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Abstract In this paper, exact closed-form solutions for displacement and stress components of
thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear
variation of properties, as an important case of the known power-law function model is used to
describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels
can have arbitrary inner to outer stiffness ratio without changing the function variation of FGM. After
that, a closed-form solution is presented for displacement and stress components based on exponential
model for variation of properties in radial direction. The accuracy of the present analyses is verified
with known results. Finally, the effects of non-homogeneity and different values of inner to outer
stiffness ratios on the displacement and stress distribution are discussed in detail. It can be seen that
for FG vessels subjected to internal pressure, the variation of radial stress in radial direction becomes
linear as the inner stiffness becomes five times higher than outer one. When the inner stiffness is half
of the outer one, the distribution of the circumferential stress becomes uniform. For the case in which
the external pressure is applied, as the inner to outer shear modulus becomes lower than 1/5, the value
of the maximum radial stress is higher than external pressure.

Keywords  Thick-Walled Pressure Vessels, Functionally Graded Materials, Linearly-Varying
Properties, Exponentially-Varying Properties

oy b Slpn 5l ek el (558 s Sl O3l S Ol 5 el sl sl 3 oS
CuAJ}J&AJ.,\A)lu.ab-db—kﬂjsr@ad]ﬁwguﬁ‘?ﬁbdﬂjxsjgﬂa‘adkC.m.u‘a.\..le‘;w
Slalllas O 5 aalllas (ol s sl sl eslanal Cales glialy 53 o dil 5l &5 s Sle Sl
Ji\j.?‘ja C)l;-c)a..u‘uufu J}\:da,ﬂww‘;\}a G.)j;;;)‘;'dbjw‘*""‘:’i;}‘\’“ ERe 44..vu..&
‘ubb B w\ ol s E ) CLJLLAJJ}UW}@JM MJGMCJL Jl}ul;-jwu].’w
CLA W‘O.waﬂ)j&l;-‘ub-}uwa C)fjdfucjhﬁﬂfkww%jéw‘}éwbu‘ﬁb
l;j.l;-f)l;-ckm Jb-bcb.wwwalsja (s JLis o (65 S FG O3k s oS sls OLES
Mbﬁé}bckﬂwasj&a w\dla;-bjagwdu\));gwwc)ygmbajj
‘Mbw‘))f‘}f)b-)wl«.udsfﬂ;-é‘j w]w‘jga&).do-wcjy ‘MLC)I;.CLNW
J}l} o j\;&ww u’f-m )\.\.u L-L-NL.' \/O _)‘JwSC)l;-Cja.—u J}\)C}aﬁdwj J}waélsjh

)j;Ml)}f)l:-_)u.ﬁ)].&a)\Mcdfu;)‘J}

1. INTRODUCTION

Functionally graded materials (FGMs) are non-
homogenous composites with continuous variation
of the constituents from one surface of the material
to the other. Such a material was first introduced in
Japan [1]. FGMs were first used as a thermal shield

IJE Transactions A: Basics

in industries. New applications have become possible
using FGM such as energy conversion [2], dental and
orthopaedic implants [3,4], thermogenerators and
sensors [5] and joining dissimilar materials [6].
Another important usage of FGM is wear resistant
coatings and the covering of mechanical parts such
as gears, cams, roller bearing and machine tools
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[7,8]. Functionally graded materials are made
by combining different materials using powder
metallurgy methods.

There are many researches in literature that
consider static analysis of functionally graded
cylindrical and spherical vessels based on numerical
approaches such as finite element method [9-11].
However, some semi-analytical solutions are found
for thick-walled FG pressure vessels. You et al
[12] presented a static analysis for thick-walled FG
spherical pressure vessels. Stress analysis of thick-
walled FG cylinders was carried out by Tutuncu
[13]. These analyses are based on exponential
model for property variation in thickness direction
by using the power series solution. It is noticeable
that in most of analyses carried out in the field of
FGM, the variation of the material properties has
been modeled as exponential [14-19] or power-law
function [20-25]. Based on power-law model, for
all values of FGM power, mechanical properties
ratio of the structure surfaces can have any
arbitrary value. There are a few analytical solutions
for FG hollow cylinders [26,27]. An analytical
solution for static analysis of thick-walled
cylindrical and spherical FG pressure vessels based
on power-law model has been investigated by
Tutuncu, et al [28]. Eslami, et al [29] studied
thermal and mechanical stresses in FG thick
spheres. However, in their analyses an incomplete
power-law model is used for variation of Young’s

