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Abstract   The analysis of viscoelastic materials is one of the most important subjects in engineering 
structures. Several works have been so far made for the integral equation methods to viscoelastic 
problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual 
techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin 
viscoelastic solid models. This formulation needs only Kelvin’s fundamental solution of isotropic 
elastostatics with material constants prescribed as explicit functions of time. It is able to solve the 
quasistatic problems with any load time-dependence and boundary conditions. A system of time-
dependent equations is derived by imposing the convenient approximations and adopting the kinematical 
relations for strain rates. This approach avoids the use of relaxation functions and mathematical 
transformations. The main feature of the proposed formulation is the absence of domain discretizations, 
which simplifies the treatment of problems involving infinite domains. A computer code has been 
developed in the programming environment of MATLAB software. At the end of this paper, two 
numerical examples have been provided to validate this formulation. 
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هايی تلاش. باشدهای مهندسی میتحليل مسائل ويسکوالاستيک يکی از مهمترين موضوعات در سازه   چكيده
در اين . معادلات انتگرالی انجام گرفته استمختلف های تاکنون به منظور حل مسائل ويسکوالاستيک با رهيافت

معـادلات متشـکله    بنيادين هایهاده از فرضيهای مرزی ساده ولی بسيار مؤثر با استفبندی المانيک فرمولمقاله، 
ايـن  . های ويسکوالاستيک جامـد کلـوينی توسـعه يافتـه اسـت     ويسکوالاستيک و اصول پسماند وزنی برای مدل

بندی جديد تنها به جواب اساسی کلوين مورد استفاده در مسائل الاستواستاتيک ايزوتروپيک نياز دارد کـه  فرمول
قابليت اعمال هر نوع بارهای وابسـته بـه   . اندتوابع صريحی از زمان توصيف شده ثوابت مادی در آن به صورت

ای از معادلات وابسـته  مجموعه. زمان و شرايط مرزی در اين رهيافت برای حل مسائل شبه استاتيک وجود دارد
در ايـن  . ها اسـتخراج شـده اسـت   به زمان با اعمال فرضيات مناسب و تعميم روابط سينماتيکی برای نرخ کرنش

بنـدی  مهمترين ويژگی فرمول. دوشمیرهيافت از توابع وارهيدگی يا خزشی و تبديلات رياضی پيچيده استفاده ن
ای است که آن را برای استفاده در مسائل با دامنـه بينهايـت نيـز    های دامنهسازیارائه شده در عدم نياز به گسسته

توسـعه يافتـه   ) MATLAB(نويسی نـرم افـزار ماتلـب    امهيک کد کامپيوتری در محيط برن. ساخته استمطلوب 
 .بندی در پايان مقاله ارائه شده انددو مثال عددی کاربردی به منظور معتبرسازی اين فرمول. است

 
 

1. INTRODUCTION 
 
Because of the complexity of viscoelastic models 
which include time as an independent variable, the 
available exact analytical solutions have been 
obtained for only a few simplified problems. In the 
literature of computational solid mechanics, a large 
number of the computational methods to solve the 
various mechanical problems can be found. The 

rigorous predictions of viscoelastic behavior 
usually rely on numerical approaches such as the 
Finite Difference Method (FDM), Finite Element 
Method (FEM), and Boundary Element Method 
(BEM). During recent years, the BEM has found 
considerable applications in the solution of 
engineering problems, such as contact mechanics, 
viscoelasticity, elastoplasticity, elastodynamics, 
fracture mechanics and geomechanics. The more 
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importantly, the problems that once seemed 
completely inflexible for an analytic study can be 
now analyzed by this technique rather easily. BEM 
has the advantage of requiring only boundary data 
as input and, no division of the domain under 
consideration into elements. In addition, the BEM 
is ideally suited for the analysis of infinite domains 
problems involving because only their surface has 
to be discretized and conditions at infinity are 
automatically satisfied by the Kelvin's fundamental 
solution. 

