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Abstract   This study concerns numerical simulation, modeling and optimization of aerodynamic stall 
control using a synthetic jet actuator. The numerical simulation was carried out by a large-eddy 
simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 
airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 
12.7 × 106 and the angle-of-attack at 18-deg conditions. Then, group method of data handling (GMDH) 
type neural networks are used for modeling the effects of the actuators parameters (momentum 
coefficient, reduced frequency, angle with respect to the wall) on both developed time-averaged lift (CL) 
and time-averaged drag (CD), using some numerically obtained training and test data. To use the 
obtained polynomial neural network models, multi-objective genetic algorithms (GAs) (non-dominated 
sorting genetic algorithm, NSGA-II) with a new diversity preserving the mechanism, which is then used 
for Pareto based optimization of control parameters considers two conflicting objectives such as lift (CL) 
and drag (CD). It is shown that some interesting and important relationships as useful optimal design 
principles are involved in the performance of stall control on NACA0015 airfoil. Using a synthetic jet 
actuator can be discovered by the Pareto based multi-objective optimization of polynomial models. Such 
important optimal principles would not have been obtained without the use of both GMDH-type neural 
network modeling and Pareto optimization approach. 
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 ييسازي کنترل جدا  و بهينهيساز  مدليوريتم ژنتيك برالگ و اGMDH از نوع ي عصبيها شبکهچكيده       

 ي برااني جرييدر ابتدا کنترل جدا. اند استفاده قرار گرفتهمورد  يق نوسانيل با تزريرفويدار حول ايان ناپايجر
 قرار ي عددي مورد بررسLES با استفاده از مدل Lj/C = 0.1 و Re = 12.7 × 106 در NACA0015ل يرفويا

 يساز هي حاصل از شبيها  با استفاده از دادهسپس. ده استيسه گردي مقايج تجربيج حاصله با نتايتاگرفته و ن
سا با توجه به پب برا و ي ضريساز  مدلي براGMDH از نوع ي عصبيها شبکه به کمک ياضي، دو مدل ريعدد

 در .ق بدست آمده استيره، شدت و فرکانس تزيمانند زاو) ي طراحيرهايمتغ(ان ي جريي کنترل جدايپارامترها
ل مورد يرفوي ايکيناميرودي بدست آمده از رفتار آيها  مدليک چند تابع هدفيتم ژنتيانتها با استفاده از الگور

 استفاده شده و NSGAIIاز روش ) ب برا وپسايضر(سازي با دو تابع هدف  هينهدر ب.  قرار گرفته استسازي بهينه
ده ي رسم گردباشد، ينظر م نده بهترين نقاط طراحي براي توابع هدف موردنشان ده آن که Pareto Frontمنحني 
توان  ي روابط مهم که مي برخ،(NSGAII) يک چند تابع هدفيتم ژنتي با الگورسازي بهينهن به کمک يهمچن. است

 که بدون ان مورد استفاده قرار داد، بدست آمدهي جريينه موثر در عملکرد کنترل جداي بهيبه عنوان قواعد طراح
 يک چند تابع هدفيتم ژنتي با الگورسازي بهينه و GMDH ي عصبيها با شبکه يساز استفاده از روش مدل

NSGAIIقابل حصول نبود . 
 
 

1. INTRODUCTION 
 
The manipulation of flow field around the airfoil to 

change the aerodynamic characteristics and improve 
performance of an airfoil and also prevent a flow 
from taking an undesired path is one of leading 
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technologies in the flow control areas. Indeed, the 
characteristics of an airfoil, such as lift, drag or 
pitching moment, may be adjusted using flow control 
strategies, without angle of attack modification or 
flap deflection. Therefore, active flow control may 
produce interesting approaches for a large variety 
of problems, e.g. changing lift for rotary wing 
aircraft [1], designing minimum radar cross-section 
aircraft or delaying aerodynamic stall to enhance 
maximum lift [2]. However, most of the active flow 
control techniques based on steady jet suction or 
blowing suffer from technical complexity and 
additional parts, thus the weight as well as 
additional maintenance result from plumbing systems. 
     Recently, an innovative actuator, called synthetic 
jet and based on high frequency zero-net-mass-flux 
injection, was tested experimentally [3-5]. Synthetic 
jet actuators are self-conditioned, small, light and 
energy-efficient. Moreover, they offer significant 
benefits over oscillatory blowing techniques since 
they do not depend on a supply of injected flow and 
require only electrical power input and so may be 
easily implemented in practical airfoils. Its 
capability to increase the lift for a cylinder in cross 
flow was demonstrated [6], whereas post-stall lift 
increase for symmetric airfoils was also reported 
[3]. The control parameters, such as the frequency 
actuation, the location of the blowing slot and the 
momentum coefficient were also investigated [2,3]. 
     Numerical prediction of the beneficial effects of 
flow control reported in experimental studies was 
the subject of the investigation by Wu, et al [7,8] 
where flow control was simulated by a pulsating jet, 
which was located at quarter chord. It was found 
that lift increase in the post-stall regime could be 
achieved as was reported in the experiments. The 
same approach was employed by Hassan, et al [1] 
for a slot at 13 % of the chord, for different 
amplitudes and frequencies. It was reported that 
with the careful selection of peak amplitude and 
oscillation frequency, the lift can be increased. 
Donovan [9] performed simulations of steady and 
pulsating jet flow controls and compared to 
experimental measurements performed by 
Seifert, et al [2]. The same configuration was also 
studied by Ekaterinaris [10], who tested some 
different jet parameters. 
     All these numerical studies intend to further 
increase the knowledge on flow control process and 
for understanding the connection between the 

