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Abstract   In this paper, exact closed-form solutions for displacement and stress components of 
thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear 
variation of properties, as an important case of the known power-law function model is used to 
describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels 
can have arbitrary inner to outer stiffness ratio without changing the function variation of FGM. After 
that, a closed-form solution is presented for displacement and stress components based on exponential 
model for variation of properties in radial direction. The accuracy of the present analyses is verified 
with known results. Finally, the effects of non-homogeneity and different values of inner to outer 
stiffness ratios on the displacement and stress distribution are discussed in detail. It can be seen that 
for FG vessels subjected to internal pressure, the variation of radial stress in radial direction becomes 
linear as the inner stiffness becomes five times higher than outer one. When the inner stiffness is half 
of the outer one, the distribution of the circumferential stress becomes uniform. For the case in which 
the external pressure is applied, as the inner to outer shear modulus becomes lower than 1/5, the value 
of the maximum radial stress is higher than external pressure. 
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در اين مقاله، براي جابجايي و ميدان تنش مخازن جدار ضخيم كروي ساخته شده از مواد هدفمند پاسخ چكيده       

ترين حالت خاص از مدل معروف تابع  عنوان مهم همنظور، تغييرات خطي خواص، ب بدين.  شده استعرضهبسته 
خلاف مطالعات  در اين مطالعه بر.  استشده تشريح توزيع مواد سازنده در راستاي ضخامت استفاده برایتواني، 
تواند  ، بدون محدوديت تغيير حالت خطي توزيع مواد، نسبت سفتي سطح داخل مخزن به سطح خارج ميمشابه

هاي  لفهؤ مدل تابع نمايي تغييرات خواص در راستاي شعاعي، براي مةسپس، برپاي. مقادير متفاوتي داشته باشد
در پايان، .  استشدهها با نتايج موجود بررسي   صحت تحليل و شدهعرضهسته ميدان تنش و جابجايي پاسخ ب

نتايج . جايي بررسي شده است هثيرات ناهمگني و مقادير مختلف نسبت سفتي سطوح مخزن بر توزيع تنش و جابأتِ
 داًسفتي سطح داخلي به سطح خارجي حدو كروي تحت فشار داخلي، هرگاه نسبت FG كه در مخازن نشان داد

 نصف تقريباًی كه سفتي سطح داخل هنگامي.  خطي استاً باشد، توزيع تنش شعاعي در راستاي شعاعي تقريب۵برابر 
براي حالتي كه تنها فشار خارجي وجود داشته باشد، . سفتي سطح خارج باشد، توزيع تنش حلقوي يكنواخت است

 تنش شعاعي در داخل  بيشترين مقدار باشد،۵/۱هرگاه نسبت مدول برشي سطح داخل به سطح خارج كمتر از 
  . مخزن، بيشتر از مقدار فشار خارجي خواهد بودةجدار

 
 

1. INTRODUCTION 
 
Functionally graded materials (FGMs) are non-
homogenous composites with continuous variation 
of the constituents from one surface of the material 
to the other. Such a material was first introduced in 
Japan [1]. FGMs were first used as a thermal shield 