The viscoelastic problems can be effectively 
treated by the BEM formulation. Numerous 
researchers developed the boundary element 
formulations to model the viscoelastic behavior. 
The first classical procedure for solving the 
viscoelastic problems is the use of mathematical 
transformations, in which, based on corresponding 
theorem [1-5], viscoelastic solutions are usually 
obtained by inverting the transformation of their 
associated elastic solutions. The viscoelastic 
equations can be transformed into equivalent 
elastic ones by means of Laplace transforms. After 
solving the transformed problem, a numerical 
inversion can be performed recovering the desired 
time domain behavior. Due to the complexity of 
the viscoelastic behavior, however, such treatment 
is feasible only in cases with simple geometry or 
idealized boundary conditions. In addition, this 
method is too complicated to use unless the 
relaxation or creep moduli can be accurately 
interpreted by a simple model. This procedure 
presents some difficulties when the viscous 
parameters are time varying, or when complicated 
time dependent boundary conditions are imposed. 
Another procedure is also available based on 
incremental scheme [6-10]. This kind of procedure 
uses the relaxation functions to transform the 
convolutional aspect of the viscous behavior in 
discrete contributions added to the elastic response.  

The other available formulation follows the 
same scheme applied to viscoplastic ones [11-13]. 
These techniques are based on the quasistatic 
incremental schemes where the time behavior of 
the solution is recovered by the stress decay, 
therefore, imposing the external loads with 
arbitrary time dependence presents some 
difficulties. In the following, several important 
works are investigated . 

The usual approach, originally adopted by 

Rizzo and Shippy [1], has been to formulate a 
BEM solution for the Laplace transforms of all 
variables satisfying an associated elastic problem, 
and then the solution in time domain is obtained by 
numerical inversion. Also, incremental BEM 
solutions in the time domain were first formulated 
by Shinokawa, et al [6]. Kusama and Mitsui [14] 
analyzed the linear viscoelastic problems using the 
boundary element method together with the 
numerical inversion of the Laplace transform. 
Their method reduced the amount of manual and 
computing time as compared with the finite 
element method. 

The weighted residual technique, the indirect 
BEM, the truncated indirect BEM, and the direct 
BEM can be used to analyze nonlinear soil-
structure interaction in time domain. They 
illustrated and compared by using 1-D dynamic 
problem of the spherical cavity in an infinite space 
by Wolf and Dorbe [15]. For realistic time steps, 
all formulations led to accurate results, but the 
weighted residual technique and the truncated 
indirect BEM were much more efficient than the 
direct BEM in time domain. Sim and Kwak [16] 
formulated isotropic, linear viscoelastic problems 
in time domain by BEM. The viscoelastic 
fundamental solutions were represented in terms of 
the constant coefficients of relaxation functions. 
From the reciprocal work theorem, an alternative 
form of boundary integral equations was derived 
by integration by parts. This form required the 
regularity of field variables to be one order less 
than that in the usual formulation. A time marching 
process was incorporated in the numerical method. 

Shinokawa and Mitsui [17] presented a 
combined BEM/FEM method to analysis of 
viscoelastic problems using the time marching 
method without the provision of cells. They 
represented some numerical examples with the 
tunnel and trench excavation problems in the 
viscoelastic analysis and confirmed the 
applicability of BEM to geotechnical analysis. 
Carini and De Donato [18] obtained the 
expressions of the fundamental solutions due to 
unit force, displacement and strain discontinuities 
for the general viscoelastic model. They derived 
full set of fundamental solutions for the linear 
viscoelastic problems from the relevant elastic 
fundamental solutions using the well-known 
correspondence principle. Fundamental solutions 
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were given for 3D-continua, 2D-plane strain and 
the 2D-plane stress problems using the wide range 
of linear viscoelastic constitutive law models. An 
elaborate scheme, generating the time domain 
fundamental solution in a more general case, was 
developed by Lee, et al [19]. They proposed the 
method based on the Laplace transform and the 
correspondence principle. The relaxation function 
was expanded in a sum of exponentials, and the 
transformed fundamental solutions were inverted 
numerically into real time space. 

