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Abstract   In the GA approach the parameters that influence its performance include population size, 
crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces 
since they can do this relatively fast and because the mutation operator diverts the method away from 
local optima, which will tend to become more common as the search space increases in size. GA’s are 
based in concept on natural genetic and evolutionary mechanisms working on populations of 
solutions in contrast to other search techniques that work on a single solution. An important aspect of 
GA’s is that although they do not require any prior knowledge or any space limitations such as 
smoothness, convexity or unimodality of the function to be optimized, they exhibit very good 
performance in most applications. The minimum cost flow problem is formulated as genetic 
algorithm and simulated annealing. This paper shows genetic algorithms and simulated annealing are 
much easier to implement for solving transportation problems compared with constructing 
mathematical programming formulations. Finally, a new empirical study for the effect of parameters 
on the rate of convergence of the GA and SA are demonstrated. 
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 جمعيت، نرخ تقاطع و نرخ ةدر الگوريتم ژنتيك، پارامترهاي مؤثر در اجراي الگوريتم شامل اندازچكيده       

 زيرا اين الگوريتم جستجو را با است؛هاي جستجوي وسيع مناسب  الگوريتم ژنتيك براي مكان. است جهش
 ة و اين در زماني كه اندازکندلي دور تواند الگوريتم را از مكان بهينه مح دهد و عمل جهش مي سرعت انجام مي

هاي   ژنتيك طبيعي و مكانيزمةاساس ايد هاي ژنتيك بر الگوريتم. گردد تر شود، بيشتر آشكار مي له بزرگئمس
هاي جستجو روي تنها يك جواب  مقابل، ديگر تكنيك كنند و در ها كار مي تكاملي روي جمعيتي از جواب

له يا ئهاي ژنتيك اين است كه آنها احتياج به دانش قبلي مس م در الگوريتميك مزيت مه. كنند عمل مي) منفرد(
آنها اجراي خوبي را در كاربرد و موضوعات مختلف نشان . سازي ندارند محدوديتي براي تابع هدف جهت بهينه

اين مقاله . ه است تدريجي مدل شدةكنند الگوريتم ژنتيك و الگوريتم سردبا نيمم   ميةله جريان با هزينئمس. اند داده
 هاي مقايسه با برنامه تري در هاي ساده  تدريجي روشةكنند هاي ژنتيك و الگوريتم سرد دهد كه الگوريتم نشان مي

 عملي جديدي براي اثرات پارامترها روي نرخ همگرايي ةنهايت مطالع در. اند نقل و ل حملئرياضي براي حل مسا
 . تدريجي شرح شده استةكنند در الگوريتم ژنتيك و الگوريتم سرد

 
 

1. INTRODUCTION 
 
Mathematical programming can be defined as 
programming and planning the best possible 
allocation of scarce resources. When the 

mathematical representation uses linear functions 
exclusively, it has a linear programming model. 
Linear programming has been used successfully 
in the solution of problems concerned with 
the assignment of personnel, distribution and 
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transportation, power engineering, banking, 
education, petroleum, social problems, etc. The 
most important search method is the branch and 
bound technique which applies directly to both the 
pure and mixed problems. The general idea of the 
method is first to solve the problem as a 
continuous model. Cutting methods, which are 
developed primarily for integer linear problems, 
start with the continuous optimum. By systematically 
adding special secondary constraints, which essentially 
represent necessary conditions for integrality, the 
continuous solution space is gradually modified 
until its continuous optimum extreme point 
satisfies the integer conditions. The name cutting 
methods stems from the fact that the added 
secondary constraints effectively cut certain parts 
of the solution space that do not contain feasible 
integer points. Cutting planes does not partition the 
feasible region into sub-divisions, as in branch and 
bound approaches, but instead works with a single 
linear program, which is refined by adding new 
constraints until the new constraints solution is 
found. Non-linear programming problems come in 
many different shapes and forms. Unlike the 
Simplex Method for linear programming, there 
exists no single algorithm that will solve all of 
them. Instead, algorithms have been developed for 
various individual special types of non-linear 
programming problems. Two examples of non-
linear programming applied to single-state network 
programming are: 1. the gradient search method; 2. 
quadratic programming. 
     The mathematical programming technique 
used in the time-phased optimization method is 
Dynamic Programming. Dynamic programming is 
a computational technique best suited to the 
optimization of sequential or multi-stage decision 
making problems. Dynamic programming converts 
such multi-stage decision problems into a series of 
single-stage decision problems, each with one or 
a few decision variables. Then, starting with the 
first stage, each stage is optimized over possible 
alternative feasible decisions within the stage, while 
taking into consideration the cumulative effect of the 
optimum decisions made in the previous stages. The 
ultimate solution of the problem is then generated 
from among the available stage optima. 
     The network problem provides a unified approach 
to many applications because of its general 
structure. The minimum cost flow problem holds a 