actuator parameters and the control efficiency. 
However, there are few meaningful study available 
aimed at optimizing the parameters of synthetic jet, 
such as jet momentum coefficient, injection 
frequency and injection flow angle due to the 
complexity of such flows and the computational 
cost of simulating many cases. Moreover, 
optimization of control parameters is indeed a 
multi-objective optimization problem rather than a 
single objective optimization, which is considered 
to date. Both lift and drag in airfoil is the important 
objective functions to be optimized in such a real-
world complex multi-objective optimization 
problem. As a result, for every new airfoil, the 
optimal value flow actuation parameters are 
determined heuristically and depend on trail and 
error and the designers’ knowledge. Such approach 
is necessarily limited and time consuming, since 
each time a time-accurate computation has to be 
performed for each attempt. Therefore, modeling 
and optimization of the parameters of a synthetic 
jet is investigated in the present study, by using 
GMDH-type neural networks and multi-objective 
genetic algorithms in order to maximize the lift and 
minimize the drag. 
     System identification techniques are applied in 
many fields in order to model and predict the 
behaviors of unknown and/or very complex systems 
based on given input-output data [11]. In this way, 
soft-computing methods [12], which concern 
computation in an imprecise environment, have 
gained significant attention. The main components 
of soft computing are, fuzzy logic, neural network, 
and evolutionary algorithms have shown great 
ability in solving complex non-linear system 
identification and control problems. Many research 
efforts have been expended to use evolutionary 
methods as effective tools for system identification 
[13-18]. Among these methodologies, Group 
Method of Data Handling (GMDH) algorithm is a 
self-organizing approach by which gradually more 
complicated models are generated based on the 
evaluation of their performances on a set of multi-
input, single-output data pairs (Xi,yi) (i = 1, 2,…,M). 
The GMDH was first developed by Ivakhnenko, et 
al [19] as a multivariate analysis method for 
complex systems modeling and identification. In 
this way, the GMDH was used to circumvent the 
difficulty of having a priori knowledge of the 
mathematical model of the process being 
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considered. Therefore, GMDH can be used to 
model complex systems without having specific 
knowledge of the systems. The main idea of GMDH 
is to build an analytical function in a feed forward 
network based on a quadratic node transfer function 
[20] whose coefficients are obtained using the 
regression technique. In fact, the real GMDH 
algorithm in which the model coefficients are 
estimated by means of, least square method 
has been classified as complete induction and 
incomplete induction, which represent the 
combinatorial (COMBI) and multilayered iterative 
algorithms (MIA), respectively [21]. In recent years, 
however, the use of such self-organizing networks 
has lead to successful application of the GMDH-
type algorithm in a broad range of areas in 
engineering, science and economics [19-25]. 
     There have been many efforts in recent years 
to deploy population based stochastic search 
algorithms such as evolutionary methods to 
design artificial neural networks since such 
evolutionary algorithms are particularly useful for 
dealing with complex problems having large 
search spaces with many local optima [22,21,26]. 
A very comprehensive review of using evolutionary 
algorithms in the design of artificial neural 
networks can be found in reference [27]. Recently, 
genetic algorithms have been used in a feed 
forward GMDH type neural network for each 
neuron searching its optimal set of connection 
with the preceding layer [23,28]. In the former 
reference, the authors have proposed a hybrid 
genetic algorithm for a simplified GMDH type 
neural network in which the connection of neurons 
are restricted to adjacent layers. Such shortcoming 
has been recently removed by the work of some 
authors [29,30], which will be represented in the 
following sections. 
     Basically, the optimization process is defined as 
finding a set of values for a vector of design 
variables so that it leads to an optimum value of an 
objective or cost function. There are many calculus 
based methods including gradient approaches to 
single objective optimization and are well 
documented in references [31-32]. However, some 
basic difficulties in the gradient methods, such as 
their strong dependence on the initial guess, cause 
them to find local optima rather than global ones. 
The nature inspired Genetic Algorithms (GAs) [33-
34] differ from other traditional calculus based 