Pan, et al [20] presented a BEM formulation 
for 3D linear and viscoelastic bodies subjected to 
the body force of gravity. First, Laplace 
transformation was used to suppress the time 
variable, and then the solutions of displacements 
and stresses were found in transformed domain. 
The time domain solutions were then found using 
an accurate and efficient numerical inversion 
method which required only real calculations for 
all quantities. The Green’s functions in Laplace 
domain were obtained through the correspondence 
principle. 

Schanz [21] applied a quadrature rule for the 
convolution integrals, and/or the convolution 
quadrature method (CQM). With this numerical 
quadrature formula, he determined the integration 
weights from the Laplace transformed fundamental 
solution and a linear multi-step method. Finally, he 
obtained a BE formulation in time domain using all 
the advantages of the Laplace domain formulation. 
Even materials with complex Poisson’s ratio, 
leading to time-dependent integral free terms in the 
boundary integral equation, can be treated by this 
formulation. Mesquita and Coda [22 – 23] 
implemented Kelvin and Boltzmann viscoelastic 
models in a 2-D BE atmosphere. Their general 
methodology was based on differential constitutive 
relations for viscoelasticity. First part of their work 
described a methodology using the internal cells. 
This methodology makes it possible to consider 
viscous parameters, which are not proportional to 
elastic tensor. They obtained a simple time-
marching process from the kinematical relations. 
In second part, the important algebraic operations 
were introduced into the formulation allowing 
analysis of the viscoelastic problems without 
internal cells. 

Wang and Birgisson [24] presented a time 
domain BEM to model the quasistatic linear 

viscoelastic behavior of asphalt pavements. In this 
viscoelastic analysis, the fundamental solution was 
derived in terms of the elemental displacement 
discontinuities (DDs) and a boundary integral 
equation was formulated in time domain. The 
unknown DDs were assumed to vary quadratically 
in the spatial domain and to vary linearly in time 
domain. The equations were then solved 
incrementally through the whole time history using 
an explicit time-marching approach. The spatial 
and time integrals were evaluated analytically, 
which gives highly accurate results and fast 
convergence of the numerical scheme. Recently, 
the researchers developed an alternative FEM 
formulation to analyze the viscoelastic problems 
based on the constitutive equations of the Kelvin 
and SLS models [25, 26]. Ashrafi and Farid [27] 
presented a general BEM formulation from the 
basic assumptions of SLS viscoelastic constitutive 
equations, in which it needs only the Kelvin’s 
fundamental solution of isotropic elastostatic 
problems. These formulations are based on the 
differential constitutive relation of the SLS 
viscoelastic model. They produced the time 
differential systems of equations, which can be 
solved by an appropriate time marching process. 

In the present work, a direct boundary integral 
formulation is proposed which needs only the 
Kelvin’s fundamental solution of isotropic 
elastostatics with material constants prescribing as 
explicit functions of time. In addition, this 
formulation is based on the differential constitutive 
relation of Kelvin viscoelastic solid model. The 
resulting algorithm is able to solve the general 
quasistatic viscoelastic problems of solid structures 
with any load time-dependence and boundary 
conditions. The proposed BE formulation is 
completely developed to model the viscoelastic 
behavior of engineering structures. It is necessary 
to consider the domain integrals by BE formulation 
due to viscous effects. Avoiding the internal 
elements is the main objective of this paper, 
resulting discretizations only at boundary of the 
problems. Therefore, it reduces the number of 
variables to be computed, and makes easily 
treatment of infinite and semi-infinite viscoelastic 
problems. Quasistatic response of a compressible 
cylinder under the internal pressure as well as, 
problem of a pressurized crack in a viscoelastic 
infinite plane as two numerical examples are 
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provided to validate the proposed formulation. 
 