central position among network optimisation 
models, both because it encompasses such a broad 
class of applications and because it can be solved 
extremely efficiently. Like the maximum flow 
problem [1], it considers flow through a network 
with limited arc capacities. The maximum amount 
of flow that can be carried on a directed arc is 
referred to as the arc capacity. Like the shortest 
path problem, it considers a cost for flow through 
an arc. Similar to the transportation problem or 
assignment problem, it can consider multiple 
sources and multiple destinations for the flow, 
again with associated costs. Finally, like the 
transhipment problem, it can also consider various 
junction points between the sources and 
destinations for this flow. In fact, they are all 
special cases of the minimum cost flow problem. 
The main reason for high efficiency in solving the 
network problem is that it can be formulated as a 
linear programming problem and thus solved by a 
generalisation of the transportation simplex called 
the network simplex [2 and 3], as described in the 
next section. Wang, et al [4] proposed a genetic 
algorithm based on the simplex method is 
constructed to solve the linear-quadratic bi-level 
programming problem (LQBP). By use of Kuhn-
Tucker conditions of the lower level programming, 
the LQBP is transformed into a single level 
programming which can be simplified to a linear 
programming by the chromosome according to the 
rule. Thus, in their proposed genetic algorithm, 
only the linear programming is solved by the 
simplex method to obtain the feasibility and fitness 
value of the chromosome. Finally, the feasibility of 
the proposed approach is demonstrated by the 
example. The interest in evolutionary algorithms 
has been rising fast, for they provide robust and 
powerful adaptive search mechanisms. The 
interesting biological concepts on which evolutionary 
algorithms are based also contribute to their 
attractiveness. Basic components of all evolutionary 
algorithms are a population of individuals, each of 
which represents a search point in the space of 
potential solutions to a given optimization problem, 
and random operators that are intended to model 
biological evolution. Even if all evolutionary 
algorithms share the same approach, that is, the 
metaphor of natural evolution, their implementation 
can be various, according to the different 
representations of the solutions and operators 
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acting on them [5]. The evaluation of the goodness 
of a solution is given by a fitness function that 
incorporates or models the feedback of the 
environment and asserts the adaptation of the 
individual. In an evolutionary algorithm the 
encoding abstracts the real solutions in a suitable 
format, while the operators handle these 
representations selecting the best performing 
solutions and randomly manipulating them, in 
order to find better adapted individuals. The 
algorithm is grounded to the real world through the 
feedback provided by the fitness function. Those 
features make evolutionary algorithms extremely 
robust and suitable for a large range of problems; 
provided that an effective encoding of the solutions 
can be found and that the environment’s response 
can be represented the operator act much in the 
same way. Typical and distinctive feature of all 
evolutionary algorithms is an operator intended to 
mimic the selective pressure of the environment on 
the evolution of the population [6 and 7]. The 
individuals undergo the process of manipulation 
through random operators that play the role of 
biological mutations and crossover. On the extent 
of the usefulness of those last two operators there 
is still a debate currently going on. Problem-
specific operators are often used to enhance and 
speed up the search process. Strictly speaking 
genetic algorithms are characterized by binary 
encodings and the three operators that mimic 
selection, crossover and mutation, while 
evolutionary programs allow different codings and 
operators. This difference is however very shaded 
and often both the terms are used interchangeably. 
Tao [8] proposed to improve the performance of 
genetic algorithm based on edge sets code (ES) for 
solving the fixed charge transportation problem 
(FCTP), an improved genetic algorithm which has 
a multi-point crossover operator appending edges 
to forest (MPC-ES) is developed for the spanning 
tree based on the sorted edge sets code attained by 
root-first search. Lin [9] proposed the route 
guidance system, which provides driving advice 
based on traffic information about an origin and a 
destination, has become very popular along with 
the advancement of handheld devices and the 
global position system. Since the accuracy and 
efficiency of route guidance depend on the 
accuracy of the traffic conditions, the route 
guidance system needs to include more variables in 

calculation, such as real time traffic flows and 
allowable vehicle speeds. As variables considered 
by the route guidance system increase, the cost to 
compute multiplies. As handheld devices have 
limited resources, it is not feasible to use them to 
compute the exact optimal solutions by some well- 
known algorithm, such as the Dijkstra's algorithm, 
which is usually used to find the shortest path with 
a map of reasonable numbers of vertices. To solve 
this problem, they proposed to use the genetic 
algorithm to alleviate the rising computational 
cost. They use the genetic algorithm to find the 
shortest time in driving with diverse scenarios of 
real traffic conditions and varying vehicle speeds. 
The effectiveness of the genetic algorithm is 
clearly demonstrated when applied on a real map 
of modern city with very large vertex numbers. 
Simulated annealing is an intelligent approach 
designed to give a good though not necessarily 
optimal solution, within a reasonable computation 
time. The motivation for simulated annealing 
comes from an analogy between the physical 
annealing of solid materials and optimisation 
problem. Simulated annealing simulates the 
cooling process of solid materials-known as 
annealing. However this analogy is limited to the 
physical movement of the molecules without 
involving complex thermodynamic systems. 
Physical annealing refers to the process of cooling 
a solid material so that it reaches a low energy 
state. Initially the solid is heated up to the melting 
point. Then it is cooled very slowly allowing it is 
to come to thermal equilibrium at each temperature. 
This process of slow cooling is called annealing. 
The goal is to find the best arrangement of 
molecules that minimises the energy of the system, 
which is referred to as the ground state of the solid 
material. If the cooling process is fast, the solid 
will not attain the ground state, but a locally 
optimal structure [10 and 11]. Similarly to simulated 
annealing, evolutionary algorithms are stochastic 
search methods, and they aim to find an acceptable 
solution where it is impractical to find the best one 
with other techniques. Xu, et al [12] proposed a 
continuous network design problem (CNDP) that 
formulated as a bi-level program. The objective 
function at the tipper level is defined as the total 
travel time on the network, plus total investment 
costs of link capacity expansions. The lower 
level problem is formulated as a certain traffic 
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assignment model. It is well known that such bi-
level program is non convex and algorithms for 
finding global optimal solutions are preferable to 
be used in solving it. Simulated annealing (SA) 
and genetic algorithm (GA) are two global 
methods and can then be used to determine the 
optimal solution of CNDP. Since the application of 
SA and GA on continuous network design on real 
transportation network requires solving traffic 
assignment model many times at iteration of the 
algorithm, computation time needed is tremendous. 
It is important to compare the efficacy of the two 
methods and choose the more efficient one as 
reference method in practice. In this paper, the 
continuous network design problem has been 
studied using SA and GA on a simulated network. 
The lower level program is formulated as user 
equilibrium traffic assignment model and Frank-
Wolf method is used to solve it. It is found that 
when demand is large, SA is more efficient 
than GA in solving CNDP, and much more 
computational effort is needed for GA to achieve 
the same optimal solution as SA. However, when 
demand is light, GA can reach a more optimal 
solution at the expense of more computation time. 
It is also found that increasing the iteration number 
at each temperature in SA does not necessarily 
improve solution. Lau [13] discussed the process 
of benchmarking of optimization techniques for 
cargo loading plans based on genetic algorithms, 
tabu search and simulated annealing. The 
process begins with a glance at a cargo loading 
problem and the airfreight forwarding profit 
model with the working procedures of stochastic 
search techniques. These techniques are compared 
qualitatively to determine a research technique 
appropriate for optimizing cargo loading plans. 
Silva, et al [14] proposed a new framework for the 
optimization of logistic processes using ant 
colonies. The application of the method to real data 
does not allow testing different parameter settings 
on a trial and error basis. Therefore, a sensitive 
analysis of the algorithm parameters is done in a 
simulation environment, in order to provide a 
correlation between the different coefficients. The 
proposed algorithm was applied to a real logistic 
process. The presented results show that the ant 
colonies provide a good scheduling methodology 
to logistic processes. This paper will introduce the 
network problem and solution methodology using 

linear programming as well as comparing this 
approach with a genetic algorithm and simulated 
annealing. 
 