modulus as E = E,r®. The limitation of this model
is that for specific value of FGM power B, the

inner to outer Young’s modulus ratio can not have
arbitrary value. For example, if the properties
function is supposed to vary linearly (e.g. B=1), it

causes to have inner to outer Young’s modulus
ratio equal to radius ratio (e.9. E,/E;=Ry/R;).
However, no closed-form solutions were found for
thick-walled FG spherical vessels based on
exponential FG model and also based on power-
law function without the mentioned limitation.

In this article, in order to vanish the limitation of
incomplete power-law model, an exact analytical
solution is presented for thick-walled functionally
graded spherical pressure vessels with linearly-
varying properties in radial direction. In this closed-
form solution, the inner and outer surface properties
can have arbitrary value. Besides, a closed-form
solution has been obtained for thick-walled FG
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spherical pressure vessels based on exponential
model for material distribution in radial direction.
The inner to outer material property ratio can have
arbitrary value. Therefore, the effects of applying
different materials in designing of pressure vessels
can be considered on the displacement and stress
components. Finally, the results are verified by
other known results. Meanwhile, the effects of
different parameters on the solution are discussed
and the solutions based on different FGM models
are compared.

2. PROBLEM ANALYSIS

In order to elastostatics analysis of spherically
symmetric thick-walled functionally graded spherical
pressure vessels, only one equilibrium equation
exists as follow

do c,—GC
Or y02r 96

0 ; op=0
dr r 0

0 @)

Supposing infinitesimal deformation, the strain-
displacement relations in spherical coordinate system
are

dur . uI‘ 2
Sr = ? , Se = 8(') :T ( )
For linear behavior of material, the stress-strain
relations in spherically symmetric state for a non-
homogenous isotropic material are written as

2u(r)
. :ail—z\’)[(l—v)sr—kase}

2p(r)
Ge :ﬁ[se-ﬂ/s r:|

®3)

Where p(r) is the radius dependant shear modulus

and v is the Poisson’s ratio. With regard to the
small variation of Poisson’s ratio, it is usually
consider constant in analysis of functionally graded
materials (e.g. [22-26]).

Case 1.

Linearly-varying properties In this case, it is
assumed that the variation of mechanical properties
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is linear through the thickness. Therefore, variation
of shear modulus of a functionally graded material
is modeled as

u(r)=A+Br 4)

Supposing that the shear modulus of inner and
outer surfaces are p; and p,, respectively, the

constant coefficients A and B are calculated as

A= KRy ~HoRj

B= HO_“i
Ro_Ri

R, R, ()

Using above equation, the Equation 4 can be
rewritten as

n(r)/ug =1—(1—ui / u&{%} (6)

Substituting Equations 2 and 3 into Equation 1
yields an ordinary differential equation as

up 20 2 @0 2 v
g2 rdr 27 pum dr 1-vor

(")

Substituting Equation 4 into above equation, the
following equation yields

2

a7, f(-B .2 du—r+
2 A+Br r)dr

dr + (8)

1( 2v B 2
e !
rtl-vA+Br r) 7'

The differential Equation 8 can be solved in term
of Hypergeometric function as

Ur=

—(1+N) o _él
Cor H([ (1-N),2+N],Ji+2N], Brj+

Al

CZL.r-(l-Nm[[_ (1+N),2—N],[1—2N],—EFJ

(9)

Where H is the Hypergeometric function in which
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is defined by power series as [30]

