was
derived in terms of the elemental displacement
discontinuities (DDs) and a boundary integral
equation was formulated in time domain. The
unknown DDs were assumed to vary quadratically
in the spatial domain and to vary linearly in time
domain. The equations were then solved
incrementally through the whole time history using
an explicit time-marching approach. The spatial
and time integrals were evaluated analytically,
which gives highly accurate results and fast
convergence of the numerical scheme. Recently,
the researchers developed an alternative FEM
formulation to analyze the viscoelastic problems
based on the constitutive equations of the Kelvin
and SLS models [25, 26]. Ashrafi and Farid [27]
presented a general BEM formulation from the
basic assumptions of SLS viscoelastic constitutive
equations, in which it needs only the Kelvin’s
fundamental solution of isotropic elastostatic
problems. These formulations are based on the
differential constitutive relation of the SLS
viscoelastic model. They produced the time
differential systems of equations, which can be
solved by an appropriate time marching process.

In the present work, a direct boundary integral
formulation is proposed which needs only the
Kelvin’s fundamental solution of isotropic
elastostatics with material constants prescribing as
explicit functions of time. In addition, this
formulation is based on the differential constitutive
relation of Kelvin viscoelastic solid model. The
resulting algorithm is able to solve the general
quasistatic viscoelastic problems of solid structures
with any load time-dependence and boundary
conditions. The proposed BE formulation is
completely developed to model the viscoelastic
behavior of engineering structures. It is necessary
to consider the domain integrals by BE formulation
due to viscous effects. Avoiding the internal
elements is the main objective of this paper,
resulting discretizations only at boundary of the
problems. Therefore, it reduces the number of
variables to be computed, and makes -easily
treatment of infinite and semi-infinite viscoelastic
problems. Quasistatic response of a compressible
cylinder under the internal pressure as well as,
problem of a pressurized crack in a viscoelastic
infinite plane as two numerical examples are
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provided to validate the proposed formulation.

2. VISCOELASTIC CONSTITUTIVE
RELATIONS

Mathematically, the usefulness of constitutive
equations is to describe the relationships among
the kinematical, mechanical, and thermal field
equations and to permit the formulations of well-
posed problems in the continuum mechanics.
Physically, constitutive equations define various
idealized materials which serve as models for the
behavior of real materials. All actual materials
store and dissipate energy in varying degrees
during a loading/unloading cycle [28]. A number
of important engineering materials, such as solid
polymers, simultaneously store and dissipate
mechanical energy when subjected to the applied
forces [29]. This form of response as a combination
of both liquid-like and solid-like features is termed
as viscoelasticity. Thus, the wvalid constitutive
equations for the viscoelastic behavior incorporate
elastic deformation and viscous flow as special
cases, and at same time provide for the response
patterns that characterize the combined behavior.
Intrinsically, such constitutive equations will
involve not only stress and strain, but time-rates of
both stress and strain as well [28].

The behavior of viscoelastic materials in the
uniaxial stress closely resembles that the models
built from discrete elastic and viscous elements.
Extensive experimental evidence has shown that
practically all engineering materials behave
elastically in dilatation; therefore without serious
loss of generality, we may assume the fundamental
constitutive equations for the linear viscoelastic
behavior in differential operator form to be [28]:

P} S, =2{0}n,
P} S; =205, )

0; = 3K Ei (2)
for isotropic media. S;; and #; are the elements of
shear stress and strain tensor, respectively. The

coefficients {P} and {Q} are differential time
operators of the form:
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N ai

WPi=2p 5 3)
M ai

tol=24. 57 4)

in which the coefficients p; and ¢ (not necessarily
constants) represent the viscoelastic properties.
Also, K is the bulk modulus. Note further that this
pair of equations specifies separately the deviatoric
and volumetric responses.