 
 

2. THE NETWORK PROBLEM 
 
Transportation originates and ends at nodes and 
travels on links. For most modes of transportation, 
infrastructure such as ports, roads, waterways and 
airports is required both at the nodes and links. 
Most transportation infrastructure is owned and 
managed as a public good throughout the world. 
It is very important that infrastructure be 
managed in such a way that duties are available 
for maintenance and investment in further 
capacity as needed. Transportation policy sets 
direction for the amount of national resources 
that go into improving transportation infrastructure. 
Transportation policy also aims to prevent abuse of 
monopoly power, promote fair competition, and 
balance environmental, energy, and social concerns 
in transportation. By considering the supply chain 
management, the level of carbon produced will be 
increasingly important for the supply chain in the 
forthcoming future. Companies are forced to 
control their production of green house gases and 
reduce the carbon emission to the specified 
levels stated in the standard regulations. In the 
mean time, a variety of environmentally friendly 
products is increasingly considered to be 
significant amongst companies. These products are 
seen to be distinctively different and make the 
company stay competitive by displaying a new 
label stating the quantity of carbon produced. This 
programming model can work with various types 
of problems: pure-integer, pure-binary, or combined 
problems of integer, binary and real variables. As a 
matter of fact, this programming model can deal 
with non-linear cases called mixed integer non-
linear programming (MINLP) but it is more 
difficult than MIP to solve the problems. In some 
cases, MIP models require high memory and 
computational times due to special problems. 
There are a large number of researches relevant to 
the use of MIP models, one of which is using an 
MIP model to design multiple products logistics 
networks proposed by Ma, et al [15]. The logistics 
networks contain three major parts: A designed 
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model using an MIP model, Inventory planning, 
and a delivery route model. These three phases are 
concerned as an iterative design. Their proposed 
MIP model is divided into two parts as mentioned 
in the basic concept. The first is the objective 
function and the constraints refer to the second 
part. Its aim is to minimise the total costs 
consisting of product delivery costs from factories 
to wholesalers, fixed and variable costs at 
wholesalers, and product delivery cost from 
wholesalers to retailers as a description of the 
objective function. The constraints for this model 
are the production and throughput capacity, 
customer demands and material flow requirement. 
There is a type of constraints specifying the 
number of products that must be positive and 
another constraint involves controlling binary 
variables. It is indicated that using those three steps 
mentioned above leads to more accurate results 
and the model can be quickly adapted to market 
changes. Chopra and Meindl proposed the network 
optimization models for facility location and 
capacity allocation using an MIP model to find the 
best locations for company facilities [16]. Another 
researchs [17 and 18] involved locating international 
facilities using a mixed-integer programming 
model. The main reason for this is that exporting 
products to foreign markets is difficult due to 
expensive transportations. Consider a directed and 
connected network, where the n nodes include at 
least one supply node and at least one demand 
node. The decision variables are: 
 

ijX  = flow through arc (i,j); and the given 

information includes: 
 

.i nodeat  generated flowNet  Nbi
).j,i( arcfor capacity  Arc AUij

).j,i( arc through flowunit per Cost Costij

=
=
=

 

 
The value of ib  depend on the nature of node i, 
where: 
 

node. teintermediaan  is i node if , 0 Nbi
. nodesupply  a is i node if , 0Nbi
. node demand a is i node if, 0Nbi

=
<
>

 

 
The objective is to minimise the total cost of 
sending the available supply through the network 

to satisfy the given demand. Therefore, the network 
problem may be written as: 
 

Minimise: ∑
=

∑
=

=
n

1i

n

1j
CostijXijZ  (1) 

 
Subject to: 
 

iNb
j

ijX
k

kiX =∑−∑ ;   i = 1, 2, ..., n; (2) 

 
AUijXij0 ≤≤ ; for each arc (i, j). (3) 

 
The first summation in the node constraints (2) 
represents the total flow into node i,  whereas the 
second summation represents the total flow out of 
node i. Therefore, the difference is the net flow 
generated at this node. In some applications, it is 
necessary to have a lower bound 0ALij >  for the 
flow through each line )j,i(  when this occurs, the 
translation of variables,  ijij/ij ALXX −=  is 
introduced, with )ALX( ij

'
ij +  being substituted for 

ijX  throughout the model in order to convert the 
model back into the above format with non-
negative constraints. An example illustrating the 
network problem is given in reference [19] and 
Figure 1. The nodes are represented by numbered 
circles and arcs by arrows. The arcs are assumed to 
be directed so that, for instance, material can be 
sent from node 1 to node 2, but not from node 2 to 
node 1. As an example, let Figure 1 represent a car 
company with plants in two locations 1 and 7. The 
total production of car units out of each plant is 
200 and 300 units respectively. The negative 
numbers next to the nodes representing 1 and 7 
indicate the available supply of cars at these 
locations. The demand for cars at each of the other 
locations is represented by positive numbers next 
to the remaining nodes e.g. 3 has a demand for 60 
cars. The values on the arcs connecting the various 
nodes represent the unit cost of transporting cars 
between the indicated locations e.g. it costs 50 to 
transport a car from 7 to 6. The problem here is to 
determine the plan with a minimum cost for 
transporting cars from 1 and 7 to meet the demand 
for cars at the other locations. It is important to 
recognise the special structure of the balance 
equations. It should also be noted that there is one 
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balance equation for each node in the network. The 
flow variables ijX  have either 0, +1 or -1 coefficients 
in these equations. Furthermore, each variable 
appears in only two balance equations, once with 
a -1 coefficient, corresponding to the node from 
which the arc emanates; and once with a +1 
coefficient, corresponding to the node upon which 
the arc is incident. This type of balance equations 
is referred to as a node-arc incidence matrix; it 
completely describes the physical layout of the 
network. 
 