techniques. The main difference is that GAs work 
with a population of candidate solutions, not a 
single point in search space. This helps 
significantly to avoid being trapped in local optima 
[35] as long as the diversity of the population is 
well preserved. Such an advantage of evolutionary 
algorithms is very fruitful to solve many real world 
optimal design or decision making problems, 
which are indeed multi-objective. In these 
problems, there are several objective or cost 
functions (a vector of objectives) to be optimized 
(minimized or maximized) simultaneously. These 
objectives often conflict with each other so that 
improving one of them will deteriorate another. 
Therefore, there is no single optimal solution as the 
best with respect to all the objective functions. 
Instead, there is a set of optimal solutions, known 
as Pareto optimal solutions or Pareto front [36-40] 
for multi-objective optimization problems. The 
concept of Pareto front or set of optimal solutions 
in the space of objective functions in multi-
objective optimization problems (MOPs) stands for 
a set of solutions that are non-dominated to each 
other but are superior to other solutions in the 
search space. This means that it is not possible to 
find a single solution to be superior to all other 
solutions with respect to all objectives so that 
changing the vector of design variables in such a 
Pareto front consisting of these non-dominated 
solutions could not lead to improvement of all 
objectives simultaneously. Consequently, such a 
change will lead to deteriorating of at least one 
objective. Thus, each solution of the Pareto set 
includes at least one objective inferior to that of 
another solution in that Pareto set, although both 
are superior to others in the rest of the search 
space. The early use of evolutionary search is first 
reported in 1960s by Rosenberg [41]. Since then, 
there has been a growing interest in devising 
different evolutionary algorithms for MOPs. 
Among these methods, the Vector Evaluated 
Genetic Algorithm (VEGA) proposed by Schaffer 
[42], Fonseca and Fleming’s Genetic Algorithm 
(FFGA) [37], the non-dominated Sorting Genetic 
Algorithm (NSGA) by Srinivas, et al [36], the 
Strength Pareto Evolutionary Algorithm (SPEA) 
by Zitzler, et al [43], the Pareto archived evolution 
strategy (PAES) by Knowles, et al [44], and the 
Niched-Pareto Genetic Algorithm (NPGA) by 
Horn, et al [45] are the most important ones. A 
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very good and comprehensive survey of these 
methods has been presented in references [46-49]. 
     Basically, both NSGA and MOGA as Pareto 
based approaches, use the non-dominated sorting 
procedure originally proposed by Goldberg [33]. 
There are two important issues that have to be 
considered in such evolutionary multi-objective 
optimization methods: driving the search towards 
the true Pareto front and preventing premature 
convergence or maintaining the genetic diversity 
within the population [49]. The lack of elitism was 
a motivation for the modification of that algorithm 
to NSGA-II [50] in which a direct elitist 
mechanism has been introduced to enhance the 
population diversity. This modified algorithm has 
been regarded as the state of the art in evolutionary 
MOPs [51]. A comparison study among SPEA and 
other evolutionary algorithms on several problems 
and test functions showed that SPEA clearly 
outperforms the other multi-objective EAs [52]. 
Some further investigations developed in reference 
[49] demonstrated, however, that the elitist variant 
of NSGA (NSGA-II) performed similar to SPEA. 
In addition to its popularity and effectiveness, 
NSGA-II has been modified by Nariman-zadeh, et 
al [29] to enhance its diversity preserving 
mechanism, which will be used in this work. 
     In this paper, the numerical methods used for 
the simulation of the flow are described in the first 
sections and applied to study the flow separation 
control over a NACA 0015 airfoil including a 
synthetic jet. The validation of the code is achieved 
by comparison of the results obtained in this 
research versus experimental data. Nearly 144 
numerical simulations are performed over a range 
of parameters (intensity, frequency and angle). 
Next, genetically optimization GMDH-type neural 
networks are used to determine the effects of jet 
momentum coefficient and reduced frequency of 
injection on both lift and drag in different jet angel. 
The total numbers of experimental data are 144 
from which 116 are used for training whilst the 
remaining 28 data are merely used for model 
evaluation. The obtained polynomial models are 
then used in a Pareto-based optimization approach 
to find the best possible combination of lift (Cl) 
and drag (Cd) known as the Pareto front. The 
corresponding variations of design variables, 
namely, momentum coefficient, reduced frequency 
and angle of injection known as the Pareto set 

constitute some important design principles which 
can be effectively applied to determine optimal 
control parameters of the synthetic jet. 
 
 
 

2. MODELING USING GMDH TYPE 
NEURAL NETWORKS 

 
By means of GMDH algorithm, a model can be 
represented as set of neurons in which different 
pairs in each layer are connected through a 
quadratic polynomial and, thus, produce new 
neurons in the next layer. Such representation can 
be used in modeling, to map inputs to outputs. The 
formal definition of the identification problem is to 
find a function f̂  that can be approximately used 
instead of actual one, f in order to predict output ŷ  
for a given input vector X = (x1,x2,x3,…,xn) as 
close as possible to its actual output y. Therefore, 
given M observation of multi-input, single output 
data pairs so that 
 
yi = f(xi1,xi2,xi3,…,xin)   (i = 1, 2…,M), (1) 
 
