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Abstract   This paper deals with bi-level control policy and queuing analysis of a machine repair 
problem. The model is developed by incorporating mixed standbys (cold and warm), reneging, set up 
and vacation time. The repair facility consists of two heterogeneous repairmen in the system. The life 
and repair time of the failed units and also their set up times are assumed to be exponentially distributed. 
The steady state queue size distribution is obtained by using recursive method. Expressions are derived 
for the number of failed units in the queue and the average waiting time for repair, throughput, etc. By 
setting appropriate parameters, we deduce some special models. 
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ارائه  مدل. پردازد  تعمير ماشين ميةسطحی و تحليل صف يک مسئل  سياست کنترلي دوبهاين مقاله چكيده       

هاي استراحت،  سازي و زمان هاي آماده ، زمانrenegingترکيبی، ) گرم و سرد(از حالت رزرو  استفاده شده با
شده است که همچنين فرض . کار مشابه است سيستم واحد تعميرات متشکل از دو تعمير. طراحي شده است

توزيع . کنند  مياز توزيع نمائي پيرويسازي   آمادههاي زمانطول عمر قطعات، زمان تعمير قطعات خراب و 
همچنين تعداد قطعات خراب در . آيد دست ميه از روش بازگشتي ب استفاده حالت پايدار با احتمالي طول صف در

هاي  با احتساب و تنظيم پارامترشده و صف، متوسط زمان انتظار برای تعمير، نرخ خروجي و غيره بررسي 
 . آمده استدسته بای  های ويژه مناسب، مدل

 
 

1. INTRODUCTION 
 
With todays’ advanced technology, machine repair 
system is inevitable in real life. The failure occurs 
frequently in computer, communication, production, 
manufacturing, service and distribution systems, 
etc. In machining system on the one hand the failed 
units wait for repairman to be free, on the other 
hand the repairman is idle until the next unit fails.  
First situation is known as machine 
interference and is encountered in almost all real 
time systems, working in machining environments. 
In the present investigation, we study a multi 
component machining system with the provision of 
mixed spares and two heterogeneous repairmen. 
When there are less failed units than a pre-assigned 
level (N), the repairman (R1) can not be employed 
by the systems’ administration due to cost 

constraints. If the number of failed units is greater 
than a threshold value (L), extra repairman (R2) is 
recommended to reduce the work load. Thus there 
are two repairmen for the smooth running of the 
system. When an operating unit fails and if a 
repairman is available, it is sent for repair, 
otherwise failed unit waits in the queue for repair. 
The available cold spare unit replaces the failed 
unit; in case if cold spares are exhausted, the warm 
spares are used. The vacation period of first 
repairman (R1) starts when there is no failed unit in 
the system and the vacation period of repairman R2 
starts when the number of failed units is less than 
or equal to a threshold level (L) in the system. 
     In real life, it is economical and of common 
experience to have optimal control policy for 
machine repair facility. In case of bi-level policy, 
the servers may be used for some ancillary work 
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during vacation. Some important works in optimal 
control field and vacation models are given below. 
A queue of batch arrival with a vacation time under 
single server vacation policy was investigated by 
Choudhary, et al [1]. Niu, et al [2] suggested a 
vacation queue with set up and closed down times 
for the batch Markovian arrival processes. Ke, et al 
[3] obtained bi-level control for batch arrival queue 
with an early start-up and unreliable server. 
Choudhary, et al [4] analyzed a two state batch 
arrival queuing system with a modified Bernoulli 
schedule vacation under N-policy. Har, et al [5] 
developed the batch arrival queue with vacation and 
server set up. The convexity of two thresholds 
policy for an M/G/1 queue with vacations was 
examined by Zhang [6]. 
     In some situations, the failed unit may renege, 
when it is in the queue due to impatience of care 
taker. The analysis of a repairable system with 
warm standbys, balking and reneging was made by 
Wang, et al [7]. Wang, et al [8] did the profit 
analysis of the M/M/R machine repair problem 
with balking, reneging and standby switching 
failure. 
     In many manufacturing/production systems 
when the operating unit fails, it is replaced by a 
standby. Gupta, et al [9] analyzed machine 
interference problem with warm spares, server 
vacation and exhaustive service. Analysis of a bulk 
queue under N-policy, multiple vacation and set up 
time was made by Reddy, et al [10]. Hur, et al [11] 
suggested the performance measures for state 
dependent M/G/1 queue with set up under N 
policy. Bi-level control of degraded machining 
system with warm standbys, set up and vacation 
time was obtained by Jain, et al [12]. The steady 
state analysis of a bulk queue with multiple 
vacations, set up times, N-policy and close-down 
times was made by Arumaganathan, et al [13]. 
     In this paper we investigate bi-level policy for 
machine repair problem with mixed standbys, set 
up and vacation time along with reneging. There 
are two heterogeneous repairmen in the repair 
facility. The repairman (R1) turns on and starts 
repair after a set up time, when N-failed units are 
accumulated in the system. The first repairman (R1) 
leaves for a vacation when there is no failed unit in 
the system. The second repairman (R2) turns on and 
starts to repair, when there is greater than a 
threshold number (L) of failed units in the system, 