 
 

3. LINEAR PROGRAMMING APPLIED TO 
THE TRANSPORTATION PROBLEM 

 
First, a basic feasible solution must be determined. 
Although, in the case of the transportation 
problem, an initial basic feasible solution is easy to 

determine by, for example, the Northwest-corner 
method, the Minimum matrix method, or the 
Vogel’s approximation method, in the general case 
an initial basic feasible solution may be difficult to 
find. The difficulty arises from the fact that the 
upper and lower bounds on the variables are 
treated implicitly and, hence, non-basic variables 
may be at either bound. Basic feasible solutions 
can be obtained by ‘solving’ spanning trees’-a 
spanning tree is a connected sub-set of a network 
including all nodes and containing no loops. A 
spanning tree solution is obtained as follows: 
 
Step 1.   For the arcs not in the spanning tree, set 
variables equal to zero; 
Step 2.   For the arcs that are in the spanning tree 
(the basic arcs), solve for variables in the system of 
linear equations provided by the node constraints. 
     To determine whether this initial basic feasible 
solution is optimal, first the multipliers, yi 

 
 

Figure 1. A minimum cost flow problem. 
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(i=1,2,...,n) are determined and then checked if 
these multipliers satisfy: 
 

ijALijX  ;0jyiyijCostijostC =≥+−=  (4) 

 

ijAUijXijLA       ;0jyiyijCostijostC <<=+−=  (5) 
 

ijAUijX     ; 0jyiyijCostijostC =≤+−=  (6) 
 
If all the above conditions are met then the solution 
is an optimal one. A spreadsheet model for solving 
the car distribution problem is presented. The cells 
represent the decision variables. These cells 
indicate the number of cars to be transported 
between each of the locations. The total cost 
associated with any transportation plan is 
computed. A separate constraint is needed for each 
node in a network flow problem. If supplies are 
represented by negative numbers and the demands 
are represented by positive numbers. To solve this 
problem one should attempt to minimise the total 
cost by changing the number of cars transported 
between the various locations while keeping the 
net number of cars flowing through each location 
greater than or equal to the supply or demand for 
cars in each location. Of course, this will also 
require that the number of cars transported 
between locations not to be less than zero. The 
Simplex method of solving this linear program is 
applied by using the Solver facility within Excel. 
The values indicate the optimal number of cars that 
should be transported between each of the 
locations. The value indicates that the total cost of 
this transportation plan is 25300 units. 
 
 
 

4. GENETIC ALGORITHMS 
 
During the last decade, genetic algorithm-based 
approaches have received increased attention from 
the engineers dealing with problems, which could 
not be solved using conventional problem solving 
techniques. A typical task of a genetic algorithm in 
this context is to find the best values of a 
predefined set of free parameters associated with 
either a process model or a control vector. A 
possible solution to a specific problem can be 
encoded as an individual or a chromosome, which 

consists of group of genes. Each individual 
represents a point in the search space and a 
possible solution to the problem can be formulated. 
A population consists of a finite number of 
individuals and each individual is decided by an 
evaluating mechanism to obtain its fitness value. 
Using this fitness value and genetic operators, a 
new population is generated iteratively which is 
referred to as a generation. The genetic algorithm 
uses the basic reproduction operators such as 
crossover and mutation to produce the genetic 
composition of a population. Many efforts for the 
enhancement of conventional genetic algorithms 
have been proposed. Among them, one category 
focuses on modifying the structure of the 
population or on the individual’s role while 
another category is focused on modification 
/efficient control of the basic operations, such as 
crossover or mutation, of conventional genetic 
algorithms. Genetic algorithms are an optimization 
technique inspired in the biological process of 
evolution and survival of the fittest individuals 
in a population. Given an initial population, GA 
provides the means for this population to reach a 
state of maximum fitness in successive generations. 
The general optimization procedure is to define 
a cost function, encode and individual in a 
chromosome, and create a random starting 
population. Evaluate the cost function for each 
individual, allow them to mate, reproduction, and 
mutate. Repeat these steps for as many generations 
as needed in order to reach stopping criteria. 
With mathematical optimization methods the 
weaknesses are most require a large number of 
decision variables; most require long computation 
times; most allow no user interaction; models are 
fixed by program formulation. Genetic algorithm 
which works by: i. Emulating the natural process 
of evolution. ii. Means of progressing toward the 
optimum solution. iii. Starts with an initial set of 
random configurations, called population (each 
individual in the population is a string of symbols, 
usually a binary bit string representing a solution). 
iv. Each iteration, called generation, the individuals 
in the current population, are evaluated-fitness 
value-fitter individuals have a higher probability of 
being selected. v. To generate new individuals 
called offspring, by using genetic operators. vi. 
The offspring are next evaluated, and new 
generation is formed by selecting some of the 
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parents and offspring, once again on the basis of 
their fitness. A binary chromosome consists of 
binary digits. A 1 or 0 in the string may, in a 
Boolean scheme, correspond to whether some 
condition is true or false, or bits may be strung 
together to form binary words that will translate 
either directly or indirectly into continuous valued 
variables. The first step in the application of a GA 
is the coding of the variables that describe the 
problem [20-31]. The most common coding 
method is to transform the variables to a binary 
string of specific length. This string represents the 
chromosome of the problem and the length of the 
chromosome represents the number of zeros and 
ones in the binary string. By decoding the 
individuals of the initial population, the solution 
for each specific instance is determined and the 
value of the objective function that corresponds to 
this individual is evaluated. This applies to all 
members of the population. Genetic algorithms 
require the natural parameter set of the 
optimisation problem to be coded as a finite length 
string. For the car distribution example, there are 
16 decision variables ijd  as follows: 
 