in industries. New applications have become possible 
using FGM such as energy conversion [2], dental and 
orthopaedic implants [3,4], thermogenerators and 
sensors [5] and joining dissimilar materials [6]. 
Another important usage of FGM is wear resistant 
coatings and the covering of mechanical parts such 
as gears, cams, roller bearing and machine tools 
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[7,8]. Functionally graded materials are made 
by combining different materials using powder 
metallurgy methods. 
     There are many researches in literature that 
consider static analysis of functionally graded 
cylindrical and spherical vessels based on numerical 
approaches such as finite element method [9-11]. 
However, some semi-analytical solutions are found 
for thick-walled FG pressure vessels. You et al 
[12] presented a static analysis for thick-walled FG 
spherical pressure vessels. Stress analysis of thick-
walled FG cylinders was carried out by Tutuncu 
[13]. These analyses are based on exponential 
model for property variation in thickness direction 
by using the power series solution. It is noticeable 
that in most of analyses carried out in the field of 
FGM, the variation of the material properties has 
been modeled as exponential [14-19] or power-law 
function [20-25]. Based on power-law model, for 
all values of FGM power, mechanical properties 
ratio of the structure surfaces can have any 
arbitrary value. There are a few analytical solutions 
for FG hollow cylinders [26,27]. An analytical 
solution for static analysis of thick-walled 
cylindrical and spherical FG pressure vessels based 
on power-law model has been investigated by 
Tutuncu, et al [28]. Eslami, et al [29] studied 
thermal and mechanical stresses in FG thick 
spheres. However, in their analyses an incomplete 
power-law model is used for variation of Young’s 
modulus as β= rEE 0 . The limitation of this model 
is that for specific value of FGM power β , the 
inner to outer Young’s modulus ratio can not have 
arbitrary value. For example, if the properties 
function is supposed to vary linearly (e.g. 1=β ), it 
causes to have inner to outer Young’s modulus 
ratio equal to radius ratio (e.g. i0io RREE = ). 
However, no closed-form solutions were found for 
thick-walled FG spherical vessels based on 
exponential FG model and also based on power-
law function without the mentioned limitation. 
     In this article, in order to vanish the limitation of 
incomplete power-law model, an exact analytical 
solution is presented for thick-walled functionally 
graded spherical pressure vessels with linearly-
varying properties in radial direction. In this closed-
form solution, the inner and outer surface properties 
can have arbitrary value. Besides, a closed-form 
solution has been obtained for thick-walled FG 

spherical pressure vessels based on exponential 
model for material distribution in radial direction. 
The inner to outer material property ratio can have 
arbitrary value. Therefore, the effects of applying 
different materials in designing of pressure vessels 
can be considered on the displacement and stress 
components. Finally, the results are verified by 
other known results. Meanwhile, the effects of 
different parameters on the solution are discussed 
and the solutions based on different FGM models 
are compared. 
 
 
 

2. PROBLEM ANALYSIS 
 
In order to elastostatics analysis of spherically 
symmetric thick-walled functionally graded spherical 
pressure vessels, only one equilibrium equation 
exists as follow 
 

ϕθ
θ σ=σ=

σ−σ
+

σ ;0
r

2
dr

d rr  (1) 

 
Supposing infinitesimal deformation, the strain-
displacement relations in spherical coordinate system 
are 
 

r
ru

;
dr

rdu
r =ϕε=θε=ε  (2) 

 
For linear behavior of material, the stress-strain 
relations in spherically symmetric state for a non-
homogenous isotropic material are written as 
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Where )r(μ  is the radius dependant shear modulus 
and ν  is the Poisson’s ratio. With regard to the 
small variation of Poisson’s ratio, it is usually 
consider constant in analysis of functionally graded 
materials (e.g. [22-26]). 
 
Case 1. 
 
Linearly-varying properties   In this case, it is 
assumed that the variation of mechanical properties 
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is linear through the thickness. Therefore, variation 
of shear modulus of a functionally graded material 
is modeled as 
 

BrA)r( +=μ  (4) 
 
Supposing that the shear modulus of inner and 
outer surfaces are iμ  and oμ , respectively, the 
constant coefficients A  and B  are calculated as 
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−
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Using above equation, the Equation 4 can be 
rewritten as 
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Substituting Equations 2 and 3 into Equation 1 
yields an ordinary differential equation as 
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Substituting Equation 4 into above equation, the 
following equation yields 
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The differential Equation 8 can be solved in term 
of Hypergeometric function as 
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Where H  is the Hypergeometric function in which 

is defined by power series as [30] 
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and the constant coefficient Ν  is 
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=Ν
1
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Substituting Equation 9 into strain-displacement 
relations (2) and using stress-strain relations (3), 
the radial and circumferential stresses are obtained 
as 
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Where )r(f1  through )r(f4  functions are defined as 
following 
 

⎟
⎠
⎞

⎜
⎝
⎛ −Ν±Ν±−Ν±=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −Ν±Ν±Ν±

Ν±
ΝΝ±

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

r
1

B
A],21[],1,2[H

)r(4f

)r(3f
r
1

B
A],22[],3,[H

r
1

)21(
)1)(2(

B
A

)r(2f

)r(1f

m (14) 

 
In Equations 9, 12 and 13, the unknown coefficients 

L1C  and L2C  can be determined by applying the 
boundary conditions of inner and outer surfaces. 
For a spherical vessel subjected to both internal 
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hydrostatic pressure iP  and external hydrostatic 
pressure oP , the boundary conditions can be written 
as 
 

oP)oRr(r
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==σ
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Satisfying the above boundary conditions, yields 
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Where the parameter Δ  is defined as 
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Case 2. 
 
