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Abstract This paper deals with bi-level control policy and queuing analysis of a machine repair
problem. The model is developed by incorporating mixed standbys (cold and warm), reneging, set up
and vacation time. The repair facility consists of two heterogeneous repairmen in the system. The life
and repair time of the failed units and also their set up times are assumed to be exponentially distributed.
The steady state queue size distribution is obtained by using recursive method. Expressions are derived
for the number of failed units in the queue and the average waiting time for repair, throughput, etc. By
setting appropriate parameters, we deduce some special models.
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1. INTRODUCTION

With todays’ advanced technology, machine repair
system is inevitable in real life. The failure occurs
frequently in computer, communication, production,
manufacturing, service and distribution systems,
etc. In machining system on the one hand the failed
units wait for repairman to be free, on the other
hand the repairman is idle until the next unit fails.
First situation is known as machine
interference and is encountered in almost all real
time systems, working in machining environments.
In the present investigation, we study a multi
component machining system with the provision of
mixed spares and two heterogeneous repairmen.
When there are less failed units than a pre-assigned
level (N), the repairman (R;) can not be employed
by the systems’ administration due to cost
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constraints. If the number of failed units is greater
than a threshold value (L), extra repairman (R,) is
recommended to reduce the work load. Thus there
are two repairmen for the smooth running of the
system. When an operating unit fails and if a
repairman is available, it is sent for repair,
otherwise failed unit waits in the queue for repair.
The available cold spare unit replaces the failed
unit; in case if cold spares are exhausted, the warm
spares are used. The vacation period of first
repairman (R) starts when there is no failed unit in
the system and the vacation period of repairman R,
starts when the number of failed units is less than
or equal to a threshold level (L) in the system.

In real life, it is economical and of common
experience to have optimal control policy for
machine repair facility. In case of bi-level policy,
the servers may be used for some ancillary work
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during vacation. Some important works in optimal
control field and vacation models are given below.
A queue of batch arrival with a vacation time under
single server vacation policy was investigated by
Choudhary, et al [1]. Niu, et al [2] suggested a
vacation queue with set up and closed down times
for the batch Markovian arrival processes. Ke, et al
[3] obtained bi-level control for batch arrival queue
with an early start-up and unreliable server.
Choudhary, et al [4] analyzed a two state batch
arrival queuing system with a modified Bernoulli
schedule vacation under N-policy. Har, et al [5]
developed the batch arrival queue with vacation and
server set up. The convexity of two thresholds
policy for an M/G/1 queue with vacations was
examined by Zhang [6].

In some situations, the failed unit may renege,
when it is in the queue due to impatience of care
taker. The analysis of a repairable system with
warm standbys, balking and reneging was made by
Wang, et al [7]. Wang, et al [8] did the profit
analysis of the M/M/R machine repair problem
with balking, reneging and standby switching
failure.

In many manufacturing/production systems
when the operating unit fails, it is replaced by a
standby. Gupta, et al [9] analyzed machine
interference problem with warm spares, server
vacation and exhaustive service. Analysis of a bulk
queue under N-policy, multiple vacation and set up
time was made by Reddy, et al [10]. Hur, et al [11]
suggested the performance measures for state
dependent M/G/1 queue with set up under N
policy. Bi-level control of degraded machining
system with warm standbys, set up and vacation
time was obtained by Jain, et al [12]. The steady
state analysis of a bulk queue with multiple
vacations, set up times, N-policy and close-down
times was made by Arumaganathan, et al [13].

In this paper we investigate bi-level policy for
machine repair problem with mixed standbys, set
up and vacation time along with reneging. There
are two heterogeneous repairmen in the repair
facility. The repairman (R;) turns on and starts
repair after a set up time, when N-failed units are
accumulated in the system. The first repairman (R;)
leaves for a vacation when there is no failed unit in
the system. The second repairman (R,) turns on and
starts to repair, when there is greater than a
threshold number (L) of failed units in the system,
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and goes for vacation as soon as the number of failed
units ceases to L. The set up time, life and repair time
are assumed to be exponentially distributed. Using
recursive method, we obtain the expressions for
various performance indices, namely average number
of failed units in the queue, throughput, average
waiting time, etc. The rest of the paper is structured
as follows: In Section 2 we have presented model
description and notations. In Section 3 queue size
distribution is given. Performance indices are given
in section 4. Section 5 provides some special cases.
Finally conclusion is given in Section 6 followed by
references in Section 7.