It is now possible to train a GMDH type neural 
network to predict the output values iŷ  for any 
given input vector X = (xi1,xi2,xi3,…,xin), that is 
 

)inx,...,3ix,2ix,1ix(f̂iŷ =    (i = 1, 2, …, M), (2) 
 
The problem is now to determine a GMDH type 
neural network so that the square of difference 
between the actual output and the predicted one is 
minimized, that is 
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M
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General connection between inputs and output 
variables can be expressed by a complicated 
discrete form of the Volterra functional series in 
the form of 
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Where is known as the Kolmogorov-Gabor 
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polynomial [17-19]. This full form of mathematical 
description can be represented by a system of partial 
quadratic polynomials consisting of only two 
variables (neurons) in the form of 
 

2
jx5a2

ix4ajxix3ajx2aix1a0a)jx,iG(xŷ +++++==  (5) 
 
In this way, such partial quadratic description is 
recursively used in a network of connected neurons 
to build the general mathematical relation of inputs 
and output variables given in Equation 4. The 
coefficients ai in Equation 5 are calculated using 
regression techniques [17,19] so that the difference 
between actual output, y, and the calculated one, ŷ  
for each pair of xi, xj as input variables is 
minimized. Indeed, it can be seen that a tree of 
polynomials is constructed using the quadratic 
form given in Equation 5 whose coefficients are 
obtained in a least squares sense. In this way, the 
coefficients of each quadratic function Gi are 
obtained to fit optimally the output in the whole set 
of input-output data pair, that is 
 

min
M

M

1i
2())iGi(y

E →
∑
=

−

=  (6) 
 
In the basic form of the GMDH algorithm, all the 
possibilities of two independent variables out of 
total n input variables are taken in order to 
construct the regression polynomial in the 
form of Equation 5 that best fits the dependent 
observations (yi, i = 1, 2, …, M) in a least squares 

sense. Consequently, 
2

1)n(n
2
n −

=⎟⎟
⎠

⎞
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⎝

⎛  neurons will 

be built up in the first hidden layer of the feed 
forward network from the observations {(yi, xip, 
xiq); (i = 1, 2, …, M)} for different p, q∈{1, 2, …., 
n}. In other words, it is now possible to construct 
M data triples {(yi, xip, xiq); (i = 1, 2, …, M)} from 
observation using such p, q∈{1, 2, …., n} in the 
form: 
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Using the quadratic sub-expression in the form of 

Equation 5 for each row of M data triples, the 
following matrix equation can be readily obtained as 
 

YaA = , (7) 
 
Where a is the vector of unknown coefficients of 
the quadratic polynomial in Equation 5 
 

}5a,4a,3a,2a,1a,0{aa = , (8) 
 
and 
 

T}My,...,3y,2y,1{yY = , (9) 
 
Is the vector of output’s value from observation. It 
can be readily seen that 
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The least-squares technique from multiple 
regression analysis leads to the solution of the 
normal equations in the form of 
 

YTA1A)T(Aa −= , (11) 
 

Which determines the vector of the best coefficients 
of the quadratic Equation 5 for the whole set of M 
data triples. It should be noted that this procedure 
is repeated for each neuron of the next hidden layer 
according to the connectivity topology of the 
network. However, such a solution directly from 
normal equations is rather susceptible to round off 
errors and, more importantly, to the singularity of 
these equations. 
 
 

2.1. Application of SVD to the Design of 
GMDH- Type Neural Networks   Singular 
Value Decomposition (SVD) is the method for 
solving most linear least square problems in which 
some singularities may exist in the normal 
equations. The SVD of a matrix, 6MA ×ℜ∈  is a 
factorization of the matrix into the product of three 
matrices, column-orthogonal matrix 6MU ×ℜ∈ , 
diagonal matrix 66W ×ℜ∈  with non-negative 
elements (singular values), and orthogonal matrix 
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66V ×ℜ∈  such that: 
 

TVWUA =  (12) 
 

The problem of optimal selection of vector of the 
coefficients in Equations 8 and 11 is firstly reduced 
to finding the modified inversion of diagonal 
matrix W (in which the reciprocals of zero or near 
zero singulars (according to a threshold) are set to 
zero). Then, such optimal a is calculated using the 
following relation: 
 

YTU)]j[diag(1/wVa =  (13) 
 

Such parametric identification problem is part of 
the general problem of modeling when structure 
identification is considered together with the 
parametric identification problem simultaneously. 
In this work, a new encoding scheme is presented 
in an evolutionary approach for simultaneous 
determination of structure and parametric 
identification of GMDH neural networks. 
 