Exponentially-varying properties   In order to 
consider the effect of different FGM models on 
displacement and stress distribution of a spherical 
FG vessel, it is assumed that the variation of 
functionally graded shear modulus obeys the 
exponential model as 
 

)rexp(c)r( Γ=μ  (18) 
 
Where c  and Γ  are two coefficients. Supposing 

that the shear modulus of inner and outer surfaces 
are iμ  and oμ , respectively, the constants c  and Γ  
are obtained as 
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Substituting the above relations into Equation 18 
yields the following function for variation of shear 
modulus in radial direction of vessel 
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Replacing Equation 20 into differential Equation 7, 
the following differential equation with variable 
coefficients can be obtained 
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The solution of this equation is 
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In which MW  and WW  are Whittaker functions 
[31]. Substituting relation (22) into Equations 2 
and 3 yields 
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Where 
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It is assumed that the vessel is subjected to internal 
hydrostatic pressure iP  and external hydrostatic 
pressure oP , simultaneously. Thus, the boundary 
conditions will be presented by relation (15). 
Satisfying the mentioned boundary conditions result 
in the following relation for unknown coefficients as 
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Substituting E1C  and E2C  into relations (22-24) will 
result in relations for displacement and radial and 
circumferential stress distribution. 
 
 
 

3. VERIFYING THE SOLUTION 
 
In order to verify the accuracy of the present 
solutions, results of two specific problems are 
compared with known results in literature. The first 
problem is stress analysis of a homogeneous thick-
walled pressure vessel (e.g. 1oi →μμ ). Distribution 
of radial and circumferential stresses for a 
homogeneous thick-walled spherical pressure vessels 
are as follows [32] 
 

iP
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In Figure 1, a comparison between stress distribution 
of a spherical homogeneous vessel based on 
reference [32] and both linear and exponential 
model of present analysis is shown. 
     In second problem, a comparison has been 
carried out with the results of reference [28]. Based 
on the relation (4), the ratio of the inner to outer 
elasticity modulus are as follow 
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However the variation of the mechanical properties 
in reference [28] was assumed as 
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It can be seen that as the constants A  of relation 
(29) and β  of relation (30) are equal to zero and 
unity respectively, the present model and the 
model of reference (28) becomes the same. In 
Figure 2 the comparison is presented for this 
special case. The superscript H  denotes the 
homogeneous state. 
     As it is shown in Figures 1 and 2, the present 
results have a good agreement with those in 
literature. 
 
 
 
4. PARAMETRIC STUDY AND DISCUSSION 
 
To present numerical results, some examples have 
been considered. In all of them, the outer to inner 
radius ratio ( io RR ) of 2 is used. All figures are 
depicted for five different inner to outer shear 
modulus ( oi μμ ) as 1/5, 1/2, 1, 2 and 5. In these 
figures, the solid line corresponds to the isotropic 
homogeneous material. 
     As it is mentioned, in the first case, it is 
assumed that the variation of properties for 
functionally graded material is linear and in the 
second case, it is supposed that variation of 
properties is as an exponential function. 
     In Figures 3a,b the variation of nondimensional 
shear modulus across the radial direction based on 
linear function and exponential models are depicted, 
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respectively. It can be seen that for different inner 
and outer shear modulus ratio, the variation of 
shear modulus stay linear. 
 
4.1. Example 1. 
 
4.1.1. A FG spherical Vessel subjected to internal 
pressure Pi   In Figures 4a,b the variation of 

nondimensional radial stress through the radial 
direction of a thick-walled spherical vessel based 
on linear function and exponential model are 
shown, respectively. Focusing on these figures, it 
can be seen that by increasing the inner to outer 
shear modulus ratio, the radial stress distribution 
tends to be more nonlinear. However, decreasing 
this ratio from unity, the state of nonlinearity 
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Figure 1. A comparison of nondimensional normal stresses 
for a homogeneous thick-walled spherical vessel subjected to 
internal pressure iP . 
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Figure 2. A comparison of nondimensional radial stress for a 
specific case of FG thick-walled spherical vessel subjected to 
internal pressure. 
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(b) 
 
