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Abstract   The purpose of this work is to study the effect of oscillatory MHD blood flow in stenosed 
artery. The analytical and numerical results are obtained for oscillatory MHD blood flow, which is 
assumed to be a Newtonian fluid. It was also assumed that the surface roughness is of cosine shaped 
and the maximum height of roughness is negligible, compared with the radius of un-constricted tube. 
The fluid mechanics of MHD blood flow in a stenosed artery is studied through a mathematical 
analysis, and the impact of magnetic effect on the instantaneous flow rate is discussed, which reduces, 
if we increase the Hartman number. 
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 در شريان آئورتي اسـت و آنـاليز عـددي           MHDهدف از اين تحقيق بررسي نوسانات اثر جريان خون             چکيده

زبري و نـاهمواري سـطح ديـوارة        . نتايج حاصل براي نوسانات جريان خون که سيال نيوتوني است، بررسي شد           
متمرکـز قابـل اغمـاض       هـاي غيـر    شريان آئورتي کوسينوسي فرض شده است و حداکثر ناهمواري نسبت به لوله           

اثر مغناطيـسي شـدت   . هاي آئورتي با معادلات رياضي بررسي شد   خون در شريان   MDHمکانيک سيالات   . است
 .اي مورد بحث قرار گرفت که اين شدت جريان با افزايش عدد هارتمن کاهش يافته است جريان لحظه

 
 

1. INTRODUCTION 
 
There are many investigations for blood flow in a 
stenosed artery but only a few have considered 
oscillatory MHD flow, yet never gone through the 
computational approximation. In this experiment 
the effort is made to approximate an analysis for 
such problem. 

     Many works are available but Womersley [1] 
discussed the oscillatory motion of a viscous fluid 
in a rigid tube under a simple harmonic pressure 
gradient. They observed the influence of frequency 
on the instantaneous flow rate, while Newmann [2] 
discussed the oscillatory flow in a rigid tube with 
stenosis. Imacda, et al [3] made an analysis of non 
linear pulsatile blood flow in arteries, and Mishra, 
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et al [4] investigated the flow in arteries in the 
presence of stenosis. Mann, et al [5] discussed the 
flow of non-Newtonian blood analog fluids in rigid, 
curved and straight artery models, while Sud [6] 
worked on the simulation of steady cardiovascular 
flow in the presence of stenosis using a finite element 
method. Taylor, et al [7] also discussed the finite 
element modeling of three-dimensional pulsatile flow 
in the abdominal aorta: Relevance to atherosclerosis, 
while Waters, et al [8] discussed the oscillatory 
flow in a tube of time dependent curvature part-1 
perturbation to flow in a stationary curved tube. 
     Qiu, et al [9] investigated the numerical simulation 
of pulsatile flow in a compliant tube model of a 
coronary artery, and Zhang, et al [10] studied the 
blood constitutive parameters in different blood 
constitutive equations, although Secomb, et al [11] 
discussed the blood flow and red blood cell 
deformation in non uniform capillaries effects of the 
endothelial surface layer. Anand, et al [12] worked on 
a shear thinning visco-elastic fluid model for 
describing the flow of blood. Steinman, et al [13] 
studied the flow imaging and computing the large 
artery hemodynamics. Kumar, et al [14] numerically 
worked on the study of the axi-symmetric blood flow 
in a constricted rigid tube, while Bali, et al [15] 
observed the effect of a magnetic field on the 
resistance of blood flow through stenotic artery. 
Therefore on the basis of above information, an effort 
was made to study the oscillatory MHD flow of 
blood through an artery with mild stenosis. Here, the 
impedance is a complex quantity and its absolute 
value normalized to the study value which is the 
inverse value of the maximum flow rate Qmax relative 
to the study flow rate. 
 