2. MODEL DESCRIPTION

We consider bi-level policy for multi component
machine repair system, cared by the repair facilitiy
having two heterogeneous repairmen. If an
operating unit fails, it is replaced first by cold
standby, and if cold standbys are exhausted, it is
replaced by warm standby if available. It is
assumed that failed unit may renege exponentially
when it is in the queue. The repair of failed units is
performed according to a bi-level control policy. In
the beginning when there are less than N failed
units in the system, both repairmen are in idle
state. As soon as N number of failed units is
accumulated in the system, the first repairman (R;)
turns on and starts to repair after a set up time; the
repairman (R;) returns vacation, when there is no
failed unit in the system. If the number of failed
units is greater than a threshold number L, then
repairman (R;) turns on and starts repair; it returns
back for vacation when there are less than or equal
to L failed units in the system.

For model description the following notations
are used:

M Number of operating units in the system
functioning in normal mode

S(Y) Number of warm spare (cold) units in the
system

K Number of total units in the system
(K=M+Y+S)

N (L)  Threshold number of failed units when
repairman R; (R,) turns on, R, goes for
vacation if numbers of failed units are
less than L.
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P;; Steady state probability that there are i
(0<i<k) failed units in the system and j
(3=0,1,2) busy repairman in the system

M) Failure rate of operating (warm) units

L (L)  Repair rate of repairman R, (R;)

B Set up rate of repairman (R,) when there
are greater than or equal to N failed units

Y1 Rate from which first repairman (R;)

returns from a vacation and finds that
there is no failed unit in the system

Y2 Rate from which second repairman (R;)
returns from a vacation when there are L
failed units in the system

€ Rate at which first repairman (R;) goes
back for another vacation if he finds that
there is no failed units in the system

& Rate at which second repairman (R;)
goes back for another vacation if he finds
less than L failed units after returning
back from a vacation

o Failure rate for R,

0 Failure rate for R,

3. QUEUE SIZE DISTRIBUTION

To obtain steady state queue size distribution, we
consider the following two cases.

Casel. Y+S<N

In this case the steady state equations governing
the model are as follows:

(MA+Sa+7v)) PO,OZSI PO,I + ”1P1,1 (D

(M +Sa)P, ;= (ML +Sa)P; 1<i<Y )

-1,0 °

[MA+(Y +S—i)a] P, , =

3
[(Mk+(Y+S—i+1)a]Pi_10, Y<i<Y+S )

[(K-DAIP. o =[(K =i+ AP, Y+S<i<N (4)

-1,0

[(K-D)A+B]P: o =[(K —i+DAIP, N<i<L (5)

-1,0 >

BPL’O:[(K—LH)A]PL_LO (6)
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(M +Sa+e) Py =7, P ™)
[(Mx+Sa)+ul+(i—1)al] Pi’lz(M7L+SoL)Pi_l,1 +
(“1+i“1)Pi+1,1’ 1<i<Y

8)
[Mk+(Y+S—i)a+p1+(i-1)a1]Pi1:
[MX+(Y+S—i+1)a]Pi_1,1+(u1+ia1)Pi+1’1, )]
Y+1<i<Y+S
[(K-i)7u+u1 +(i-1)a1]Pi’1:[(K—i+1)7L] Pi—1,1+
(“1+i“1)Pi+l,l’Y+SS i<N

(10)

[(K-DA+py+GQ-Doy]P =[(K-i+DA] Py +
(Ml +i0‘1)Pi+1,1 +BPi,O’ Nsis<L

(1T)
[pl +(L-1)oc1 +y2]PL’1 Z[(K_L+1)7¥]PL_1’1 + a2)
BP ot +py +(L=DayIPp g 5+erPp 5
[(K -L) %+ 2y ]P 5 = 1,Pp | (13)

[(K—i)k+u1 ) ++( —2)0(2]Pi,2 =
[(K—i+1)x]Pi_L2 g iy +(=Day 1Py 5, (14)
L<i<K

[y + 1y +(K-2)ay Py 5 =0y, (15)

Equations 1-15 can be solved by using recursive
method and assuming

Pi,j:qi,jPO,O, 0<i<K, 0<j<2 (16)

Where Py, is obtained by using normalizing
condition

-1
2
-:0 15.]}

From Equation 16, we obtain

Qoo =1 (18)
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Solving Equations 2-5, we get
Pi,():Po’() 5 L<i<Y