and goes for vacation as soon as the number of failed 
units ceases to L. The set up time, life and repair time 
are assumed to be exponentially distributed. Using 
recursive method, we obtain the expressions for 
various performance indices, namely average number 
of failed units in the queue, throughput, average 
waiting time, etc. The rest of the paper is structured 
as follows: In Section 2 we have presented model 
description and notations. In Section 3 queue size 
distribution is given. Performance indices are given 
in section 4. Section 5 provides some special cases. 
Finally conclusion is given in Section 6 followed by 
references in Section 7. 
 
 
 

2. MODEL DESCRIPTION 
 
We consider bi-level policy for multi component 
machine repair system, cared by the repair facilitiy 
having two heterogeneous repairmen. If an 
operating unit fails, it is replaced first by cold 
standby, and if cold standbys are exhausted, it is 
replaced by warm standby if available. It is 
assumed that failed unit may renege exponentially 
when it is in the queue. The repair of failed units is 
performed according to a bi-level control policy. In 
the beginning when there are less than N failed 
units in the system, both repairmen are in idle 
state. As soon as N number of failed units is 
accumulated in the system, the first repairman (R1) 
turns on and starts to repair after a set up time; the 
repairman (R1) returns vacation, when there is no 
failed unit in the system. If the number of failed 
units is greater than a threshold number L, then 
repairman (R2) turns on and starts repair; it returns 
back for vacation when there are less than or equal 
to L failed units in the system. 
     For model description the following notations 
are used: 
 
M Number of operating units in the system 

functioning in normal mode 
S(Y) Number of warm spare (cold) units in the 

system 
K Number of total units in the system 

(K=M+Y+S) 
N (L) Threshold number of failed units when 

repairman R1 (R2) turns on, R2 goes for 
vacation if numbers of failed units are 
less than L. 
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Pi,j Steady state probability that there are i 
(0<i<k) failed units in the system and j 
(j=0,1,2) busy repairman in the system 

λ(α) Failure rate of operating (warm) units 
μ1 (μ2) Repair rate of repairman R1 (R2) 
β Set up rate of repairman (R1) when there 

are greater than or equal to N failed units 
γ1 Rate from which first repairman (R1) 

returns from a vacation and finds that 
there is no failed unit in the system  

γ2 Rate from which second repairman (R2) 
returns from a vacation when there are L 
failed units in the system 

ε1 Rate at which first repairman (R1) goes 
back for another vacation if he finds that 
there is no failed units in the system 

ε2 Rate at which second repairman (R2) 
goes back for another vacation if he finds 
less than L failed units after returning 
back from a vacation 

α1 Failure rate for R1 
α2 Failure rate for R2 
 
 
 

3. QUEUE SIZE DISTRIBUTION 
 
To obtain steady state queue size distribution, we 
consider the following two cases. 
 
Case 1.   NSY <+  
 
In this case the steady state equations governing 
the model are as follows: 
 

1,1P10,1P10,0P)1Sα(Mλ μ+ε=γ++  (1) 
 

Yi1,1,0-iP)SM(i,0P)S(Mλ ≤≤α+λ=α+  (2) 
 

SYiY,1,0-iP])1iSY(M[(
i,0Pα])iSY([Mλ

+≤≤α+−++λ

=−++
 (3) 

 
NiSY,1,0-iP])1iK[(i,0P]i)-[(K <≤+λ+−=λ  (4) 

 
LiN,1,0-iP])1iK[(i,0P]i)-[(K <≤λ+−=β+λ  (5) 

 
[ ] 1,0LPλ1)LK(L,0Pβ −+−=  (6) 
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+−α+=−++α+
 

 (8) 
 

SYi1Y
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i,1P]11)α-(i1μi)αS(Y[Mλ
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 (11) 
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ε++α−+μ+μ+β
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L,1P2γL,2P]2ε  λ L)-[(K =+  (13) 

 

[ ]
KiL

,1,2iP]21)α(i2μ1μ[1,2iPλ1)i(K
i,2P]22)α(i2μ1μi)λ(K[

<<
+−+++−+−
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(14) 

 

2KλPK,2P]22)α-(K2μ1[μ −=++  (15) 

 
Equations 1-15 can be solved by using recursive 
method and assuming  
 

2j0,Ki0,0,0P ji,q   ji,P ≤≤≤≤=  (16) 

 
Where P0,0 is obtained by using normalizing 
condition 
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From Equation 16, we obtain 
 
q0,0 = 1 (18)  
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Solving Equations 2-5, we get 
 
Pi,0 = P0,0  ;   L ≤ i ≤ Y 
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Where 
 

, i)-S(YMY-i
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From Equations 7 and 8, we find 
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Where 
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Solving Equations 9-11, we obtain 
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To obtain qi,2(i=L,L+1,…,K), using Equations 12-
15, we obtain 
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KiL,2,2-iq
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Where 
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If Pi denotes the probability that there are i failed 
units in the system, then we have 
 

Pi =Pi,0+ Pi,1 +Pi,2, 
 

Where 
 

Pi,0 + Pi,1 = 0,   L < i < K+1 
 

and 
 

Pi,2 = 0,   i < L. 
 