 
 

2. MATHEMATICAL MODEL 
 
In the present analysis, the artery is considered to 
be a circular, cylindrical and rigid tube. Let (r,z,t) 
be the co-ordinate system as z-axis is taken along 
the axis of the artery and r -axis is taken along the 
radius of the artery. A laminar MHD flow of 
blood, which is assumed to be Newtonian in 
character, is considered, through an artery with 
mild stenosis. We also consider the density and 
viscosity of blood to be constant, and the cylindrical 
geometry of stenosis, in the arterial segment is 

given by: 
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Where R(z) is the artery radius in stenosis region, 

0R  is the radius of the normal artery, d is the semi 
length of the stenosis, and ∈  is the maximum height 

of the stenosis, such that 1
0R
<<

∈  (Figure 1). 

     The governing equation for analyzing this 
model, in which we are also introducing magnetic 
field, is: 
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Where  u is the velocity axial direction, υ  is the 
kinamatics viscosity, ρ  is the density, μ  is the 

viscosity, p  is the fluid pressure, 2
0R/υ=λ , 

μ

ωρ
=β

2
0R2  and 

μ
σ

β= 2
0R2M , 

 
While the boundary conditions are as: 
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Figure 1. Cylindrical geometry of stenosis in an artery. 
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Now let’s assume the following expression for the 
solution purpose of the problem: 
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Now Equation 5 may also be written as: 
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Where 
 

2Mi22 +β=α  
 

and the corresponding boundary conditions along 
with the expression (4) are: 
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The solution of Equation 6 subject to boundary 
conditions (7): 
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Where J0 is the Bessel function of order zero with 
complex argument. 
     Then the resulting expression for the axial velocity: 
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Following the notation of McLachlan [16] given 
by 
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This can also be written as: 
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Now the expression for axial velocity (if the real 
part of simple harmonic pressure gradient is 

tcosP ω ) is: 
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and the volumetric flow rate: 
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Flow rate for pressure gradient tcosP ω  is: 
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Wall shear stress: 
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3. RESULTS AND DISCUSSION 
 

Let’s consider 1
l
d2
=  and 

0R
1

0R
R ∈

−=  for the 

numerical solution of the problem. Now since the 
frequency parameter α plays an important role in 
the flow pattern, therefore we are explaining 
walls’ shear stress and flow rate with the help of 
parameter α . 
     Figure 2 shows the variation of walls’ shear 
stress with frequency for different values of 
stenosis height. It’s observed that for a constant 
value of frequency parameter α  the wall shear 
stress τ  increases with increasing the stenosis 
height (ε/R0), in other words shear stress increases 
along with the stenosis height. 
     Figure 3 shows the variation of instantaneous flow 
rate with frequency for different values of stenosis 
height. It was also observed that for a particular 
value of the frequency parameter α , the flow rate 
decreases with increasing stenosis height 0R∈ . 

     The deviation between any two consecutive 
curves is approximately constant in the range 

10 ≤α≤  and beyond this range it decreases 
remarkably for all values of α  which fall on the 
steep falling parts of the curve. 

 
Figure 2. Variation of wall shear stress with frequency
parameter α for different values of stenosis height. 
 
 
 

 
Figure 3. Variation of instantaneous flow rate with frequency 
for different value of stenosis height. 
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     Figure 4 shows the variation of instantaneous 
flow rate in the absence of Hartmann number i.e. 
magnetic field and in the presence of Hartmann 
number. In case of no magnetic field the result is 
the same, which is given by Haldar [17] in the 
oscillatory flow work of blood in a stenosed 
artery and in the presence of magnetic field, the 
increase of Hartmann numbers decreases the 
variation of instantaneous flow rate and vice 
versa. 
 
 
 

4. CONCLUSIONS 
 
In order to understand the abnormal flow conditions 
of blood in a locally constricted blood vessel, the 
analytical and numerical results are obtained for 
oscillatory MHD blood flow, which is assumed 
to be a Newtonian fluid. Here assumed that 
the surface roughness is cosine-shaped and the 
maximum height of the roughness is very small 
compared with the radius of the un-constricted 
tube. Numerical solutions are presented for the 
instantaneous flow rate, walls’ shear stress and 
instantaneous flow rate with frequency in the 
absence and also the presence of Hartmann number 
for different value of stenosis height. 
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