2.2. Application of GA in the Topology 
Design of GMDH-Type Neural Networks 
Stochastic methods are commonly used in the 
training of neural networks in terms of associated 
weights or coefficients that have successfully 
performed better than traditional gradient-based 
techniques [19]. The literature shows a wide range 
of evolutionary design approaches either for 
architectures or for connection weights separately, 
in addition to efforts for them simultaneously [24] 
In the most GMDH type neural network, neurons 
in each layer are only connected to neuron in its 
adjacent layer as it was the case in Methods I and 
II previously reported in reference [20]. Taking 
this advantage, it was possible to present a simple 
encoding scheme for the genotype of each 
individual in the population as already proposed by 
authors [20]. The encoding schemes in generalized 
GMDH neural networks (GS-GMDH) must 
demonstrate the ability of representing different 
length and size of such neural networks. 
     In GS_GMDH neural network, Figure 1, neuron 
ad in the first hidden layer is connected to the output 
layer by directly going through the second hidden 
layer. Therefore, it is now very easy to notice that 
the name of output neuron (network’s output) 
includes “ad” twice as abbcadad. In other words, a 

virtual neuron named adad has been constructed in 
the second hidden layer and used with abbc in the 
same layer to make the output neuron abbcadad as 
shown in the Figure 1. It should be noted that such 
repetition occurs whenever a neuron passes some 
adjacent hidden layers and connects to another 
neuron in the next 2nd, or 3rd, or 4th, or … following 
hidden layer. In this encoding scheme, the number 
of repetition of that neuron depends on the number 
of passed hidden layers, ñ, and is calculated as ñ2 . 
It is easy to realize that a chromosome such as abab 
bcbc, unlike chromosome abab acbc for example, is 
not a valid one in GS-GMDH networks and has to 
be simply re-written as abbc. 
 
2.3. Genetic Operators for Generalized 
GMDH Network Reproduction   The genetic 
operators of crossover and mutation can now be 
implemented to produce two offspring from two 
parents. The natural roulette wheel selection 
method is used for choosing two parents producing 
two offspring. The crossover operator for two 
selected individuals is simply accomplished by 
exchanging the tails of two chromosomes from a 
randomly chosen point as shown in Figure 2. It 
should be noted, however, such a point could only 
be chosen randomly from the set 21, 22,…, 2n

1
 + 1, 

where nl is the number of hidden layers of the 
chromosome with the smaller length. 
     It is very evident from Figures 2 and 3 that the 
crossover operation can certainly exchange the 
building blocks information of such generalized 
GMDH neural networks so that the two types of 
generalized GMDH and conventional GMDH type 
neural networks can be converted to each other, as 
can be seen from Figure 3. 
     In addition, such crossover operation can also 
produce different length of chromosomes that, in 
turn, lead to different sizes of either generalized 
GMDH type or conventional GMDH type network 
structures. Similarly, the mutation operation can 
contribute effectively to the diversity of the 
population. This operation is simply accomplished 
by changing one or more symbolic digits as genes 
in a chromosome to other possible symbols, for 
example, abbcadad to abbccdad. It is very evident 
that mutation operation can also convert a 
generalized GMDH type network to a conventional 
GMDH type network or vice versa. It should be 
noted that such evolutionary operations are 
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acceptable provided a valid chromosome is 
produced. Otherwise, these operations are simply 
repeated until a valid chromosome is constructed. 
     The incorporation of genetic algorithm into the 
design of such GMDH-type neural networks starts 
by representing each network as a string of 
concatenated sub-strings of alphabetical digits. 
The fitness, (Φ), of each entire string of symbolic 
digits which represents a GMDH-type neural 
network to model explosive cutting process is 

evaluated in the form: 
 

Φ = 1/E, (14) 
 

Where E, is the mean square of error given by 
Equation 6, is minimized through the evolutionary 
process by maximizing the fitness Φ. The 
evolutionary process starts by randomly generating 
an initial population of symbolic strings, each as a 
candidate solution. Then, using the aforementioned 
genetic operations of roulette wheel selection 
(crossover and mutation), the entire populations 
of symbolic strings to improve gradually. In this 
way, GMDH type neural network models with 
progressively increasing fitness, Φ are produced until 
no further significant improvement is achievable. 
 
 
 

3. SIMULATION OF STALL CONTROL 
 
3.1. Governing Equations and Sgs Modeling 
In LES models, the small eddies are separated by 
filters from large eddies that contain most of the 
energy. There are two key characteristics in LES 
approach. One is the filter function; the other is 
the SGS model. First, the flow variables are 
decomposed into large-scale components (denoted 
by an overbar) and small subgrid scale components 
by employing a filtering operation. The resulting 
equations thus govern only the dynamics of large 
eddies and these large-scale variables can be 
defined by the filtering operation: 
 

∫ ′′= ,x)dxf(
ΔV
1(x)f  (15) 

 

Where ΔV is the control volume. The above is a 
simple top-hat filter in physical space that is 
applied implicitly by the finite-volume 
discretization. 
     Applying the filtering operation to the Navier-
Stokes equations and assuming that the filtering 
and differentiation operations commute, the 
following equations for the evolution of the large-
scale motions are obtained: 
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Figure 1. A generalized GMDH network structure of a 
chromosome. 
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Figure 2. Crossover operation for two individuals in
generalized GMDH network. 
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Figure 3. Crossover operation on two generalized GMDH 
networks. 
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Where i (= 1, 2, 3) indicates the spatial dimension; 
p  is the filtered pressure; )t,ix(iu  is the resolved 
velocity field. The incompressible form of the 
subgrid scale stress is: 
 