O

-0 _ : <i<
Pi,O o. PO,O ;o YAISisY+S
1-Y
_[k=(Y+S)] 9 . .
Pi,O_Wg PO,O’ Y+s+1<i<N-1
P o=
i—1
TIk=) | [k=(Y+85)]r oy,
J:Ni Py.o> N<i<L-l
T [k=pr+B]og
j=n
Where
iy =MA+(Y+S-i) o,
From Equations 7 and 8, we find
L0 =PL-19L-1,0 (19)
Where
o, = KLFDA _on
L-1 B L0 MK+Sa+%

Mk+So¢+al+yl
M}\.+S(l+81

Denote Z=q {+1= (20)

Solving Equations 9-11, we obtain

0,Z, i=1
n,0
b,
],L1+(1—1)(11
91 = 'Y ot
i1~ u 1—
L L2 (1,00 ~2(1+6(2)
1+ — +— ,
i—2 1—2 ]
IT (Hl"'mal) IT (H1+J“1)
m=2 j=2
i<i<Y
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X I op II og [0,
i=0 P=i+3 K=
—Y-1 Iy,
1 o,
n=1

Y<i<Y+S
i-Y-1 i—

Y+S<i<N

Vic1tVi-2 )
. S
i—2 i—

94-21

U_qi—l,()’ N<i<L
-3

S, =MA+(Y +S—n)
\|In=(K—n)0t, ¢n =(u1+na1)

To obtain q;,»(i=L,L+1,...,K), using Equations 12-
15, we obtain

A =94y (22)
v +v
Qo412 = Lgil 1 2 =8eyqy 4
+ (23)
YL -1 B
T ar -1 T ar.0
L+1 L+1
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92 =

Vio1t8io3 Vi . (24)
e, -2 ) Gigp LeicK
i-4 i-4

Where

_ )
(K-L)r+e,

+(L—1)cx2,

) §L+1=H1+H2+(L_l)a27

VL 1= vp = -L+Di,

If P; denotes the probability that there are i failed
units in the system, then we have

P =Piot+ Py +Pi,,

Where

Pio+ P, =0, L<i<K+l
and

PL=0, i<L.

From Equation 16, substituting the value of P;;, we
get

P;=1iPyy, 0<i<K
Also
K -1
Po,0=| Z fi| > (25)
1=0
Thus we have
fi=qio+ qi1 T qi2 (26)

From Equations 18-21, we find

fo=1+q,=2 27
fi=a; 9 +a;=1+6 2 (28)
0
=1+ "1 %

i uy+G-Dey

: 1 i—2
1+li3 (“1 60) N (Hleo)l (1+90Z)
1=1 i—1 i-2 ) ’
I (Hl +ma1) I1 (Hl +J0‘1)
m=2 j=2
2<i<Y

(29)
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fy 1159y 41,0 T 9y 41,1 (30)

c 0
0, M

op Myt Y(xl)

fy 41=

Vo2 o) )’ (60
12 Y-2 Y-1T
- I (uy +moy) IT (uy +Joy)
m=2 j=2

1+

€2))

0
f = +
Y +S S—1
Yy +S
Mo,

n=1

S-3 S-2 Y +S
[ 2 I1 ‘I/j I1 (PKJ
i=Y+S+1j=Y+S+1 "K=0
* S—1 9y +1,1
Mo,
n=1
S-3 Y-I Y +S+1
> I1 vp I og v
LNi=0P=Y+S+1 K=1 q
S—1 Y,1
Mo,

n=1

(32)

i=0 P=i+1 K=
i-Y-3 dy,1
IT ¢,
n=1

i-Y-3 Y-1 i+1
)y I1 Vp + H1¢K Yo

Y<i<Y+S
(33)
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c Yo 1 +HUN
% _YN-1"°N 2qi_1’1_
VY +B Yi-3 (34)
YN-2
o. - di-21t o di-10
1-3 1—
{1-1 ]
oo I1 w
0 1
; ~ =N +(‘VN+UN—1) _
N+1~ "4 b-1 A
1_[ (WJ+B) (35)
j=N
YN-1 B
oy N-LITG T aN,0°
(1-1 J
o v
0 1
___\U=N Vi-1tVi-2
§=75 * v, G20 "
1_[ (\|/J+[3) 36)
j=N
Vi-2 p :
. qi_3’1—o.—qi_130, N+1<i<L
1—-3 i-3
(Wp.ptop_p
f :¢L—1qL-1+—UL ) ar-12-
(37)
Wi_qu 2.1 dr.1,0 TV4L0
Yi.3 T by T ’
. :UL+1+y2+882
L+1 E 1 ar,1-
+
(38)
B Yi-1
a1~ ar-1,1
SLe1 7 SL4a ’
iTT e i-1,27% 9.2.1° S1s
1- 1-
(39)
Case2.N<Y