H([a, b],[c],x) =
2 ab@+(b+D..@a+Db+1) i+1 (10)

M T el (o)

and the constant coefficient N is

3-5v
1-v

N =

(11)

Substituting Equation 9 into strain-displacement
relations (2) and using stress-strain relations (3),
the radial and circumferential stresses are obtained
as
__2(A+Br)
1-2v)r?

r
{ClLr_N((l—v)fl(r) +[l—3v+N(1—v)]f3(r)j

+ C2|_FN((1— v)f 5 () +[1-3v —N(]__V)]f4(r)j }

(12)
66 :G(P =
2(A+Br) B
_m{cﬂ_r N(vfl(r)—(l—v—vN)fS(r)j

+C2LrN(vf 2(r)—(1—v+vN)f3(r))}
(13)

Where f,(r) through f,(r) functions are defined as
following

0|
f(0)
AW% H [[iN,?:i N [2+ 2N],—%%j (14)

B (1t2N)

T
3(") :H[[ZiN,—lJ_rN],[li 2N],—§1j
f,(r) Br

In Equations 9, 12 and 13, the unknown coefficients
C,. and C,_ can be determined by applying the

boundary conditions of inner and outer surfaces.
For a spherical vessel subjected to both internal
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hydrostatic pressure P, and external hydrostatic
pressure P,, the boundary conditions can be written
as

(15)
Gr(r = Ro) = PO
Satisfying the above boundary conditions, yields

o - 1-2v)at
L 2(A+BR;)(A+BR,)

{(A+BR)R;?R N

[(1—v)f2(Ro)+[l—3v—N(l—v)]f4(RO))Pi ~(A+BR;)
ROZRiN((l—v)fz(Ri)+[l—3v—N(l—v)]f4(Ri))P0}

Cooacl
Cyp = -G 2WA {(A+BR_)R.2R_~N
2(A+BR)(A+BR,) o’"i "o

((1—v)f1(Ro)+[1—3v+N(1—v)]f3(Ro))Pi ~(A+BR)
ROZRi_N((l—v)fl(Ri)+[1—3v+N(1—v)]f3(Ri))Po}
(16)
Where the parameter A is defined as
A=
Ri_NRON((l—v)fl(Ri)+[1—3v+N(1—v)]f3(Ri))><
((1—v)f2(R0)+[1—3v—N(1—v)]f4(R0))—
RiNRO_N((l—v)f2(Ri)+[1—3v—N(l—v)]f4(Ri))x

((1—v)f1(Ro)+[1—3v+N(1—v)]f3(R0))
(7)

Case 2.

Exponentially-varying properties In order to
consider the effect of different FGM models on
displacement and stress distribution of a spherical
FG wvessel, it is assumed that the variation of
functionally graded shear modulus obeys the
exponential model as

u(r) = cexp(I'r) (18)

Where ¢ and ' are two coefficients. Supposing
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that the shear modulus of inner and outer surfaces
are p; and p,, respectively, the constants ¢ and T

are obtained as

0
. _R. | .
e R

Substituting the above relations into Equation 18
yields the following function for variation of shear
modulus in radial direction of vessel

1-(r/R,)
i 11-(R; /R
M(r)/uoz(ﬁ_lj ( | O) (20)
0

Replacing Equation 20 into differential Equation 7,
the following differential equation with variable
coefficients can be obtained

The solution of this equation is

1-3v 3
C —— = Tr |+
u _exp(-T'r/2) 1L M[ 1-v )

(22)

r r 1-3v 3
Cszw(‘ﬁ’E’n)

In which w,, and W,, are Whittaker functions

[31]. Substituting relation (22) into Equations 2
and 3 yields

o. =
r
1_%%2”2){% 1+V)9 1)~ Cop 0-V) g3()
(23)
o 2c exp(I'r/2)
0% T v a-2v) 2
Ce @) [ve, (0 +@-2v)g, )]+ (24)