,juiujuiu −=τ  (18) 
 

The subgrid scale stresses resulting from the 
filtering operation are unknown and require 
modeling. Majority of the subgrid scale models in 
use today are eddy viscosity models. The models 
assume proportionality between the anisotropic 

part of the SGS stress tensor kkij3
1

ij τδ−τ  and the 

resolved scale strain rate tensor ijS  as Equation 19: 
 

,ijSt2kkij3
1

ij ν−=τδ−τ  (19) 
 

Where μt is the subgrid scale turbulent viscosity, 
and ijS  is defined by  
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3.2. RNG-Based Subgrid-Scale Model in 
LES   The most basic of subgrid scale models is 
proposed by Smagorinsky and further developed 
by Smagorinsky [54] and Lilly [55]. In the 
Smagorinsky-Lilly model, the eddy viscosity is 
simulated by  
 

,S2)sC(t Δ=ν  (21) 
 

,ijSijS2S =  (22) 
 

Where Δ  is the filter length and the model 
parameter Cs should be optimized according to a 
type of turbulent flow field (0.1 ≤ Cs ≤ 0.23). The 
near-wall correction is also required, and the Van 
Driest type wall damping function, fVD = 1-exp(-
y+/25), is traditionally introduced as VDfΔ→Δ  
(y+ = uτy/ν is the wall unit, y is the wall normal 
coordinate and uτ is the wall friction velocity). 
However it was not used in the present 
investigation, mainly because this approach lacks 
generality as it involves the distance of a cell 
centroid to the wall which is difficult to evaluate in 

complex geometries and whereas this model is 
based on high Reynolds number flow, predicts 
non-zero turbulence viscosity in laminar flows. 
Instead, it was decided to use a RNG-based model 
that predict more accurately transition or 
relaminarization and have the correct near-wall 
behavior as opposed to the constant-coefficient 
Smagorinsky model. Yakhot, et al [56] have 
obtained an RNG subgrid scale stress model by 
performing recursive elimination of infinitesimal 
bands of small scales. In this RNG-based SGS 
model, the effective viscosity, μeff = μ + μt, is given 
by: 
 

μeff = μ [1 + H(x)]1/3, (23) 

 
Figure 4. A portion of the C-type grid for NACA0015. 
 
 

 

Figure 5. Schematic representation of computational grid. 
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Where H(x) is the ramp function defined by 
 

⎩
⎨
⎧

<
≥

=
0x,0

,0x,x
)x(H  (24) 

 

Here, the variable x equals to C)3
effs( −μμμ , 

where ijSijS22)31VRNGC(s Δ=μ . Based on the 

RNG theory, the constants CRNG and C are given 
by 0.157 and 100, respectively [56]. 
     In highly turbulent regions, the filtering operation 
results in very high subgrid viscosity compared to 
the molecular viscosity, μ≥μs  and seff μ≅μ . In 
this limit, the RNG theory based subgrid scale 
model returns to the Smagorinsky model with a 
different model constant. In weakly turbulent 
regions, the argument of the Heaviside function is 
negative, and the effective viscosity is equal to the 
molecular viscosity. The RNG SGS model in this 
limit correctly yields zero SGS viscosity in low 
Reynolds number flows without any ad-hoc 
modifications to model the low-Reynolds-number 
effects encountered in near-wall region. 
 
3.3. Numerical Scheme   The governing Navier-
Stokes equations are integrated by finite volume 
method for a structured grid system. All the flow 
variables are stored at geometric centers of the 
arbitrary shaped cells. In this study, the time-
dependent terms were handled through an implicit 
second-order backward differencing in time. The 
transport equations were discretized using the 
finite-volume method. LES model is sensitive to 
the spatial discretization errors because eddies near 
the cut-off wave number is still energetic [57]. It has 
been reported that the truncation error overwhelms 
the contribution of SGS force for upwind and 
upwind-biased schemes [58]. So the central 
differencing scheme was used to approximate the 
convective terms at the faces of the control 
volumes for LES model. The PISO algorithm [59] 
is used to deal with the pressure-velocity coupling 
between the momentum and the continuity equations. 
In order to avoid the generation of a check-board 
pressure field, the velocity interpolation method at 
cell faces proposed by Rhie and Chow [60] is 
employed. 
 