76d,...,23d,14d,12d  (7) 
 
A spreadsheet model for solving this problem is 
presented. The cells represent the chromosome 
(decision variables) as follows: 
 

11Q ., . . ,3Q ,2Q ,1Q  (8) 
 
These cells correspond to the arcs in reference [19] 
and indicate the number of cars to be transported 
between each of the locations. When it comes to 
reproduction a GA may operate in a generation 
mode or in a ‘steady-state’ mode. In generation 
mode iteration of the GA produces a whole new 
generation of chromosomes. In contrast, the 
steady-state GA produces, at iteration, just one new 
‘child’ chromosome from two selected parents. This 
child is added to the existing population and the 
least fit member of the population is then deleted to 
maintain the population size. The steady-state GA is 
used in this paper. The advantage of using steady-
state reproduction is that all the genes are not lost 
as is the case in generational replacement where 
after replacement many of the best individuals may 
not be produced at all, and their genes may be lost. 

Steady-state reproduction is a better model of what 
happens in longer-lived species in nature. This 
allows parents to nurture and teach their offspring, 
but also gives rise to competition between them. 
Baker suggested rank selection [21]. Sort the 
population from best to worst, assign the number 
of copies that each individual should receive 
according to a non-increasing assignment function, 
and then perform proportionate selection according 
to that assignment [22]. Ranking is a two-step 
process. First, the list of individuals must be 
sorted, and next the assignment values must be 
used in some form of proportionate selection. 
Some qualitative theory regarding such schemes 
was presented by Grefenstette [23]. A rank based 
method is used here. The members are ranked in 
order of their fitness and the probability of 
selection is inversely rated to this ranking. The 
advantage of a rank based approach is that it helps 
to avoid too rapid a rate of convergence that may 
lead to the population being swamped by a local 
optimum due to the loss of diversity. Syswerda 
[24] proposed uniform crossover which works as 
follows. Two parents are selected, and two 
children are produced. For each bit position on the 
two children, it is decided randomly as to which 
parent contributes its bit value to which child. 
Figure 2 shows uniform crossover in action. For 
each bit position in the parents, a random binary 
template indicates which parent will contribute its 
value in that position to the first child. The second 
child receives the bit value in that position from 
 
 
 

Parent String 1: 
0 0 0 1 0 1 0 0 0 0 

 
Parent String 2: 

0 0 0 0 1 1 1 1 0 0 
 

Binary Template: 
0 0 0 1 1 0 1 0 0 1 

 
Child String 1: 

0 0 0 1 0 1 0 1 0 0 
 

Child String 2: 
0 0 0 0 1 1 1 0 0 0 

 
Figure 2. Uniform crossover rate. 
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the other parent. 
     Uniform crossover generally works better than 
one and two-point. It was shown by Syswerda that 
in almost all cases, uniform crossover is more 
effective at combining schemata than either one 
or two point crossover. Empirically, uniform 
crossover is shown to be more effective on a 
variety of function optimisation problems. In this 
paper one child is formed by taking a mixture of 
bits from its two parents according to a random bit 
string. The proportion of bits coming from the best 
parent is defined by the user-defined crossover rate 
in the range zero to one. Where a ‘1’ in the random 
bit string indicates that in that position the child 
inherits the corresponding bit from parent-1, whilst 
a ‘0’ causes inheritance from parent-2. The final 
step in the implementation of the GA is the 
application of the fitness function. In this case the 
objective is the minimisation of the network’s cost 
function, so the fitness value is the reciprocal of 
this cost. Before this function is applied, the string 
must be decoded. Then, once the real value for 
each parameter is available, the fitness for that 
specific individual can be estimated. Within the 
spreadsheet, it shows the total cost of the car 
distribution problem is 25300 units. One of the 
advantages of the GA seen here is that the 
algorithm is only using fitness values for searching 
and thus solving the problem, in contrast to linear 
programming which needs a spanning tree to solve 
the problem and other specific knowledge of the 
application. The other attractive property of the 
GA that is demonstrated is its ease of application. 
Spreadsheets are used widely in industry due to 
such factors as their versatility, ease of use, rapid 
development and ease of modification. For over a 
decade spreadsheets have provided intuitive 
applications. Bodily [32] stated that the adoption of 
spreadsheets as decision making aids by end-users 
was due to the natural interface that exists for 
model building, the ease of use in terms of inputs, 
solutions and report generation, and the ability to 
perform ‘what-if’ analysis. He continued that, 
because of these key properties, the spreadsheet 
medium could be used as a stepping stone for 
bringing operations research models and techniques 
to the end-user. Recent literature supports Bodily's 
conclusions, with successful applications in queuing 
systems, inventory management, aggregate planning, 
and analysis of manufacturing systems, financial 

planning, warehousing and transportation. Techniques 
and models include linear programming, integer 
programming, dynamic programming, simulation 
and heuristics. Spreadsheets are particularly suitable 
for network planning due to their fundamental 
representation of data in the form of easily 
understood tables. The work presented here was 
carried out using the MicrosoftR ExcelTM 
spreadsheet and an add-in to provide the GA. This 
add-in is called EvolverTM and is developed and 
supplied by Axcelis [33]. The use of this 
proprietary software demonstrates how simple it is 
to implement the GA approach to the minimum 
cost flow problem and transportation problem and 
also enables the immediate implementation, by any 
reader, of the methods presented here. This is a key 
aspect of this paper. The model of network 
planning developed in this research is built in 
ExcelTM using the spreadsheet's built-in functions. 
After building the model, the GA is run to optimise 
the network given an objective function. The 
fitness value and decision variables are passed 
back to the GA component which is independent of 
the spreadsheet model. At the end of the GA run, 
when the stopping criterion is met, the best 
network is presented in a tabular form in the 
spreadsheet. 
 