Based upon the two fundamental elements of
elastic spring and viscous dashpot to model
viscoelastic behavior, it is easy to construct the
viscoelastic models by suitable combinations of
this pair of elements. One especially simple
combination that immediately comes to mind is the
Kelvin or Voigt viscoelastic model. This model is
a simple representation of this kind of behavior.
The Kelvin solids consist of a spring and dashpot
in parallel, as shown in Figure 1. For which,
Equations 1 and 2 reduce to the following single
equation [28]:

o, =(E+776,)5,.j ®)

where £ and 7 represent the material constants
(Figure 1), and the partial derivative with respect
to time is denoted by 0,. In general, from Figure 1,
the following relations can be expressed:

™
VWA

Figure 1. Sketch of the Kelvin model representing a
viscoelastic solid.
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o.=0.+0, (6)

E.=¢€.=¢& (7)

where the Cartesian coordinates are represented by
subscripts i and j, while the superscript v and e
represent viscous and elastic parts, respectively.

The stress-strain equations for the linear
elastic solids assuming infinitesimal strains can be
written as [28, 30]:

O-j = Cijkm gkm (8)

where Cj, are the elastic constants representing
the properties of the body, and can be defined as
[30]:

C

ijkm

=28,8,,+u(6,5,+6,5,) )

ik = jm im 7 jk

where 1 and u are Lame’s constants, given by:

2= vE
T (14v) (1-2v) (10)

E
ST b

in which £ and v are Young’s modulus and
Poisson ratio, respectively. In addition, J; is the
Kronecker delta.

Similarly, for the viscous stress components,
following relations can be given:

O-I; = K ‘C’-'v = Kg'/'mn é‘mn (12)

ijmn < mn

where the constant K, represent viscous
properties of the body, and can be defined as [30]:

Kijmn = (ﬂi ﬂ“) 55

ij ~mn

v w6,8,+5,5,) 1P

in which g, and g, are the hydrostatic and

deviatoric viscosity coefficients, respectively
By substituting Equations 8 and 12 into
Equation 6, we have:
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0y =Cyp & + Ky € (14)

In this numerical formulation, in order to
obtain only boundary integral equations, a
simplification for the viscosity coefficients B, and

B, is assumed, ie. p,=p,=p. Therefore,

Equation 14 changes into:

0y =C &1 + BCiju €n (15)

3. BOUNDARY ELEMENT FORMULATION

The boundary element method is based on
boundary integral equations. There are several
methods of deriving the boundary element
formulations: the reciprocal theorem, the weighted
residual concept and the wvariational approach.
Here, the boundary integral equations, by
extending to the Kelvin solid model, will be
derived using the weighted residual concept.

The viscous effects should be included into the
equilibrium equation of the body by relating
numerically strain time rates with velocity in a way
that the viscous characteristics of the body satisfy
the boundary conditions together with the elastic
ones. In order to do these requirements, the
equilibrium equations for a general viscoelastic
body can be written as:

Oyt B, =pi; +cu, (16)
Or
o+ 0y,+B; = pii; +cu, 17)

where B; is the body force acting in j direction.

Since, in this work, the dynamic effects will
not be considered, Equation 17 should be rewritten
as:

o, 0, +B,=0 (18)
3.1. Displacement Integral Equations Here,
the viscoelastic integral equations for boundary
and interior points are obtained using the weighted
residual technique for the equilibrium Equations:
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o,,+B =0 (19)

In BEM, the Kelvin fundamental solution of
an elastic infinite body is adopted as a proper
function for weighting the differential equilibrium
relation [31-32]. Therefore, Equation 19 can be
weighted over the considered domain D as:

0= L Vi <O'i/‘j + Bi>dv (20)

where yy; is the Kelvin fundamental solution. It
represents the effect of a unit concentrated load
applied at a point located in an infinite domain.
Integrating Equation 20 by parts and then applying
the divergence theorem yields:

0= LDI//,“. o, n;ds —J’Dl//,dJ. o, dv

21)
+ L v, B dv

where 0D is the boundary of the body and #; is the
outward normal vector component.
By knowing that,

o,n;, =t (22)
and
gl‘:’j o; = 0.5 (l//ki,j + Vi ) Oy

(23)
=0.5 (l//kj,i + lr//ki,j)aij =V, ;0

where & is the strain fundamental term, Equation

21 changes into:

_ n o _ v
0= LDI//,“. t'ds ID &y Oy dv

(24)
+ .[DW"" B, dv

The next equation is the starting point to
derive the viscoelastic integral equations. By
imposing the viscoelastic relations, i.e. Equation
15, into Equation 24, we have:

0= p,t1ds=| &,(C,,&,)dv

(25)
v .
- ID gk(/ (ﬂcijmn gmn ) dv + ID Wki Bi dv
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Also, by knowing that,

14 — YV
gki/' C;'/'mn gmn - O-kmn gmn

(26)

=0’ u =0c"u

kmn ““m,n kij 7i,j

And

v o — 728
gkfj ﬂc"jm” gm" - 'Bakmn gmn

e
= ﬂo-kmn um‘n = ﬂo_ki]' ui,,i

Equation 25 changes into:

_ n _ 174
0= J.ﬁDl//ki t'ds ID Oy Uy dv

_ (28)
- ID,BO'Z;. U, dv+ .[DV/"" B dv

By using integrating by parts of the second
and third terms of Equation 28, we have:

— n 14
0= LD v, t'ds— LD Oy nu, ds
v v .
+ L O dv—p LD Oy nu, ds (29)

+ B L ol i, dv + L w, B dv

Equation 29 can be rewritten by using the
fundamental equilibrium equation, i.e.

ol ==8(x.)3, (30)
where d(x, y) is the Dirac’s delta distribution, in
which y is a field point and x is the source point.
By knowing that,

oun =t (31)

Equation 29 changes into:

€,u,(x)+ pe,u,(x) = w, t'ds

- LD (0 u, ds - B J'D £ 0 ds + J'D w, B dv ¢

where the free term € is exactly what was
obtained in the elastostatic formulations and can be
found in the BE handbooks [31-32]. Equation 32 is

1JE Transactions A: Basics



the integral equation for the general Kelvin—Voigt
viscoelastic solids.

The body force domain integral can be
easily transformed into its boundary integral
equation, which results an equation written
exclusively for boundary values. The simple and
robust method, which 1is called the radial
integration method, was used for transforming the
domain integrals into the equivalent boundary
integrals [33]. Any 2-D or 3-D domain integral can
be evaluated in a unified way without need to
discretize the domain into internal elements. By
assuming that the body force B; is constant, the
domain explicit integral equation is converted to
the boundary integral equation. Therefore, we
have:

ij/k, Bdv=B,{ v, dv=5, L j’_y/,ﬂ. rdrd®

) tor ¢ o, 03
=B LD Ir Ve rdr;ads =B, LD B ds

in which, B}, for the Kelvin fundamental solution,
is given by:

r

167 G(1-v)
1 or
X <(4v - 3)(lnr - Ej@ﬂ. +r, r’i>$

By applying above changes into Equation 32,
results:

v
k

(34)

€,u,(0)+ BE,1,(x)= [y, ds

j £ u ds —ﬂj’wz;w i, ds +Bl.LDBZj ds G

Finally, it is worth to note that the necessary
kernels y, and ¢}, for the 2-D elastostatic

problems can be obtained in BE handbooks with
the either plane strain or plane stress conditions
[31-32]. In a similar way to displacement integral
equations, the boundary stress integral equations
can be derived to calculate the stress fields on the
boundary.
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3.2. Stress Integral Equations To derive the
stress integral equation for interior points, one
starts by deriving the strain integral equation. At
interior points, the displacement integral equation
is given by:

u () + B (¥)= [ tids= [ 6w ds

(36)
_ ny v
ﬂLD t,/ u, ds+B, LD B/ ds

and the
displacement rates #, in tensor notation, the both

Denoting the displacements u,

small strains and small strain rates are related to
displacements and displacement rates via [34]:

37
& =%{”k,z +”1,k} o7

Eu :_{uk,l +”1,k} G
2

By substituting the above relations in Equation
36 and by considering that the derivatives are done
with respect to the source point location, we find:

&y (X)+ B é,(x) = LD et ds _LD tNk;W u, ds (39)

_ Ty 534
,BLD Ly U, ds+B, LD B/, ds

The total stress is obtained using the
constitutive Equation 15 in Equation 39, resulting
in:

40
mn (x) + O-mn (x) J. O-nl/:m tl ds J‘ tmm i S ( )

- B[ iiids+B[ Bl ds

Now, the total stress state is obtained using the
general constitutive Equation 6 and Equation 40:

min

—ﬂj-a ter ds+BI BY. ds

", B’ and &), are the new kernels

where o, 1, , B

ik 2

based on the Kelvin’s fundamental solution which
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can be defined by following relations (by using

[31]):

_, 11
S
8z(1-v) r (42)
<|0-20)(8, 7+ 8,7, = 8,7+ 307,
- E 1 or
t) =———(3—|(1-2v)o,r
" 87(1-v?) r3< on { 0,7
+V(5fk’f.f+5k/r,f)_5’fi’f./r,k]
+3vn rr ke ng ) *3)
+(1_2V)[3"k r,il/:j+nj5ik+ni5jk:|
~(1-4v)n,5,)
-, —_, Or
Bj =0y — (44)
on
and
I+v 1
g (x,y)=—————
i (%:7) 4r(1-v)E r (45)

X [(3 —AV)(6;1,) = 01y = Oy + 20,7, r,j]

In order to determine the elastic and viscous
stress states of total stress fields, from Equation 41,
Equation 8 can be written in following form:

e ) 1 . |
O-ij = Cijkm gkm = E [ﬁ Cijkm gkm ] = E Gij (46)

By substituting the above relation into the
equilibrium equation, a time-dependent equation
can be derived as:

—o,to,+p05,;,=0 (47)

Finally, we can solve numerically Equation 47
by an adaptive linear approximation for the elastic
stress field.

4. NUMERICAL DISCRETIZATION

It is only possible to solve boundary element
formulation (i.e. Equations 35 and 41) analytically
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for very simple problems. The first step in the
discretization is to divide the boundary 0D into N,
elements, so that Equations 35 and 41 become:

N,
€ u()+pE =D [ i ds
r=I1 r

N, N,
- Z [, o uds— Z P, 1, ds (48)
Ne
+ ;B,. LDF B ds
and

NE NE
0, (=2 [ & tids= [ inuds
—~ Jop, = Jon,

N, _ N, _ (49)
B ;ﬂLDr tﬁ,”; U ds +;Bij-am B“V‘/i" ds

where 0D =) 0D,

5. ISOPARAMETRIC ELEMENTS

One of the most significant improvements in the
BEM was the introduction of the parametric
representation of both geometry and unknown
functions similar to isoparametric formulation in
the FEM. In this type of formulation, the boundary
parameter y;, the unknown displacement and
velocity fields u; and #i;, and also the traction fields
t, are approximated by introducing interpolation
functions in following forms, respectively:

W& = N (&))"
a=1
0 (&) =S N (&) uf
a=l1 (50)

(&)= S N (&) if
a=1

&)= N, (&) 1
a=1
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where, N, called shape functions, are polynomials

“ u” and

i i

of degree m-1. The quantities y;", u

tl-"a are the values of the functions at node « .