3.4. Grid Setup   A structured C-type grid 

system is used for calculation of the flow field 
around the NACA0015 airfoil. 
     This grid is clustered close to the wall and in 
the near-wake, in order to get an accurate 
description of the vortex shedding. Figure 4 shows 
an overview of the C-mesh used around the airfoil. 
The computational domain is plotted in Figure 5. 
The upstream boundary is 12 chord lengths away 
from the leading edge of the airfoil while the outlet 
boundary is placed 20 chord lengths downstream 
of the trailing edge. 
     On the outer boundary, the uniform flow boundary 
conditions are imposed at the upstream boundary and 
the right (outflow) boundary condition is set to a zero 
velocity gradient condition. A no-slip wall boundary 
condition is taken on the airfoil surface. 
     To model the synthetic jet actuator, suction/ 
blowing type boundary condition is used. Thus, a 
prescribed velocity distribution is imposed at the 
jet boundary: 
 

jetd)s(f)tsin(AU
rr

ω=  (25) 
 

Where the amplitude μ∞= CU
H2
CA , the 

prescribed frequency of oscillation 
)C2UF( π∞

+=ω  and jetd
r

 is a vector of unit 

length representing the direction of the jet outlet. 

jetα  is the angle between jetd
r

 and the wall. f(s) is 

the distribution of the velocity along the jet 
boundary. It is supposed to have a negligible 
influence on the flow, as shown by Donovan, et al 
[9]. Therefore, a ‘‘top hat’’ distribution is adopted, 
corresponding to f(s) = 1. F+ is the non-
dimensional frequency and the oscillatory 
momentum blowing coefficient < Cμ > is defined 
as: 
 

2)Ujetu)(cH(2C ∞><>=μ<  (26) 

 
This choice of boundary conditions coupled with 
the use of a relatively large computational domain 
ensures that the results are relatively insensitive to 
the domain size. This is demonstrated conclusively 
by re-computing the flow with a different domain 
size. All parameters chosen in the computation are 
dimensionless. A special attempt was made to 
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ensure that the near-wall y+ values of the airfoil 
surface were kept within 0.5. 
     The near flowfield around the airfoil is the most 
sensitive computation areas; hence, the number of 
grid points in these areas is most critical. To test 
for grid independence, three sets of grids, with 
increasing grid density (labeled 1, 2, and 3), are 
studied, and their results are listed in Table 1. 
     The rows PS, SS, Wake, Ny and Nb pts 
correspond to the number of cells on the pressure 
side, on the suction side, in the wake, in the direction 
normal to the wall and the total number of cells, 
respectively. These grids are studied under a 

Reynolds number of 12.7×106, and computational 
results for different angles of attack are compared in 
Table 2 and Figure 6. The differences in the 
computational results between set 1 and set 2, and 
between set 2 and set 3, are less than 3 %. To 
maintain grid-resolution consistency at different 
locations and relatively high grid resolution at the jet 
and also for economy of computations, the relatively 
dense grid of set 2 is adopted in the current 
computation. 
 
3.5. Parameters Selection and Verification 
Work   In the current investigation, three parameters 

 
 
 

TABLE 1. Characteristics of the Meshes Used. 
 

NB PTS NY WAKE SS PS MESH 
644.80 130 48 200 200 M1 

109.556 155 96 262 245 M2 

175140 180 144 368 292 M3 

 
 
 

TABLE 2. Coarse and Dense Grid Cl and Cd Comparison. 
 

3Cd 2Cd 1Cd 3Cl 2Cl 1Cl α 
0.013625 0.013943 0.013833 0.001048 0.001228 0.001043 0 
0.027528 0.027585 0.02754 0.824278 0.82245 0.820219 6 
0.044585 0.043681 0.042659 1.267991 1.260957 1.259591 10 
0.067107 0.065946 0.063401 1.382324 1.395179 1.373413 12 
0.12851 0.126616 0.12167 1.236193 1.261897 1.225949 14 