 
 

5. EMPIRICAL STUDIES 
 
Analysis of variance (ANOVA) is a method for 
comparing the means of two or more populations. 
The reason for the word ‘variance’ in analysis of 
variance is that the procedure for comparing the 
means involves analysing the variation in data. 
Simple one-way analysis of variance is used here 
to assess the significance of one factor (GA 
parameter) at a time. The assumptions for one-way 
ANOVA are as follows: i. Independent samples: 
the samples taken from the populations under 
consideration are independent of one another; ii. 
Normal populations: the populations under 
consideration are normally distributed; iii. Equal 
standard deviations: the standard deviations of the 
populations under consideration are equal. Only a 
brief introduction to the well established method 
of one-way ANOVA is given here. The reader is 
referred to some of the standard texts on 
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elementary statistical analysis such as [34-36] for a 
more detailed account. ANOVA procedures utilize 
a class of continuous probability distributions 
called F-distributions for the ratio of two variances 
being tested to see if they are significantly 
different. Probabilities for a random variable that 
has an F-distribution are equal to areas under an F-
curve. An F-distribution depends on two numbers 
of degrees of freedom. The first number of degrees 
of freedom for an F-curve is called the ‘degrees of 
freedom for the numerator’ and the second the 
‘degrees of freedom for the denominator’. Some 
basic properties of F-curves are as follows: i. The 
total area under an F-curve is equal to 1; ii. An F-
curve starts at 0 on the horizontal axis and extends 
indefinitely to the right; iii. An F-curve is not 
symmetrical, but is skewed to the right; that is, it 
climbs to its high point rapidly and comes back to 
the horizontal axis more slowly. Areas under F-
curves have been compiled and put into tables. The 
table used here is given in reference [34].The 
optimal solution is found 25300 by genetic 
algorithm. For this problem, the following GA 
parameter values were used in analysis of variance 
experiments to analyse the effects of the 
parameters on the number of iterations required to 
reach the optimal fitness. (Population Size: 
20,50,80, Crossover Rate: 0.2,0.4,0.5,0.6,0.8, 
Mutation Rate: 0.001,0.006,0.011,0.016). For each 
combination of the parameters the GA is run for 8 
different random initial populations-these 8 
populations being different for each combination. 
Thus, in total, the GA is run 480 times. The values 
chosen for the population size are representative of 
the range of values typically seen in the literature. 
If the mutation rate is too low, then many genes 
that would have been useful are never tried out. If 
it is too high, there will be too much random 
configuration, offspring will start losing their 
similarity to their parents, and the algorithm will 
lose the ability to learn from previous searches. It 
is normally the case that the mutation rate needs to 
be small to be effective - as in the range of values 
used here. The crossover rates chosen are 
representative of the entire range. The data provide 
sufficient evidence to conclude that the means for 
the five different crossover rates are not 
significantly difference and that the crossover rate 
is therefore an insignificant factor across the range 
[0.2:0.8] in the performance of GA. A steady-state 

GA has been employed rather than generational 
replacement. This means that at iteration two 
parent chromosomes are selected from the 
population for reproduction. These parents produce 
a child which is added into the existing population 
and the weakest member of the population is then 
deleted. In contrast, a generational GA produces a 
whole new population of children at iteration. 
Uniform crossover has been used following the 
recommendation of Syswerda. The GA has been 
implemented as an ‘add-in’ to a proprietary 
spreadsheet in which the network model is 
constructed. Table 1 shows the natural logarithm of 
the number of iterations for different mutation 
rates with the crossover rate fixed at 0.60 and a 
population size of 50. Table 2 displays the one-
way ANOVA table for this data. If the value of the 
F falls in the rejection region i.e. F > Fcrit, then 
reject the null hypothesis; otherwise, do not reject 
the null hypothesis. In Table 2, F = 6.93801160, 
this falls in the rejection region. Thus the null 
hypothesis is not accepted. The data provide 
sufficient evidence to conclude that the means for 
the four different mutation rates are significantly 
difference and that the mutation rate is therefore an 
significant factor across the range [0.001:0.016] in 
the performance of GA. 
     The analysis of variance of mutation rate shows 
that mutation is a significant factor. This shows 
that there is clearly little difference in performance 
in the two mid-values of mutation rate [0.006 and 
0.011]. Table 3 shows the natural logarithm of the 
number of iterations for different mutation rates 
with the crossover rate fixed at 0.60 and a 
population size of 50. Table 4 displays the one-
way ANOVA table for this data. In Table 4, F 
=0.9780499, this does not fall in the rejection 
region. Thus the null hypothesis is accepted. The 
data provide sufficient evidence to conclude that 
the means for the two different mutation rates are 
insignificantly difference and that the mutation rate 
is therefore an insignificant factor across the range 
[0.006:0.011] in the performance of GA. 
     These tests show that the number of iterations 
required to reach the minimum cost is a very good 
fit to a log-normal distribution. This result means 
that methods of statistical analysis based on 
assumptions of normality may be applied to the log 
of the number of iterations required by the GA to 
reach the optimal solution (see Figures 3 and 4). 
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TABLE 1. Natural Logarithm of the Number of Iterations for Different Mutation  
Rates with Crossover Rate = 0.60 and Population Size = 50. 

 

 Mutation Rate 
Run 0.001 0.006 0.011 0.016 

1 7.33 5.99 7.36 9.1 
2 9.23 5.5 6.9 8.2 
3 7.7 7.38 6.78 7.8 
4 9.3 6.33 6.9 8.45 
5 9.23 8.32 7.57 7.65 
6 9.17 7.25 7.9 8.44 
7 9.95 8.4 8.9 9.2 
8 9.07 7.89 8.5 9.23 

 
 
 

TABLE 2. One-way ANOVA for Mutation Rate using Results in Table 1. 
 

Groups Count Sum Average Variance   
Column 1 8 70.9 8.8725 0.78299285   
Column 2 8 57.0 7.1325 1.18285   
Column 3 8 60.8 7.60125 0.6144125   
Column 4 8 68.0 8.50875 0.3844125   
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 15.42667 3 5.142225 6.93801160 0.0012323 2.94668526 
Within Groups 20.75267 28 0.74116696    

Total 36.17935 31     
 
 
 

TABLE 3. Natural Logarithm of the Number of Iterations for Different Mutation  
Rates with Crossover Rate = 0.60 and Population Size = 50. 