 
 
 

2. VISCOELASTIC CONSTITUTIVE 
RELATIONS 

 
Mathematically, the usefulness of constitutive 
equations is to describe the relationships among 
the kinematical, mechanical, and thermal field 
equations and to permit the formulations of well-
posed problems in the continuum mechanics. 
Physically, constitutive equations define various 
idealized materials which serve as models for the 
behavior of real materials. All actual materials 
store and dissipate energy in varying degrees 
during a loading/unloading cycle [28]. A number 
of important engineering materials, such as solid 
polymers, simultaneously store and dissipate 
mechanical energy when subjected to the applied 
forces [29]. This form of response as a combination 
of both liquid-like and solid-like features is termed 
as viscoelasticity. Thus, the valid constitutive 
equations for the viscoelastic behavior incorporate 
elastic deformation and viscous flow as special 
cases, and at same time provide for the response 
patterns that characterize the combined behavior. 
Intrinsically, such constitutive equations will 
involve not only stress and strain, but time-rates of 
both stress and strain as well [28]. 

The behavior of viscoelastic materials in the 
uniaxial stress closely resembles that the models 
built from discrete elastic and viscous elements. 
Extensive experimental evidence has shown that 
practically all engineering materials behave 
elastically in dilatation; therefore without serious 
loss of generality, we may assume the fundamental 
constitutive equations for the linear viscoelastic 
behavior in differential operator form to be [28]: 
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(1)

iiii K  3  (2)
 
for isotropic media. Sij and ηij are the elements of 
shear stress and strain tensor, respectively. The 
coefficients {P} and {Q} are differential time 
operators of the form: 
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in which the coefficients pi and qi (not necessarily 
constants) represent the viscoelastic properties. 
Also, K is the bulk modulus. Note further that this 
pair of equations specifies separately the deviatoric 
and volumetric responses. 

Based upon the two fundamental elements of 
elastic spring and viscous dashpot to model 
viscoelastic behavior, it is easy to construct the 
viscoelastic models by suitable combinations of 
this pair of elements. One especially simple 
combination that immediately comes to mind is the 
Kelvin or Voigt viscoelastic model. This model is 
a simple representation of this kind of behavior. 
The Kelvin solids consist of a spring and dashpot 
in parallel, as shown in Figure 1. For which, 
Equations 1 and 2 reduce to the following single 
equation [28]: 

 
  ijtij E    (5)

 
where E and η represent the material constants 
(Figure 1), and the partial derivative with respect 
to time is denoted by ∂t. In general, from Figure 1, 
the following relations can be expressed: 
 

 

 

Figure 1. Sketch of the Kelvin model representing a 
viscoelastic solid. 
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v
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where the Cartesian coordinates are represented by 
subscripts i and j, while the superscript v and e 
represent viscous and elastic parts, respectively. 

The stress-strain equations for the linear 
elastic solids assuming infinitesimal strains can be 
written as [28, 30]: 

 

kmijkm
e
ij C    (8)

 
where Cijkm are the elastic constants representing 
the properties of the body, and can be defined as 
[30]: 
 

 jkimjmikkmijijkmC    (9)

 
where λ and μ are Lame’s constants, given by: 
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in which E and ν are Young’s modulus and 
Poisson ratio, respectively. In addition, δij is the 
Kronecker delta. 

Similarly, for the viscous stress components, 
following relations can be given: 
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where the constant Kijmn represent viscous 
properties of the body, and can be defined as [30]: 
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in which   and   are the hydrostatic and 

deviatoric viscosity coefficients, respectively 
By substituting Equations 8 and 12 into 

Equation 6, we have: 

klijklklijklij KC    (14)

 
In this numerical formulation, in order to 

obtain only boundary integral equations, a 
simplification for the viscosity coefficients   and 

  is assumed, i.e.    . Therefore, 

Equation 14 changes into: 
 

klijklklijklij CC    (15)

 
 
 
3. BOUNDARY ELEMENT FORMULATION 

 
The boundary element method is based on 
boundary integral equations. There are several 
methods of deriving the boundary element 
formulations: the reciprocal theorem, the weighted 
residual concept and the variational approach. 
Here, the boundary integral equations, by 
extending to the Kelvin solid model, will be 
derived using the weighted residual concept. 