In this case the steady state equations are given as:

(Mx+Sa+yl)PO’0 =&, P0,1+ My Pl,l’ (40)

(MA+Sa)P; g =(MA+Sa)P. |, 1<i<N (41)

,0

(M2 +So + B) Py ) = (M2 + So)Py i=N (42)

-1,0°
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(MA+Sa+B)P, g =(MAr+Sa)P, N<i<Y (43)

-1,0°

[MA+(Y +S—i)o+B] Pi,O =

[MAL+(Y +S—i+D)a]P Y<i<Y+S (“44)
+(Y+S-i+])a i~1.0° <i<Y+
[(K—i)k+B]Pi’0 = [(K—i+1)x]1>i_1’0, 45)
Y+S<i<N

BPL’O:[(K—LH)X]PL_LO (46)
(MA+Sa+e)) Py =7, Py (47)

|:M>\.+S(I+Ll1+(i—l)(ll:|Pil:(M}L-FSOL)Pi_l 1+
(leri(xl)Pi+11 , I<i<N-1

(48)
[MK+Sa+ul+(i—l)aJPi’1=(Ml +Sa)Pi_1’1+

(p1+ioc)Pi_1’1+(u1+icx) Pi+1,2 +BPi,0 ,N<i<Y

(49)
|:M}L+(Y+S—i)(1+l,l1 +(i—1)ocJPi 1=
[MA +(Y+S-i+1)a1)Pi_1,1+
(u1+iocl)Pi+11+BPL0, Y<i<Y+S
(50)

[(K-i)“m +(i‘l)°‘1}Pi,1 SIR-THDA g+

(p1+ia1)Pi+1,1+BPi’0, Y+S<i<L-1
(51)
+(L-Do+ }P =[(K-L+1)A)]P +
[+ LDasy B =IC IR 11
BPp o +lmp+uy +(L-Dayl Py g5
[(K “LA+e 2} P o =75P (33)

[(K-D)A +py+py +(i-2)a, 1P 5 =
[(K-L+DAIP o+l +iy +(-DayIP g (54)
L<i<K

[y +Hy +(K—2)(12] PK,Z = M)K—I,Z (55)
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Equations 40-55 can be solved by using recursive
method as

F,i=9%,; oo (56)

Where Py, is obtained by using normalizing
condition

K 2
> ZPij:l,as
i=0j=0"

-1

K 2 57)
00[;Zj=0

From Equation 64, we have

qoo=1
The solution of Equations 42-45 is given by

1 , 1<i<N
i+1-N
0 , N<i<Y
GO—i—B
i-Y
c i+1-N
n=1 " [ S0 J
1-Y oy +B
M (c,+p * 0
m=1
= 58
0 ,Y<i<Y+S (58)
i—1 i-Y-1
T v I1 Sp
n=Y+s P=0
i i
[ I \vn+l3j Il o +B
n=Y+S+1 r=
i+1-N
) )
. , Y+S<i<L-1
GO+B

From Equations 46-47 we obtain:
L0 =®L-19L-1,0

"

0.1 7 (Mr+Sa+5)) (59)
by - EoLe0r .
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(MM + saL+7y +el)
(MA+sa+ 81)

Z:q0’1+1: (61)

From Equations 48-51, we get

BOZ, i=1

(MIGO) - i-3 (Ml 90)1

p, +(3-Da —, 12

1 1 =1 I1 (H1+ma1)
m=2

(199) % (1+092)
i—2
IT (uy +Jjoy)
j=1

2<i<N

%0 Vi _%0
v 911
i—1

q'_ s
v, i—10
N<i<Y

qi—z,r—w, 1
1_

GtV (o}
v 9 -11
1i—1

Y+S<i<L-1

(62)

To obtain the value of qi; (i = L,L+1,.....K), we
use Equations 53-55 and we obtain

A =34p (63)
VL1t
R L ar _q
L+1 64)
Yi-1 B
g JL-117z 910
L+1 L+1
_Yia Vi_»o _
%27 Yi-427%  %i-22 L+2<i<K
i—4 i—
(65)
Where
Y : By tHy +(L-Day,
(K-L)h+e,’ L+1 ;