 

 Mutation Rate 
Run 0.006 0.011 

1 3.66 7.65 
2 5.85 6.40 
3 7.52 6.98 
4 6.66 6.88 
5 8.62 7.53 
6 7.46 7.60 
7 8.47 8.68 
8 7.82 8.41 
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TABLE 4. One-way ANOVA for Mutation Rate using Results in Table 3. 
 

Groups Count Sum Average Variance   

Column 1 8 57.06 7.1325 1.18285   

Column 2 8 60.81 7.60125 0.6144125   

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 0.878906 1 0.878906 0.9780499 0.33946 4.6001099 

Within Groups 12.58083 14 0.898631    

Total 13.45974 15         

 
 
 

 
 

Figure 3. Anderson-darling normality test for number of iterations. 
 
 
 

 
 

Figure 4. Anderson-Darling normality test for Ln (number of iterations). 
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     Observation (i), which tells us that the value of 
the crossover rate is not significant in the broad 
range [0.2:0.8]. Observation (ii) tells us that the 
value of the mutation rate is important. As the 
mutation rate increases so the GA is replaced by a 
more random search. As mutation tends towards 0 
so movements around the search space, and 
subsequent diversity in the population, is lost due 
to the comparative rarity in actually applying 
mutation. Whilst there may be concern that in 
practical applications a ‘good’ value must be 
identified for the mutation rate, this concern is 
reduced by knowing from Observation (iii) that the 
good values appear to occupy a ‘good range’, 
rather than being some difficult to isolate single 
value. Observation (iv) tells us that the effect of the 
population size does not vary across the range 
[20,50,80] when using a ‘good’ mutation rate. This 
changes with the ‘poorer’ mutation rates. This 
shows that if the mutation rate is too low, then a 
larger population is required to get the necessary 
diversity. If the mutation rate is too high, then a 
smaller population is required. Put the other way 
round, if the population size is small a higher 
mutation rate is required to compensate for the 
reduced potential for diversity across a smaller 
population, whilst as population size grows, the 
need for mutation is reduced. Observation (v) tells 
us that changing crossover rate does not alter the 
significance of population size for the ‘poorer’ 
mutation values, i.e. changing crossover rate does 
not compensate for the ‘poorer’ mutation rate. This 
result means that methods of statistical analysis 
based on assumptions of normality may be applied 
to the log of the number of iterations required by 
the GA to reach the optimal solution. 
 
 
 

6. SIMULATED ANNEALING 
 
The concept is based on the way liquid freezes or 
metal recrystallizes in the process of annealing. In 
an annealing process a melt, initially at high 
temperature and disordered, is slowly cooled so 
that the system at any time is approximately in 
thermodynamic equilibrium. As cooling proceeds, 
the system becomes more ordered and approaches 
a frozen ground state at zero temperature. Hence, 
the process can be thought of as an adiabatic 

approach to the lowest energy state. If the initial 
temperature of the system is too low or cooling is 
done insufficiently slowly the system may become 
quenched forming defects or freezing out in 
metastable states i.e., trapped in a local minimum 
energy state. Like tabu search, simulated annealing 
allows uphill moves. However, while tabu search 
in essence makes only uphill moves when it is 
stuck in local optima, simulated annealing can 
make uphill moves at any time. It relies heavily on 
randomization. It is basically a local search 
algorithm, with the current solution wandering 
from neighbour to neighbour as the computation 
proceeds. The key difference from other approaches 
is that simulated annealing examines neighbours in 
random order, moving to the first one seen that is 
either better or else passes a special randomized 
test. Simulated annealing is an intelligent approach 
designed to give a good though not necessarily 
optimal solution, within a reasonable computation 
time. The motivation for simulated annealing 
comes from an analogy between the physical 
annealing of solid materials and optimisation 
problem. Simulated annealing simulates the 
cooling process of solid materials-known as 
annealing. However this analogy is limited to the 
physical movement of the molecules without 
involving complex thermodynamic systems. 
     In recent years, there has been a lot of interest 
in the application of simulated annealing to solving 
some difficult or poorly characterised optimisation 
problems of a multi-modal or combinatorial nature. 
Simulated annealing is powerful in obtaining good 
solutions to large scale optimisation problems. The 
simulated annealing technique was first introduced 
by Kirkpatrick [37]. Practice shows that the 
cooling must be done carefully in order not to get 
trapped in locally optimal lattice structures with 
crystal imperfections. Simulated annealing is an 
intelligent approach designed to give a good 
though not necessarily optimal solution, within a 
reasonable computation time. The motivation for 
simulated annealing comes from an analogy 
between the physical annealing of solid materials 
and optimisation problem. Simulated annealing 
simulates the cooling process of solid materials-
known as annealing [38-40]. However this analogy 
is limited to the physical movement of the molecules 
without involving complex thermodynamic systems. 
Physical annealing refers to the process of cooling 
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a solid material so that it reaches a low energy 
state. Initially the solid is heated up to the melting 
point. Then it is cooled very slowly allowing. The 
simulated annealing algorithm was employed to 
solve this problem. The same 16-bit binary string 
representation scheme applied in the case of the 
GA was implemented for simulate annealing 
because of its flexibility and ease of computation. 
The cost function for this problem is objective 
function given in Equation 9. 
 