Cop [—v 1-v)g 5() + @+ V)~ 2v)g4(r)J }
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Where

ol A
g, (1) M 2(1-v 2
5301\, {_1(1—5%1}3%
g4 (r) Wi 2l1-v 2

It is assumed that the vessel is subjected to internal
hydrostatic pressure P, and external hydrostatic

pressure P,, simultaneously. Thus, the boundary

conditions will be presented by relation (15).
Satisfying the mentioned boundary conditions result
in the following relation for unknown coefficients as

@-2v)

Cie = T
2(1+v)cexp(E(Ri + Ro)j

[R

2

R;2exp(TR, /2)5; (R )P, ~ Ry exp(T'R; /2) 0, (R;) P,
05(R1)G(Ry)—93(R,) 0y (R))

93(Ri)91(Ro) _g3(RO)gl(Ri)
@-2v)
2(1-v)c exp[g (R + RO))

2exp(TR, /2)03(R,)P: —Rozexp(FRi/Z)gs(Ri)POJ

2
i
E=

(26)

Substituting C,z and C,¢ into relations (22-24) will

result in relations for displacement and radial and
circumferential stress distribution.

3. VERIFYING THE SOLUTION

In order to verify the accuracy of the present
solutions, results of two specific problems are
compared with known results in literature. The first
problem is stress analysis of a homogeneous thick-
walled pressure vessel (e.g.p;/p, —1). Distribution

of radial and circumferential stresses for a
homogeneous thick-walled spherical pressure vessels
are as follows [32]

TRy /RY -1 o e AR, /R -1

(27)
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In Figure 1, a comparison between stress distribution
of a spherical homogeneous vessel based on
reference [32] and both linear and exponential
model of present analysis is shown.

In second problem, a comparison has been
carried out with the results of reference [28]. Based
on the relation (4), the ratio of the inner to outer
elasticity modulus are as follow

E(R;) A+BR,

= (28)
E(R,) A+BR,

However the variation of the mechanical properties
in reference [28] was assumed as

p
L :[ﬁJ (29)

E(R,) |R,

It can be seen that as the constants A of relation
(29) and B of relation (30) are equal to zero and

unity respectively, the present model and the
model of reference (28) becomes the same. In
Figure 2 the comparison is presented for this
special case. The superscript H denotes the
homogeneous state.

As it is shown in Figures 1 and 2, the present
results have a good agreement with those in
literature.

4. PARAMETRIC STUDY AND DISCUSSION

To present numerical results, some examples have
been considered. In all of them, the outer to inner
radius ratio (R,/R;) of 2 is used. All figures are

depicted for five different inner to outer shear
modulus (p;/p, ) as 1/5, 1/2, 1, 2 and 5. In these

figures, the solid line corresponds to the isotropic
homogeneous material.

As it is mentioned, in the first case, it is
assumed that the wvariation of properties for
functionally graded material is linear and in the
second case, it is supposed that variation of
properties is as an exponential function.

In Figures 3a,b the variation of nondimensional
shear modulus across the radial direction based on
linear function and exponential models are depicted,
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Figure 1. A comparison of nondimensional normal stresses
for a homogeneous thick-walled spherical vessel subjected to

internal pressure P; .
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Present
| Reference [28]

1.3

Figure 2. A comparison of nondimensional radial stress for a
specific case of FG thick-walled spherical vessel subjected to
internal pressure.

respectively. It can be seen that for different inner
and outer shear modulus ratio, the variation of
shear modulus stay linear.

4.1. Example 1.

4.1.1. A FG spherical Vessel subjected to internal
pressure P; In Figures 4a,b the variation of
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Figure 3. (a) Nondimensional shear modulus across the radial
direction for linear variation model and (b) Nondimensional
shear modulus across the radial direction for exponential
model.

nondimensional radial stress through the radial
direction of a thick-walled spherical vessel based
on linear function and exponential model are
shown, respectively. Focusing on these figures, it
can be seen that by increasing the inner to outer
shear modulus ratio, the radial stress distribution
tends to be more nonlinear. However, decreasing
this ratio from unity, the state of nonlinearity
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Figure 4. (a) Nondimensional radial stress across the radial
direction for a thick-walled spherical vessel subjected to

internal pressure P; based on linear variation model and (b)
Nondimensional radial stress across the radial direction for a
thick-walled spherical vessel subjected to internal pressure P,
based on exponential model.

decreases with respect to homogeneous one. In
other words, when the stiffness of the outer surface
gets five times higher than inner one, the radial
stress distribution nearly varies linear.