Figure 3. (a) Nondimensional shear modulus across the radial 
direction for linear variation model and (b) Nondimensional 
shear modulus across the radial direction for exponential 
model. 
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decreases with respect to homogeneous one. In 
other words, when the stiffness of the outer surface 
gets five times higher than inner one, the radial 
stress distribution nearly varies linear. 
     In Figures 5a,b the variation of nondimensional 

circumferential stress through the radial direction 
based on linear and exponential function models 
are shown, respectively. As it can be found in 
Figures 5a,b by increasing the inner to outer 
stiffness ratio, the value of circumferential stress at 
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(b) 
 
Figure 4. (a) Nondimensional radial stress across the radial 
direction for a thick-walled spherical vessel subjected to 
internal pressure iP  based on linear variation model and (b) 
Nondimensional radial stress across the radial direction for a 
thick-walled spherical vessel subjected to internal pressure iP
based on exponential model. 
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(b) 
 
Figure 5. (a) Nondimensional circumferential stress across the 
radial direction for a thick-walled spherical vessel subjected to 
internal pressure iP  based on linear variation model and (b) 
Nondimensional circumferential stress across the radial 
direction for a thick-walled spherical vessel subjected to 
internal pressure iP  based on exponential model. 
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inner surface increases. In this case, the value of 
circumferential stress decreases as the points close 
to outer surface. Another important point that can 
be found from these figures is that the difference 
between circumferential stress of surfaces 
decreases with decreasing of stiffness of inner to 
outer surface. For inner to outer shear modulus 
ratio of 1/2, the circumferential stress distribution 
across the thickness of the vessel is approximately 
uniform. Whenever the stiffness of inner to outer 
surface is lower than this value, the value of 
circumferential stress in the inner surface is lower 
than the value at outer surface. 
     The variation of nondimensional displacement 
through the radial direction based on linear and 
exponential function models are shown in Figures 
6a,b respectively. As it can be seen in these 
figures, by increasing the stiffness from inner to 
outer surfaces, the value of radial displacement 
decreases and its nonlinearity increases in radial 
direction. 
 
4.2. Example 2. 
 
4.2.1. A FG spherical vessel subjected to both 
internal pressure Pi and external pressure Po   
In order to consider the effects of applying both 
internal and external pressures on the surfaces of 
thick walled spherical vessel, in this example the 
results of a FG spherical vessel subjected to both 
internal and external pressures are presented. It is 
assumed that the intensity of the internal and 
external pressure is the same. In Figures 7a,b the 
variation of the radial stress in radial direction are 
shown for the linear and exponential FGM model 
respectively. It can be seen that for this loading 
conditions, the radial stress in radial direction is 
uniform and equal to the external pressure when 
the vessel is made of homogeneous material. For 
FG vessels, although internal and external pressure 
is the same, the variation of the radial stress in 
radial direction is not uniform. Also, it can be said 
that as the inner shear modulus is higher than outer 
one, the compression stress is more significant than 
the surface pressure. On the other hand, the 
maximum of compression stress located in a point 
other than the surfaces. However, as the outer 
shear modulus is higher than inner one, the 
compression stress in the wall of the vessel is 
lower than the surface pressure. In this case, there 

is a point in the vessel that the stress is minimum. 
     In Figures 8a,b the variation of the circumferential 
stress of spherical vessel in radial direction are 
depicted. It can be seen that only for the homogenous 
material, the distribution of the circumferential 
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Figure 6. (a) Nondimensional radial displacement across the 
radial direction for a thick-walled spherical vessel subjected to 
internal pressure iP  based on linear variation model and (b)
Nondimensional radial displacement across the radial 
direction for a thick-walled spherical vessel subjected to 
internal pressure iP  based on exponential model. 
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stress is uniform. Also, for FG spherical vessels 
with this kind of surface conditions, the variation 
of the circumferential stress in radial direction is 
nearly linear. This state of variation is less in 

exponential variation of the FGM. It can be seen 
that for different values of shear ratio, the 
circumferential stress in the middle of the wall is 
nearly equal to the surface pressure. 
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Figure 7. (a) Nondimensional radial stress across the radial 
direction for a thick-walled spherical vessel subjected to 
internal and external pressure iP  based on linear variation 
model and (b) Nondimensional radial stress across the radial 
direction for a thick-walled spherical vessel subjected to 
internal and external pressure iP  based on exponential model.
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Figure 8. (a) Nondimensional circumferential stress across the 
radial direction for a thick-walled spherical vessel subjected to 
internal and external pressure iP  based on linear variation
model and (b) Nondimensional circumferential stress across the 
radial direction for a thick-walled spherical vessel subjected to 
internal and external pressure iP  based on exponential model. 
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4.3. Example 3. 
 