These shape functions are defined in terms of non-
dimensional coordinates & (-1 < ¢ < 1). Here, for
discretization of the boundary, the linear elements
(m = 2) have been used; therefore for these
elements, we have:

N, :%(1_5)

51
N, =1(1+¢) eb

A discretized boundary element formulation
can be obtained by substituting the relations of
Equation 50 into the chief integral Equations 48
and 49, to obtain:

N(’ m
€u,()+ €U, (x)= Z ZI@D v Nt ds
r=1 a=1 r

NE m
_ ny ra
ZZLDr t,Y N, u'“ds

) (52)
) ; a=1 ﬂJ‘?’Dr t]:liw Na u,-m ds
N,
+; B .[a . BZ ds
and
N, m
B G N, 27 d
,, (%) Z:;, ; Lo, 5 N £ ds
N, m . B
B ; ~ J-0D, Loin N u" ds
(53)

Due to the similar shape functions used for
approximation of the geometry and functions, the
formulation is referred to as isoparametric. After
choosing the same number for the source points
and nodes and then calculating all integrals, the

1JE Transactions A: Basics

discretized boundary element equations may now
be written in the matrix form as:

Hu(?)+ pHu(t) =G t(r)+ DB(¢) (54)
and
6(1)=G t(r)+ DB()—Hu(s)— S Hu(r) (55)

where ¢ represents the time.

6. NUMERICAL ALGORITHM

To solve the time-dependent differential matrix
Equations 54 and 55, it can be necessary to
approximate velocity in time domain by a proper
time marching treatment. This is carried out by
choosing a linear behavior along the time, as
follows:

l:ls_,_] — x+At s (56)

The following linear time marching process,
by substituting Equation 56 into Equation 54, has
been derived:

Hu,, =Gt +F, (57)

in which

H= {1 + Aﬁt} H (58)

and

F, =£Hus +DB,_,, (59)
At

As previous values are known, now it is
necessary to solve the matrix system of Equation
57 for the current time (#,+;). In addition, the
boundary conditions in time domain are prescribed

by interchanging the columns of H and G
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matrices. u,.; and t,; can be obtained from
Equation 57.

For calculating the total stress state,
Equation 55 for the current time (#,+;) can be
computed as:

~Hu,, -pHu,, (60)

in which u_,, is derived from Equation 56. By

assuming the linear behavior along the time
domain for the elastic stress rates as:

- e Gs+1_ s
68, =—1 (61)

and by substituting it into Equation 47, we have:

G:—H = ; [65+1 +£6:)
( LA J At (62)
At

Elastic stress state can be obtained from Equation

62, in which ¢ is known and ¢, is derived by

s+1
Equation 60. The presented algorithm has been
cast into a unique program and has been solved
using the commercial software MATLAB. A
computer code "VBE KEL" was developed into
MATLAB.

7. NUMERICAL EXAMPLES AND RESULTS

For validating accuracy of presented formulation,
it has been used to solve the two numerical
viscoelastic problems shown below whose results
can be compared with the analytical solutions.

7.1. Example One; Pressurization of a
Viscoelastic Compressible Cylindrical Tank
The problem of the pressurization of a viscoelastic
cylinder is of technical important [2-4]. The
considerations here are for sufficiently long
cylinders such that plane strain conditions can be
assumed.

A thick-walled cylindrical tank, as shown in
Figure 2, under radial internal pressure P; is
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analyzed. In the plane of the cross section, we use
a polar coordinate system r, 8 and normal to them
z axis. Continuity of the deformation in plane
strain demands that ¢, = 0. Theory of elasticity
yields the following formulas for the radial stress
o, the tangential stress oy and the radial
displacement u subjected to internal pressure P;:

(63)

(64)

Figure 2. The cylindrical tank under the radial internal
pressure (P).

y

© A(D/53,0/53)R,
. T
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e
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Figure 3. BE Discretization of the model under the radial
internal pressure.
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and

u(r) =HTV(A[1—2V];’+£) (65)

7

in which constants 4 and B are determined from
boundary conditions. For this problem, the
boundary conditions are:

r=R =o0, =-p,

i

66
r=R, =0, =0 (66)
Upon inserting above conditions:
PR P R'R;
2 1 2 1

where R, and R, are the inside and outside radii of
tank, respectively.