The viscous effects should be included into the 
equilibrium equation of the body by relating 
numerically strain time rates with velocity in a way 
that the viscous characteristics of the body satisfy 
the boundary conditions together with the elastic 
ones. In order to do these requirements, the 
equilibrium equations for a general viscoelastic 
body can be written as: 
 

jjjiij ucuB    ,  (16)

Or 
 

jjj
v

iij
e

iij ucuB    ,,  (17)

 
where Bj is the body force acting in j direction.  

Since, in this work, the dynamic effects will 
not be considered, Equation 17 should be rewritten 
as: 
 

0,,  j
v

iij
e

iij B  (18)
 
3.1. Displacement Integral Equations   Here, 
the viscoelastic integral equations for boundary 
and interior points are obtained using the weighted 
residual technique for the equilibrium Equations: 
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0,  ijij B  (19) 

 
In BEM, the Kelvin fundamental solution of 

an elastic infinite body is adopted as a proper 
function for weighting the differential equilibrium 
relation [31-32]. Therefore, Equation 19 can be 
weighted over the considered domain D as: 
 

dv0 , 
D

ijijki B  (20)

 
where ψki is the Kelvin fundamental solution. It 
represents the effect of a unit concentrated load 
applied at a point located in an infinite domain. 
Integrating Equation 20 by parts and then applying 
the divergence theorem yields: 
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where ∂D is the boundary of the body and nj is the 
outward normal vector component. 

By knowing that, 
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where  kij  is the strain fundamental term, Equation 

21 changes into: 
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The next equation is the starting point to 

derive the viscoelastic integral equations. By 
imposing the viscoelastic relations, i.e. Equation 
15, into Equation 24, we have: 
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Also, by knowing that, 
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Equation 25 changes into: 
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By using integrating by parts of the second 

and third terms of Equation 28, we have: 
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Equation 29 can be rewritten by using the 

fundamental equilibrium equation, i.e. 
 

  kijkij yx  ,,   (30)

 
where δ(x, y) is the Dirac’s delta distribution, in 
which y is a field point and x is the source point. 
By knowing that, 
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Equation 29 changes into: 
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where the free term Єji is exactly what was 
obtained in the elastostatic formulations and can be 
found in the BE handbooks [31-32]. Equation 32 is 
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the integral equation for the general Kelvin–Voigt 
viscoelastic solids. 

The body force domain integral can be 
easily transformed into its boundary integral 
equation, which results an equation written 
exclusively for boundary values. The simple and 
robust method, which is called the radial 
integration method, was used for transforming the 
domain integrals into the equivalent boundary 
integrals [33]. Any 2-D or 3-D domain integral can 
be evaluated in a unified way without need to 
discretize the domain into internal elements. By 
assuming that the body force Bi is constant, the 
domain explicit integral equation is converted to 
the boundary integral equation. Therefore, we 
have: 
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in which, 

kiB , for the Kelvin fundamental solution, 
is given by: 
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By applying above changes into Equation 32, 

results: 
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Finally, it is worth to note that the necessary 

kernels ki  and n
kit , for the 2-D elastostatic 

problems can be obtained in BE handbooks with 
the either plane strain or plane stress conditions 
[31-32]. In a similar way to displacement integral 
equations, the boundary stress integral equations 
can be derived to calculate the stress fields on the 
boundary. 
 