Minimise: ,
n

1i

n

1j
CostijXijZ ∑

=
∑
=

=  (9) 

 
The algorithm was implemented in Turbo C++. 
The initial stopping criterion was set at a total unit 
cost of optimal solution found by the genetic 
algorithm. Ten cooling rates were used (0.40, 0.45, 
0.50, 0.60, 0.65, 0.70, 0.80, 0.85, 0.90, 0.95). The 
final cost function is 25300. Table 5 shows the 
natural logarithm of the number of iterations for 
different cooling rates with T = 1500. Table 6 
displays the one-way ANOVA table for this data. 
If the value of the F falls in the rejection region 
i.e. F > Fcrit, then reject the null hypothesis; 
otherwise, do not reject the null hypothesis. In 
Table 6, F = 8.9296798, this falls in the rejection 
region. Thus the null hypothesis is not accepted. 
The data provide sufficient evidence to conclude 
that the means for the ten different cooling rates 
are significantly difference and that the cooling 
rate is therefore an significant factor across the 
range [0.40:0.95] in the performance of simulated 
annealing. 
     The analysis of variance of cooling rate shows 
that cooling is a significant factor. This shows that 
there is clearly little difference in performance in 
the three mid-values of cooling rate [0.60;0.65 and 
0.70]. Table 7 shows the natural logarithm of the 
number of iterations for different cooling rates 
with T = 1500. Table 8 displays the one-way 
ANOVA table for this data. In Table 8, F = 
0.06036, this does not fall in the rejection region. 
Thus the null hypothesis is accepted. The data 
provide sufficient evidence to conclude that the 
means for the three different cooling rates are 
insignificantly difference and that the cooling rate 
is therefore an insignificant factor across the 
range [0.60:0.70] in the performance of simulated 
annealing. 

     Therefore the solution found by the GA, SA and 
linear programming was accepted as the optimal 
solution the transportation problem. Figure 5 
shows the convergence of the total unit cost and 
iterations when using the simulated annealing with 
the original set of parameter values to solve the 
system network. 
 
 
 

7. CONCLUSIONS 
 
Genetic algorithms give an excellent trade-off 
between solution quality and computing time and 
flexibility for taking into account specific 
constraints in real situations. The results of the 
experiment have confirmed that the cooling rate 
determines the quality of the solutions. If the 
cooling rate is too low, the configuration can not 
achieve the optimal solution before it reaches the 
maximum number of iterations. If the cooling rate is 
too high, the process could become stuck at a local 
optimum. 
     Overall simulated annealing needed longer 
computation times compared to the genetic 
algorithm. It has been shown that the value of the 
mutation rate is important. As the mutation rate 
increases so the GA is replaced by a more random 
search. As mutation tends towards zero so 
movement around the search space, and subsequent 
diversity in the population, is lost due to the 
comparative rarity in actually applying mutation. 
The effect of the population size does not vary 
across the range when using a good mutation rate. 
This changes with the poorer mutation rates. This 
shows that if the mutation rate is too low, then a 
larger population is required to get the necessary 
diversity. If the mutation rate is too high, then a 
smaller population is required. Put the other way 
round, if the population size is small a higher 
mutation rate is required to compensate for the 
reduced potential for diversity across a smaller 
population, whilst as population size grows, the need 
for mutation is reduced. They only require an 
evaluation function to assign a quality value to every 
solution produced. Another interesting feature is that 
they are inherently parallel (solutions are individuals 
and unrelated with each other), therefore their 
implementation on parallel machines would reduce 
the CPU time required significantly. GA’s are 
suitable for traversing large search spaces since they  
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TABLE 5. Natural Logarithm of the Number of Iterations for Different Cooling Rates with T = 1500. 
 

Cooling Rate 0.40 0.45 0.50 0.60 0.65 0.70 0.80 0.85 0.90 0.95 
Run 1 7.60 7.82 8.16 8.45 8.47 8.41 8.92 8.92 8.92 8.92 
Run 2 9.60 10.11 9.80 7.60 8.10 7.70 9.90 10.10 9.80 8.80 
Run 3 10.20 10.20 9.13 7.30 8.70 7.80 9.10 8.80 8.80 9.80 
Run 4 8.75 8.45 8.90 6.40 6.10 6.90 8.80 9.87 9.10 10.11 
Run 5 9.65 9.87 10.1 8.80 6.90 7.90 9.60 9.7 8.30 10.12 
Run 6 8.76 9.78 9.50 8.60 8.30 8.10 9.70 10.2 8.90 9.50 
Run 7 7.89 8.97 8.76 6.90 6.70 6.80 8.90 10.3 10.12 9.40 
Run 8 7.90 9.34 9.23 8.45 8.10 8.60 9.70 8.9 9.10 10.20 

 
 

TABLE 6. One-way ANOVA for Cooling Rates using Results in Table 4. 
 

Groups Count Sum Average Variance   
Column 1 8 70.35090 8.79386 0.9146048   
Column 2 8 74.54404 9.31800 0.7186066   
Column 3 8 73.58051 9.19756 0.3756964   
Column 4 8 62.50531 7.81316 0.7929364   
Column 5 8 61.37637 7.67204 0.9252144   
Column 6 8 62.21737 7.77717 0.4195685   
Column 7 8 74.62265 9.32783 0.1937413   
Column 8 8 76.79265 9.59908 0.3959550   
Column 9 8 73.04265 9.13033 0.3320699   

Column 10 8 76.85265 9.60658 0.2969921   
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 43.1200 9 4.79111 8.9296798 7.87E-9 2.016600 
Within Groups 37.5577 70 0.53653    

Total 80.6777 79     
 
 

TABLE 7. Natural Logarithm of the Number of Iterations for Different Cooling Rates with T = 1500. 
 

Cooling Rate 0.60 0.65 0.70 
Run 1 8.45 8.47 8.41 
Run 2 7.60 8.10 7.70 
Run 3 7.30 8.70 7.80 
Run 4 6.40 6.10 6.90 
Run 5 8.80 6.90 7.90 
Run 6 8.60 8.30 8.10 
Run 7 6.90 6.70 6.80 
Run 8 8.45 8.10 8.60 
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can do this relatively rapidly and because the 
mutation operator diverts the method away from 
local optima, which will tend to become more 
common as the search space increases in size. 
Empirical analysis of the performance of GA’s, 
simulated annealing and the effects of GA’s 
parameters and simulated annealing on this 
performance in addition to the aforementioned 
advantages shows that GA’s and simulated annealing 
are a feasible, robust and practical engineering tool 
and are considered further in this paper for minimum 
cost flow problem programming in response to the 
weaknesses seen in the mathematical methods that 
are conventionally applied to network programming. 
Finally, the analysis of variance of mutation rates 
and cooling rates has been shown that mutation 
and cooling are a significant factor. 
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