As shown by Equations 63 and 64, the stresses
in elastic body are independent of the material
constants. Therefore, in accordance with the
elastic-viscoelastic correspondence principle, the
stresses will be the same when the cylinder is made
of a viscoelastic material. Since the displacement u
1s a function of material constants, it will be time
dependent. The time dependence may be found by
employing the corresponding principle [2-4]. With
considering cylinder as a Kelvin viscoelastic solid
and applying correspondence principle, the actual
radial displacement is obtained:

u(r,t) = {ﬁ{l - exp(— (6K;——q0)tﬂ

2
+ & 1—exp(—thJ x A
q,r a9

in which K is the bulk modulus, and ¢ and ¢, are
the coefficients of the Kelvin solids. The analytical
and numerical results for displacements have been
calculated for the following parameters:

(68)

g, =9%10°
K =2x10°(MPa) (69)
q, =2x 10°(MPa)(Days)
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TABLE 1. Parameters of the First Modeling.

Mechanical E=20 — 04 g=14
Properties (MPa) o (days)
Ry =10 (in) _
Geometry = 250 (mm) R:=2[Ry)
Time _
Increment At=1 (day) - o
Pressurization P = 2000 - —
(KPa)

Due to double symmetry of the problem, only
a quarter of problem is modeled, as shown in
Figure 3. The geometry and mechanical properties
of the model are shown in Table 1.

The numerical solution is obtained by using 30
elements and using 20 steps in time- — marching
process to arrive at ¢t = 120 days. The inner and
outer wall radial displacement obtained using this
numerical formulation is compared with the
analytical ones as shown in Figure 4 and Figure 5,
respectively. The radial displacement at interior
point (A: [0.53 R,, 0.53 R;]) obtained by this
numerical formulation has also been compared
with the analytical one as shown in Figure 6. It can
be observed that the agreement of the obtained
results of this formulation with those of analytic
ones is very good.

Inner Wall
55 ; T T T T
| I | I |
T T v v v v
50— = ok CERCER T
| i | | |
45— ———— - = — - |—— === 4 - - +—————
| | | | |
7o) [y [ [ Lo Lo
| | | |
T /) | | | |
535**** /L\ ****** [ e e B
- T | | | |
€ 30— /- == === |—— === 4= o= - - ==
g / I I I I I
® ol _ o _ O A __t_____r_____]
S 25 | | | | |
= | | | | |
.2'20 ***** [ === g T T T
[=] /A | | | | |
15F f— = ——1— = — — — | T [ (U RN ——
/ | | | | |
107“17777\ 777777 [ IO — | iy
/ : : : Analytic Solution
5 —— - - [ j————= - — = — —=| —¥— Numerical Solution 4
‘° [ [ [ Elastic Solution
1 1 1 T T
0 20 40 60 80 100 120
Time (days)

Figure 4. The radial inner wall displacement as compare to
the analytical solution.
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Outer Wall
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Figure 5. The radial outer wall displacement as compared to
the analytical solution.

Interior Point A
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Figure 6. The radial displacement at interior point (4) as
compared to the analytical solution.

Time Step Length Dependence
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Figure 7. Dependence effect to the time step length of the
radial inner wall displacement as compared to the
corresponding analytical solution.
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Time step dependence for the proposed
formulation is also shown in Figure 7 for the inner
wall radial displacement. As it can be observed, the
obtained results are rather accurate even for the
large time steps. However, the final elastostatic
solution is achieved for any chosen time step.

It is worth noting that this formulation can
easily be used for plane stress conditions by
changing in material constants. A hole or a crack in
an infinite viscoelastic structure can be modeled as
a Kelvin solid and is then analyzed by this
formulation for plane stress conditions.