3.2. Stress Integral Equations   To derive the 
stress integral equation for interior points, one 
starts by deriving the strain integral equation. At 
interior points, the displacement integral equation 
is given by: 
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Denoting the displacements iu  and the 

displacement rates iu  in tensor notation, the both 
small strains and small strain rates are related to 
displacements and displacement rates via [34]: 
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(38) 

 
By substituting the above relations in Equation 

36 and by considering that the derivatives are done 
with respect to the source point location, we find: 
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The total stress is obtained using the 

constitutive Equation 15 in Equation 39, resulting 
in: 
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Now, the total stress state is obtained using the 
general constitutive Equation 6 and Equation 40: 
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(41) 

 

where  ijk , n
ijkt , 

ijkB  and  ijk  are the new kernels 

based on the Kelvin’s fundamental solution which 
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can be defined by following relations (by using 
[31]): 
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In order to determine the elastic and viscous 

stress states of total stress fields, from Equation 41, 
Equation 8 can be written in following form: 
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By substituting the above relation into the 

equilibrium equation, a time-dependent equation 
can be derived as: 
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Finally, we can solve numerically Equation 47 

by an adaptive linear approximation for the elastic 
stress field. 
 
 

 
4. NUMERICAL DISCRETIZATION 

 
It is only possible to solve boundary element 
formulation (i.e. Equations 35 and 41) analytically 

for very simple problems. The first step in the 
discretization is to divide the boundary ∂D into Ne 
elements, so that Equations 35 and 41 become: 
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and 
 

  

  

















e

r

e

r

e

r

e

r

N

r
D

i

N

r
D

i
n

N

r
D

i
n

N

r
D

n
imn

dsBBdsut

dsutsdtx

1
min

1
min

1
min

1
min)(











 (49)

 
where ∂D = ∑ ∂Dn. 
 
 
 

5. ISOPARAMETRIC ELEMENTS 
 
One of the most significant improvements in the 
BEM was the introduction of the parametric 
representation of both geometry and unknown 
functions similar to isoparametric formulation in 
the FEM. In this type of formulation, the boundary 
parameter yi, the unknown displacement and 
velocity fields ui and ůi, and also the traction fields 
ti are approximated by introducing interpolation 
functions in following forms, respectively: 
 

























m
n
i

n
i

m

ii

m

ii

m

ii

tNt

uNu

uNu

yNy

1

1

1

1

)()(

)()(

)()(

)()(































 (50) 
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where, Nα called shape functions, are polynomials 

of degree m-1. The quantities 
iy , 

iu , 
iu  and 

n
it  are the values of the functions at node  . 

These shape functions are defined in terms of non-
dimensional coordinates ξ (-1 ≤ ξ ≤ 1). Here, for 
discretization of the boundary, the linear elements 
(m = 2) have been used; therefore for these 
elements, we have: 
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A discretized boundary element formulation 

can be obtained by substituting the relations of 
Equation 50 into the chief integral Equations 48 
and 49, to obtain: 
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and 
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Due to the similar shape functions used for 

approximation of the geometry and functions, the 
formulation is referred to as isoparametric. After 
choosing the same number for the source points 
and nodes and then calculating all integrals, the 

discretized boundary element equations may now 
be written in the matrix form as: 

 
)B(D)t(G)(uH)u(H tttβt    (54)

 
and 
 

)(uH)u(H)B(D)t(G)σ( tβtttt   (55)
 
where t represents the time. 
 
 
 

6. NUMERICAL ALGORITHM 
 
To solve the time-dependent differential matrix 
Equations 54 and 55, it can be necessary to 
approximate velocity in time domain by a proper 
time marching treatment. This is carried out by 
choosing a linear behavior along the time, as 
follows: 
 

t
ss

s 


 


uu
u 1

1
  (56)

 
The following linear time marching process, 

by substituting Equation 56 into Equation 54, has 
been derived: 
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in which 
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and 
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As previous values are known, now it is 
necessary to solve the matrix system of Equation 
57 for the current time (tn+ 1). In addition, the 
boundary conditions in time domain are prescribed 
by interchanging the columns of H  and G 
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matrices. un+1 and tn+1 can be obtained from 
Equation 57. 