In Figures 5a,b the variation of nondimensional
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Figure 5. (a) Nondimensional circumferential stress across the
radial direction for a thick-walled spherical vessel subjected to

internal pressure P, based on linear variation model and (b)

Nondimensional circumferential stress across the radial
direction for a thick-walled spherical vessel subjected to

internal pressure P; based on exponential model.

circumferential stress through the radial direction
based on linear and exponential function models
are shown, respectively. As it can be found in
Figures 5a,b by increasing the inner to outer
stiffness ratio, the value of circumferential stress at
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inner surface increases. In this case, the value of
circumferential stress decreases as the points close
to outer surface. Another important point that can
be found from these figures is that the difference
between circumferential ~stress of surfaces
decreases with decreasing of stiffness of inner to
outer surface. For inner to outer shear modulus
ratio of 1/2, the circumferential stress distribution
across the thickness of the vessel is approximately
uniform. Whenever the stiffness of inner to outer
surface is lower than this value, the value of
circumferential stress in the inner surface is lower
than the value at outer surface.

The variation of nondimensional displacement
through the radial direction based on linear and
exponential function models are shown in Figures
6a,b respectively. As it can be seen in these
figures, by increasing the stiffness from inner to
outer surfaces, the value of radial displacement
decreases and its nonlinearity increases in radial
direction.

4.2. Example 2.

4.2.1. A FG spherical vessel subjected to both
internal pressure P; and external pressure P,
In order to consider the effects of applying both
internal and external pressures on the surfaces of
thick walled spherical vessel, in this example the
results of a FG spherical vessel subjected to both
internal and external pressures are presented. It is
assumed that the intensity of the internal and
external pressure is the same. In Figures 7a,b the
variation of the radial stress in radial direction are
shown for the linear and exponential FGM model
respectively. It can be seen that for this loading
conditions, the radial stress in radial direction is
uniform and equal to the external pressure when
the vessel is made of homogeneous material. For
FG vessels, although internal and external pressure
is the same, the variation of the radial stress in
radial direction is not uniform. Also, it can be said
that as the inner shear modulus is higher than outer
one, the compression stress is more significant than
the surface pressure. On the other hand, the
maximum of compression stress located in a point
other than the surfaces. However, as the outer
shear modulus is higher than inner one, the
compression stress in the wall of the vessel is
lower than the surface pressure. In this case, there
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Figure 6. (a) Nondimensional radial displacement across the
radial direction for a thick-walled spherical vessel subjected to

internal pressure P, based on linear variation model and (b)

Nondimensional radial displacement across the radial
direction for a thick-walled spherical vessel subjected to

internal pressure P; based on exponential model.

is a point in the vessel that the stress is minimum.
In Figures 8a,b the variation of the circumferential
stress of spherical vessel in radial direction are
depicted. It can be seen that only for the homogenous
material, the distribution of the circumferential
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Figure 7. (a) Nondimensional radial stress across the radial
direction for a thick-walled spherical vessel subjected to

internal and external pressure P, based on linear variation

model and (b) Nondimensional radial stress across the radial
direction for a thick-walled spherical vessel subjected to

internal and external pressure P; based on exponential model.

stress is uniform. Also, for FG spherical vessels
with this kind of surface conditions, the variation
of the circumferential stress in radial direction is
nearly linear. This state of variation is less in
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Figure 8. (a) Nondimensional circumferential stress across the
radial direction for a thick-walled spherical vessel subjected to

internal and external pressure P; based on linear variation

model and (b) Nondimensional circumferential stress across the
radial direction for a thick-walled spherical vessel subjected to

internal and external pressure P; based on exponential model.

exponential variation of the FGM. It can be seen
that for different values of shear ratio, the
circumferential stress in the middle of the wall is
nearly equal to the surface pressure.
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4.3. Example 3.