O 4 17My + Loy, WL+2:(K—L+2)X,
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From Equations 65-66, we get
fi=dj0*9;1 9 (66)

In this case, we find the value of f;, as

fi =djo+d;+9i 1<i<K 67)
f0:1+q0’1=Z
fi=q19+ay (68)
0 i—-3 0
f. =1+u1+0 1+ > & +
1 ptE-Da| 2122
I1 (Hl"'mal)
m=2
(109) % (1+0)2)
- s 1<i<N
1—2 )
I1 (P-l"'.lal)
i=1
(69)
i+1-N o+
0 0 N
£y = + q -
NS O,
(70)
GO q q
YN N-2,1 W N-1,0
o VTN 64y
_ 0 Y _
fy = + dy —1,1
GO+B DY—l
(71)
L_ p
5 _qu 2170y a0 >
i-Y-1 _
11 GN - i+1-N G+ 0.
f =_n=0 0 + Lq.
1 i-Y o, +P L. i—11
[ o, +B\ 0 -
m
m=0
_U—lq B ar Y<i<Y+S
v =217y Lo
(72)
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1-1 i=-Y-1
I v, [T o, i+1-N
g -\n=Y+8 —P=0 ( °0 J +

1 1 o+
{HWH+B] 1_[Gr+B 0
r=1

Vi ty Vi1

i-11 42177 9L,0°
Vi1 Vi1 Vi -
Y+S<i<L-1

(73)

Equations 37-39 are same for this case as taken for
case [ for L<i<K.

4. SOME PERFORMANCE INDICES

In this section, we derive expressions for various
performance indices in terms of probabilities as
follows:

J The average number of failed units in the
system
K . K .

Lg= X i = X i(q50+9;;+9;2)P0 (74)
1=0 1=0

. The average number of failed units in the
queue

N . L .
Lq: 'Z lqi’0+i§1(1_l)qi’l +

1=0
75
K (75)
z (1_2)qi2 POO!
i=L+1 ’ ’
. The effective failure rate is given by
S-1 K
hep = & [MA+(S-DalP. + 3 (K=DAP,  (76)
eff . im, 1.
1=0 1=S
o The waiting time in the system
L
R g— (77)
Xeff .
) The waiting time in the queue
Lq
wo=— (78)
b Retr,
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. The throughput of the system is obtained as

(79)

K
{ b “1*“2’“(1‘2)“2}‘11,2 P0.0
i=L+1

5. SOME SPECIAL CASES

Case 1.

N-policy for single repairman model with
warm spares and degraded failure To deduce
results for this queueing model, we set parameters
corresponding to second repairman g, =y, =, =0
and L = K. In particular when set up time is also
zero, we substitute By =, vy =g, =0 However

when spares are cold, we substitute failure rate of
warm spares o =0 in the corresponding results.

Case 2.

Machine repair problem with spares and
multiple vacations By substituting N =1, y; = v,
=g = & = W = 0 our model reduces to machine
repair problem with multiple vacation. Further to
deduce results for hot and cold spares, we fix
a:ko :ki_a(i:8+l, 8+2,.,K) and a=0

respectively. In order to convert the results for
classical machine repairman problem (without
vacation), we have to substitute By =

Case 3.

Consider N=1, o =Xy = Ai(i=S+1, S+2,....K), 7
=1v, =g =& = W = 0. The model gives results for
machine interference problem with multiple vacation
and hot spares.

Case 4.

We put in our model A =2, (i=1,2,...,K), and p; =
w + (1-1) oy, pp = py + yp + (i-2)ap, the model gives
results for Bi-level control policy of degraded
machining system with warm standbys, set up and
vacation.
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6. CONCLUSION

We have considered bi-level machining system
with mixed standbys, set up, reneging and
vacation. There is the provision of repair facilities
consisting of two repairmen in the system. The
incorporation of reneging parameter makes our
model closer to real life situations as line delay
causes impatient caretakers of failed units to
renege. The provision of second repairman (R;) in
case of many failed units, are accumulated in the
system, may be helpful in reducing the work load
of the first regular repairmen, and it is
recommended for smooth running of the system.
We have considered that both repairmen go for a
vacation according to a pre-specified policy; this
concept is common in real time system, and may
be an appropriate tool to reduce the cost incurred
on repairmen since they may be assigned for some
secondary jobs during vacation. Using recursive
method, we have obtained steady state queue size
distribution, performances indices such as average
number of failed units in the systems, waiting time,
throughput and etc. The quantitative prediction of
these indices may be important in the development
of machining system.
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