For calculating the total stress state, 
Equation 55 for the current time (tn+ 1) can be 
computed as: 
 

11   s1s1s1ss β uHuHBDtGσ   (60)
 
in which 1su  is derived from Equation 56. By 
assuming the linear behavior along the time 
domain for the elastic stress rates as: 
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and by substituting it into Equation 47, we have: 
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Elastic stress state can be obtained from Equation 
62, in which e

sσ  is known and 1sσ  is derived by 
Equation 60. The presented algorithm has been 
cast into a unique program and has been solved 
using the commercial software MATLAB. A 
computer code "VBE_KEL" was developed into 
MATLAB. 
 

 
 
7. NUMERICAL EXAMPLES AND RESULTS 
 
For validating accuracy of presented formulation, 
it has been used to solve the two numerical 
viscoelastic problems shown below whose results 
can be compared with the analytical solutions. 
 
7.1. Example One; Pressurization of a 
Viscoelastic Compressible Cylindrical Tank     
The problem of the pressurization of a viscoelastic 
cylinder is of technical important [2-4]. The 
considerations here are for sufficiently long 
cylinders such that plane strain conditions can be 
assumed. 

A thick-walled cylindrical tank, as shown in 
Figure 2, under radial internal pressure Pi is 

analyzed. In the plane of the cross section, we use 
a polar coordinate system r, θ and normal to them 
z axis. Continuity of the deformation in plane 
strain demands that εz = 0. Theory of elasticity 
yields the following formulas for the radial stress 
σr, the tangential stress σθ and the radial 
displacement u subjected to internal pressure Pi: 
 

2r

B
Ar   (63)

2r

B
A   (64)

 

 

Figure 2. The cylindrical tank under the radial internal 
pressure (P). 
 

 

Figure 3. BE Discretization of the model under the radial 
internal pressure. 
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and 
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in which constants A and B are determined from 
boundary conditions. For this problem, the 
boundary conditions are: 
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Upon inserting above conditions: 
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where R1 and R2 are the inside and outside radii of 
tank, respectively. 

As shown by Equations 63 and 64, the stresses 
in elastic body are independent of the material 
constants. Therefore, in accordance with the 
elastic-viscoelastic correspondence principle, the 
stresses will be the same when the cylinder is made 
of a viscoelastic material. Since the displacement u 
is a function of material constants, it will be time 
dependent. The time dependence may be found by 
employing the corresponding principle [2-4]. With 
considering cylinder as a Kelvin viscoelastic solid 
and applying correspondence principle, the actual 
radial displacement is obtained: 
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in which K is the bulk modulus, and q0 and q1 are 
the coefficients of the Kelvin solids. The analytical 
and numerical results for displacements have been 
calculated for the following parameters: 
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TABLE 1. Parameters of the First Modeling. 

Mechanical 
Properties 

E = 20 
(MPa) 

υ = 0.4 β = 14 
(days) 

Geometry 
R1  = 10 (in) 
= 250 (mm) 

R2 = 2 (R1) --- 

Time 
Increment 

Δt = 1 (day) --- --- 

Pressurization
P = 2000 

(KPa) --- --- 

 
 
Due to double symmetry of the problem, only 

a quarter of problem is modeled, as shown in 
Figure 3. The geometry and mechanical properties 
of the model are shown in Table 1. 

The numerical solution is obtained by using 30 
elements and using 20 steps in time- – marching 
process to arrive at t = 120 days. The inner and 
outer wall radial displacement obtained using this 
numerical formulation is compared with the 
analytical ones as shown in Figure 4 and Figure 5, 
respectively. The radial displacement at interior 
point (A: [0.53 R2, 0.53 R2]) obtained by this 
numerical formulation has also been compared 
with the analytical one as shown in Figure 6. It can 
be observed that the agreement of the obtained 
results of this formulation with those of analytic 
ones is very good. 
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Figure 4. The radial inner wall displacement as compare to 
the analytical solution. 
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Figure 5. The radial outer wall displacement as compared to 
the analytical solution. 
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Figure 6. The radial displacement at interior point (A) as 
compared to the analytical solution. 
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Figure 7. Dependence effect to the time step length of the 
radial inner wall displacement as compared to the 
corresponding analytical solution. 