4.3.1. A FG spherical vessel subjected to external 
pressure Po   In this example, the results of a FG 
spherical vessel subjected to external pressure on 
the outer surface is presented.  
     In Figures 9a,b the variation of the radial stress 
in radial direction are depicted for various shear 
modulus ratios. It can be seen that as the inner to 
outer shear modulus ratio approaches 5, the 
variation of the radial stress becomes linear and for 
lower shear ratios, the variation is nonlinear. 
Another important issue that can be concluded is 
when the inner to outer shear modulus ratio is lower 
than 1/5, the value of the radial stress in some points 
of the vessel is higher than external pressure. This 
value is the maximum of the radial stress. 
     In Figures 10a,b the variation of the circumferential 
stress is depicted for both linear and exponential 
models, respectively. In both models, the variation 
of the circumferential stress is uniform for inner to 
outer shear ratio close to 2. For higher shear ratios 
the value of the circumferential stress in inner 
surface is lower than that of the outer surface and 
vice versa. 
 
 
 

5. CONCLUSION 
 
In a functionally graded material, the property of 
material varies continuously from point to point. 
By this characteristic, appropriate mechanical 
properties are achievable. Employing such a 
material is commonly used in building the thick-
walled pressure vessels. 
     In this paper exact elasticity solutions have been 
presented to study the static analysis of thick-
walled spherical vessels subjected to internal and 
external hydrostatic pressure. The closed-form 
solutions have been obtained for displacement and 
stress fields based on two common FGM models. 
With regard to use of different compound of 
materials in FG vessels, at first, the variation 
function of FGM has been assumed to be linear 
with respect to thickness direction. By this 
proposed function, inner to outer stiffness ratio 
becomes independent of the variation function of 
properties. After that, it has been supposed that 
variation function of FGM obeys exponential 
model. Some important results of this analysis 

have been obtained as follow: 
 
5.1. Only Internal Pressure Applies 
 
• When the stiffness of the outer surface gets 
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Figure 9. (a) Nondimensional radial stress across the radial 
direction for a thick-walled spherical vessel subjected to 
external pressure oP  based on linear variation model and (b)
Nondimensional radial stress across the radial direction for a 
thick-walled spherical vessel subjected to external pressure 

oP  based on exponential model. 
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five times higher than inner one, the radial 
stress distribution nearly varies linear and by 
increasing the inner to outer shear modulus 
ratio, the radial stress distribution tends to be 
more nonlinear. 

• For inner to outer shear modulus ratio of 1/2, 
the circumferential stress distribution across 
the thickness of the vessel is approximately 
uniform and by increasing the inner to outer 
stiffness ratio, the value of circumferential 
stress at inner surface increases. 

 
5.2. The Same Internal and External Pressure 
Applies Simultaneously 
 
• As the shear modulus of the inner surface is 

higher than that of the outer surface, the 
value of the compression stress in the 
vessel is higher than the surface pressure. 
Conversely, the value of the compression 
stress in the vessel is lower than the surface 
pressure when the inner shear modulus is 
lower than the outer one. 

• The variation of the circumferential stress in 
radial direction is nearly linear and for 
arbitrary shear modulus ratios, the value of 
this stress at the middle of the wall of the 
vessel becomes equal to the surface pressure. 

 
5.3. Only External Pressure Applies 
 
• For the inner to outer shear ratios of 5, the 

variation of the radial stress is linear and 
with decreasing this ratio the distribution 
becomes nonlinear. 

• When the inner to outer shear modulus is 
less than 1/5, in some point of the wall of the 
vessel, the value of the radial stress is higher 
than external pressure. 

• For inner to outer shear ratios close to 2, the 
variation of the circumferential stress is 
uniform. 
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