7.2. Example Two; A Pressurized Crack in
an Infinite Viscoelastic Plane Structure As
another example, we consider the problem of a
pressurized crack in a viscoelastic plane structure
made of the Kelvin model. For simplicity, the
crack is assumed to be aligned along the x axis
with the center located at the origin of the
coordinate system as shown in Figure 8. The
length of the crack is 2a and the crack surfaces
have been subjected to the uniform normal
pressure P.

The analytical solution for the crack opening
displacement for the elastic structure cases is given
as [35]:

Au(x) = (%j\/ a’-x'P (70)

where G and v are the elastic constants and also Au
denotes the crack opening displacement.

s

Figure 8. Pressurized crack in an infinite viscoelastic plane
structure.
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Since the crack opening displacement is a
function of the material constants, it will be time
dependent. The time dependence may be found by
employing the corresponding principle [2-4]. The
viscoelastic solution, using the correspondence
principle and the analytical Laplace transform
inversion, can be obtained as:

Au(x,t)=4va’ —x°

x (¢, — ¢, expl—c,f] - ¢, expl[—c,t]) P H(?)

where H(t) is the heaviside step function, and the
constants ¢; are defined as:

9K +2gq,
I

3q, +18Kq,

1

C=———

36K +6g,

6K +4,
G =—- 72
’ q, 72)
L
) 2q,
oot

q,

in which K is the bulk modulus, and also ¢y and ¢,
are the coefficients of the Kelvin solids. The
analytical and numerical results for the crack
opening displacement have been calculated for the
following parameters:

q, =9%10*
K =2x10*(MPa)
q, =1x 10° (MPa)(Days)

(73)

Figure 9 shows the evolution of the crack
displacement at the center of the crack (x = 0)
along time. The numerical solution has been
obtained by using 28 elements to approximate the
crack and using 20 steps in the time-marching
process to arrive at ¢ = 120 days. The good
agreement between the numerical and analytical
solutions is observed in Figure 9.
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(71

)

250

T T T T ™
| | | | |
| " ¥ ¥
| | | | |
| | | |
= 200 - - - - 71 T T T T T 1 e [
E 71 | | | |
= A | | | |
é | | | | |
| | | | |
g 150 - -~ - - mT T T T [ R E [
%_ | | | | |
@ | | | | |
a | | | | |
2 I | | | |
=R L e —_—_—_—— —
= | | | | I
I | | | | |
o | | | | |
5 | | | | |
8 50HL — - — -l [ . ! -
! ! ! ! —— Analytical Solution
“‘ : : : — & Numerical Solution
] | | | I 1
o I I I I I
20 40 60 80 100 120

Time (days)

Figure 9. Evolution of the crack opening displacement along
the time domain.

5. CONCLUDING REMARKS

In this paper, a new formulation to perform
simplified viscoelastic analysis was presented by
the BEM. Using a weighted residual procedure and
a proper kinematical relation between strain and
material velocities of boundary points, it is
possible to write boundary integral representation
for displacement and velocity. The resulting
algorithm was able to solve the quasistatic
viscoelastic problems with any time-dependence
load and boundary conditions. Only the Kelvin’s
fundamental solution of isotropic elastostatics was
needed for this formulation. The main advantage of
the presented approach was that the integral
representation including only boundary values. It
has been imposed a spatial approximation for
boundary values achieving a system of time
differential equations. This system was -easily
solved by choosing the linear time approximation
for velocity. A computer code was developed in
programming environment of MATLAB software,
and validation of the proposed formulation was
provided by solving two numerical examples.

One particular field where BEM applications
have been limited is the viscoelastic fracture
mechanics [36]. Introducing the fundamental
solutions for specific cracked geometries such as
cracks along the interfaces of bi-material continua
can be considered as the continuous of the present
work. Moreover, the material nonlinearity and
anisotropy as well as temperature variations [37]
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which highly influence the viscoelastic properties
can be taken into account in the BEM viscoelastic
analysis.
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