Time step dependence for the proposed 
formulation is also shown in Figure 7 for the inner 
wall radial displacement. As it can be observed, the 
obtained results are rather accurate even for the 
large time steps. However, the final elastostatic 
solution is achieved for any chosen time step. 

It is worth noting that this formulation can 
easily be used for plane stress conditions by 
changing in material constants. A hole or a crack in 
an infinite viscoelastic structure can be modeled as 
a Kelvin solid and is then analyzed by this 
formulation for plane stress conditions. 
 
7.2. Example Two; A Pressurized Crack in 
an Infinite Viscoelastic Plane Structure     As 
another example, we consider the problem of a 
pressurized crack in a viscoelastic plane structure 
made of the Kelvin model. For simplicity, the 
crack is assumed to be aligned along the x axis 
with the center located at the origin of the 
coordinate system as shown in Figure 8. The 
length of the crack is 2a and the crack surfaces 
have been subjected to the uniform normal 
pressure P.  

The analytical solution for the crack opening 
displacement for the elastic structure cases is given 
as [35]: 
 

Pxa
G

xu 22)1(2
)( 






 




 (70)

 
where G and ν are the elastic constants and also ∆u 
denotes the crack opening displacement. 
 

 
 

 

Figure 8. Pressurized crack in an infinite viscoelastic plane 
structure. 
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Since the crack opening displacement is a 
function of the material constants, it will be time 
dependent. The time dependence may be found by 
employing the corresponding principle [2-4]. The 
viscoelastic solution, using the correspondence 
principle and the analytical Laplace transform 
inversion, can be obtained as: 
 

  )(]exp[]exp[

4),(

54321

22

tHPtcctccc

xatxu




(71)

 
where H(t) is the heaviside step function, and the 
constants ci are defined as: 
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in which K is the bulk modulus, and also q0 and q1 
are the coefficients of the Kelvin solids. The 
analytical and numerical results for the crack 
opening displacement have been calculated for the 
following parameters: 
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Figure 9 shows the evolution of the crack 

displacement at the center of the crack (x = 0) 
along time. The numerical solution has been 
obtained by using 28 elements to approximate the 
crack and using 20 steps in the time-marching 
process to arrive at t = 120 days. The good 
agreement between the numerical and analytical 
solutions is observed in Figure 9. 
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Figure 9. Evolution of the crack opening displacement along 
the time domain. 

 
 
 

5. CONCLUDING REMARKS 
 
In this paper, a new formulation to perform 
simplified viscoelastic analysis was presented by 
the BEM. Using a weighted residual procedure and 
a proper kinematical relation between strain and 
material velocities of boundary points, it is 
possible to write boundary integral representation 
for displacement and velocity. The resulting 
algorithm was able to solve the quasistatic 
viscoelastic problems with any time-dependence 
load and boundary conditions. Only the Kelvin’s 
fundamental solution of isotropic elastostatics was 
needed for this formulation. The main advantage of 
the presented approach was that the integral 
representation including only boundary values. It 
has been imposed a spatial approximation for 
boundary values achieving a system of time 
differential equations. This system was easily 
solved by choosing the linear time approximation 
for velocity. A computer code was developed in 
programming environment of MATLAB software, 
and validation of the proposed formulation was 
provided by solving two numerical examples. 

One particular field where BEM applications 
have been limited is the viscoelastic fracture 
mechanics [36]. Introducing the fundamental 
solutions for specific cracked geometries such as 
cracks along the interfaces of bi-material continua 
can be considered as the continuous of the present 
work. Moreover, the material nonlinearity and 
anisotropy as well as temperature variations [37] 
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which highly influence the viscoelastic properties 
can be taken into account in the BEM viscoelastic 
analysis. 
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