4.3.1. A FG spherical vessel subjected to external
pressure P, In this example, the results of a FG
spherical vessel subjected to external pressure on
the outer surface is presented.

In Figures 9a,b the variation of the radial stress
in radial direction are depicted for various shear
modulus ratios. It can be seen that as the inner to
outer shear modulus ratio approaches 5, the
variation of the radial stress becomes linear and for
lower shear ratios, the variation is nonlinear.
Another important issue that can be concluded is
when the inner to outer shear modulus ratio is lower
than 1/5, the value of the radial stress in some points
of the vessel is higher than external pressure. This
value is the maximum of the radial stress.

In Figures 10a,b the variation of the circumferential
stress is depicted for both linear and exponential
models, respectively. In both models, the variation
of the circumferential stress is uniform for inner to
outer shear ratio close to 2. For higher shear ratios
the value of the circumferential stress in inner
surface is lower than that of the outer surface and
vice versa.

5. CONCLUSION

In a functionally graded material, the property of
material varies continuously from point to point.
By this characteristic, appropriate mechanical
properties are achievable. Employing such a
material is commonly used in building the thick-
walled pressure vessels.

In this paper exact elasticity solutions have been
presented to study the static analysis of thick-
walled spherical vessels subjected to internal and
external hydrostatic pressure. The closed-form
solutions have been obtained for displacement and
stress fields based on two common FGM models.
With regard to use of different compound of
materials in FG vessels, at first, the variation
function of FGM has been assumed to be linear
with respect to thickness direction. By this
proposed function, inner to outer stiffness ratio
becomes independent of the variation function of
properties. After that, it has been supposed that
variation function of FGM obeys exponential
model. Some important results of this analysis
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Figure 9. (a) Nondimensional radial stress across the radial
direction for a thick-walled spherical vessel subjected to

external pressure P, based on linear variation model and (b)

Nondimensional radial stress across the radial direction for a
thick-walled spherical vessel subjected to external pressure

P, based on exponential model.

have been obtained as follow:

5.1. Only Internal Pressure Applies

o When the stiffness of the outer surface gets
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Figure 10. (a) Nondimensional circumferential stress across
the radial direction for a thick-walled spherical vessel

subjected to external pressure P, based on linear variation

model and (b) Nondimensional circumferential stress across
the radial direction for a thick-walled spherical vessel

subjected to external pressure P, based on exponential model.

five times higher than inner one, the radial
stress distribution nearly varies linear and by
increasing the inner to outer shear modulus
ratio, the radial stress distribution tends to be
more nonlinear.

IJE Transactions A: Basics

For inner to outer shear modulus ratio of 1/2,
the circumferential stress distribution across
the thickness of the vessel is approximately
uniform and by increasing the inner to outer
stiffness ratio, the value of circumferential
stress at inner surface increases.

5.2. The Same Internal and External Pressure
Applies Simultaneously

As the shear modulus of the inner surface is
higher than that of the outer surface, the
value of the compression stress in the
vessel is higher than the surface pressure.
Conversely, the value of the compression
stress in the vessel is lower than the surface
pressure when the inner shear modulus is
lower than the outer one.

The variation of the circumferential stress in
radial direction is nearly linear and for
arbitrary shear modulus ratios, the value of
this stress at the middle of the wall of the
vessel becomes equal to the surface pressure.

5.3. Only External Pressure Applies

For the inner to outer shear ratios of 5, the
variation of the radial stress is linear and
with decreasing this ratio the distribution
becomes nonlinear.

When the inner to outer shear modulus is
less than 1/5, in some point of the wall of the
vessel, the value of the radial stress is higher
than external pressure.

For inner to outer shear ratios close to 2, the
variation of the circumferential stress is
uniform.
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