From Equation 16, substituting the value of Pi,j, we 
get 
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Also 
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Thus we have 
 

fi = qi,0 + qi,1 + qi,2 (26) 
 

From Equations 18-21, we find 
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Case 2. N < Y 
 

In this case the steady state equations are given as: 
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Equations 40-55 can be solved by using recursive 
method as 
 

00,Pji,qji,P =  (56) 
 

Where P0,0 is obtained by using normalizing 
condition 
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From Equation 64, we have 
 
q0,0 = 1 
 
The solution of Equations 42-45 is given by 
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From Equations 46-47 we obtain: 
 

1,0-Lq1-LL,0q φ=  

 

)1SM(
1

0,1q
ε+α+λ

γ
=  (59) 

 

β
λ+−

=φ
)1LK(

1-L  (60) 

)1sM(

)11sM(
10,1qZ

ε+α+λ

ε+γ+α+λ
=+=  (61) 

 

From Equations 48-51, we get 
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 (62) 
 

To obtain the value of qi,2 (i = L,L+1,….,K), we 
use Equations 53-55 and we obtain 
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From Equations 65-66, we get 
 

2,iq1,iqi,0qif ++=  (66) 
 
In this case, we find the value of fi, as 
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Equations 37-39 are same for this case as taken for 
case I for L ≤ i ≤ K. 
 
 
 

4. SOME PERFORMANCE INDICES 
 
In this section, we derive expressions for various 
performance indices in terms of probabilities as 
follows: 
 

• The average number of failed units in the 
system 
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• The average number of failed units in the 

queue 
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• The effective failure rate is given by 
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• The waiting time in the system 
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• The throughput of the system is obtained as 
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5. SOME SPECIAL CASES 
 
Case 1. 
 
N-policy for single repairman model with 
warm spares and degraded failure   To deduce 
results for this queueing model, we set parameters 
corresponding to second repairman ε2 = γ2 = μ2 = 0 
and L = K. In particular when set up time is also 
zero, we substitute 011,1 =ε=γ∞=β  However 
when spares are cold, we substitute failure rate of 
warm spares 0=α  in the corresponding results. 
 
Case 2. 
 
Machine repair problem with spares and 
multiple vacations   By substituting N = 1, γ1 = γ2 
= ε1 = ε2 = μ2 = 0 our model reduces to machine 
repair problem with multiple vacation. Further to 
deduce results for hot and cold spares, we fix 

)K,...,2,1i(i0 +δ+δ=δ−λ=λ=α  and 0=α  
respectively. In order to convert the results for 
classical machine repairman problem (without 
vacation), we have to substitute .1 ∞=β  
 
Case 3. 
 
Consider N=1,   α = λ0 = λi-s(i=S+1, S+2,…,K), γ1 
= γ2 = ε1 = ε2 = μ2 = 0. The model gives results for 
machine interference problem with multiple vacation 
and hot spares. 
 
Case 4. 
 
We put in our model λi-s = λ, (i=1,2,…,K), and μ1 = 
μ1 + (i-1) α1, μ2 = μ1 + μ2 + (i-2)α2, the model gives 
results for Bi-level control policy of degraded 
machining system with warm standbys, set up and 
vacation. 

6. CONCLUSION 
 
We have considered bi-level machining system 
with mixed standbys, set up, reneging and 
vacation. There is the provision of repair facilities 
consisting of two repairmen in the system. The 
incorporation of reneging parameter makes our 
model closer to real life situations as line delay 
causes impatient caretakers of failed units to 
renege. The provision of second repairman (R2) in 
case of many failed units, are accumulated in the 
system, may be helpful in reducing the work load 
of the first regular repairmen, and it is 
recommended for smooth running of the system. 
We have considered that both repairmen go for a 
vacation according to a pre-specified policy; this 
concept is common in real time system, and may 
be an appropriate tool to reduce the cost incurred 
on repairmen since they may be assigned for some 
secondary jobs during vacation. Using recursive 
method, we have obtained steady state queue size 
distribution, performances indices such as average 
number of failed units in the systems, waiting time, 
throughput and etc. The quantitative prediction of 
these indices may be important in the development 
of machining system. 
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