0.236623 0.235354 0.245 1.123305 1.0828 1.056942 16 
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Figure 6. Grid independence study of the grids in Table 1. 
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of the synthetic jet are selected to optimize, called 
design variables, namely, jet momentum coefficient 
Cμ, non-dimensional jet frequency F+ and direction 
of the outlet αjet. In our numerical investigation, the 
range of jet momentum coefficient is selected to be 
from 0.005 to 0.1. It has been proposed [61] that a 
jet momentum coefficient Cμ around 0.002 is 
necessary to have some impact on the flow pattern. 
The dimensionless frequency F+ is changed within 
0.7 to 4 based on previous researches [63,64], which 
showed that F+ > 4 will not increase lift significantly. 
The jet angle αjet is changed from 0 deg to 60 deg 
with respect to the wall. This rang covers more of 
the airfoil jet angle than those used in previous 
experimental and numerical studies. All cases are 
under Reynolds number 12.7 × 106 and angle-of-
attack 18-deg conditions. 
     The numerical solution is validated first by 
comparing with experimental data [62] without jet 
actuator. The value of parameter which were used 
in the simulations were chosen to match the 
specifications of the experiments of flow separation 
control performed by Seifert [62] at Re = 12.7 × 106 
by a synthetic jet located at Sjet = 10 % of the chord L 
from the leading edge, with a slot width h = 0.2 % of 
the chord. 
     In order to reduce the computational time required 
to converge to a solution with blowing, the baseline 
case solution (without excitation) was used as the 
initial flow conditions for the blowing computations. 
     Figure 7 shows the computed lift coefficient 
(Cl) versus angle of attack compared with the 
experimental data. The computed result is reasonably 
close to the graph obtained experimentally. The stall 
angle is overestimated by 1o and the maximum Cl by 
7 %. This is so because, in general, there exists a 
difficulty for numerical approaches to match the lift 
coefficient for angles of attack above the separation 
angle [65]. The general trend is, though, correctly 
captured. Given in Figure 8 is the comparison of the 
distributions of pressure coefficient on the airfoil 
between numerical and experimental data, which 
shows that the LES approach is capable of prediction 
the airfoil flow at α = 14˚. The computed controlled 
airfoil surface pressure distributions are compared 
with the experimental data for F+ = 2, < Cμ > = 0.03 
% and α = 14˚ in Figure 9 where the good agreement 
is achieved at this angle of attack. 
     The numerically obtained lift coefficient Cl for 
controlled case with variation in angle of attack (α) 
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Figure 7. Baseline lift coefficient for NACA0015 airfoil 
computed with experiments. 
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Figure 8. Pressure distributions on NACA0015 airfoil for the 
case of zero actuation. 
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Figure 9. Pressure distributions on NACA0015 airfoil for 
controlled case. 
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are compared with experimental data in Figure 10. 
It can be seen from Figure 10 that the numerical 
results closely follow the experimental data. 
Despite this, a small over-prediction of the lift 
coefficient can be seen. 
     Figure 7 and 10 also clearly show the benefits of 
the oscillatory excitation through the increase in the 
mean lift coefficient of the controlled case with 
respect to the lift coefficient for the uncontrolled 
one. As seen, for an incidence of 8˚ and 10˚ the 
synthetic jet has no significant influence on the lift 
coefficient. However the slope of the curve is 
maintained till 13˚ thanks to the actuation, whereas 
the slope begins to decrease after 10˚ for the 
baseline airfoil. In the controlled case, the lift 
decrease occurs at about 15˚, delaying the stall by 
2˚.The maximum lift is increased of 16 %. 
 
 
 

4. MODELING OF LIFT AND DRAG 
COEFFICIENT USING GMDH-TYPE 

NEURAL NETWORK 
 
The input-output data pairs used in such modeling 
involve two different data tables obtained from 
numerical simulations discussed in section 3. The 
first table consist of three variables as inputs 
namely, momentum coefficient (Cμ), reduced 
frequency (F+) and angle w.r.t. the wall (αjet) and 
one output which is lift coefficient (Cl) for stall 
control on NACA0015 airfoil with a synthetic jet. 
The second table consists of the same three 

variables as inputs and another output which is 
drag coefficient (Cd). These tables consist of the 
total 144 pattern numbers which have been 
obtained from the numerical simulations to train 
GMDH-type neural networks. However, in order to 
demonstrate the prediction ability of the evolved 
GMDH-type neural networks, the data have been 
divided into two different sets, namely, training 
and testing sets. The training set, which consists of 
116 out of 144 inputs-output data pairs, is used for 
training the neural network models using the 
method presented in section two. The testing set, 
which consists of 28 unforeseen input-output data 
samples during the training process, is merely used 
for testing to show the prediction ability of such 
evolved GMDH-type neural network models. 
     The GMDH-type neural networks are now used 
for such input-output data to find the polynomial 
model of lift and drag coefficient with respect 
to their effective input parameters. In order to 
genetically design such GMDH-type neural 
network described in previous section a population 
of 25 individuals with a crossover probability of 
0.7 and mutation probability of 0.07 has been used 
in 200 generation that no further improvement has 
been achieved for such population size. The 
structure of the evolved 2-hidden layer GMDH-
type neural networks are shown in Figures 11 and 
12 corresponding to the genome representations 
of acbbaabc for lift coefficient and abbcaaac for 
drag coefficient which a,b and c stand for reduced 
frequency, momentum coefficient, and angle 
w.r.t. the wall, respectively. The corresponding 
polynomial representation of such model for lift 
coefficient is as follows: 
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Figure 10. Comparison of numerical results versus 
experimental data regarding the effect of SJA actuation on the 
lift coefficient. 
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Similarly, the corresponding polynomial representation 
of the model for drag coefficient is in the form of: 
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The very good behavior of the GMDH-type neural 
network models is also depicted in Figures 13 and 
14 for testing data of both lift and drag coefficient, 
respectively. 
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Figure 11. Evolved structure of generalized GMDH neural 
network for lift coefficient. 
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Figure 12. Evolved structure of generalized GMDH neural 
network for drag coefficient. 
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Figure 13. Variation of lift coefficient with input data. 
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Figure 14. Variation of drag coefficient with input data. 
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     It is clearly evidenced that the evolved GMDH-
type neural network in terms of simple polynomial 
equations can successfully model and predict the 
output of testing data that has not been used during 
the training process. 
     The models obtained in this section can now be 
utilized for a Pareto multi-objective optimization 
of the control parameters considering lift (Cl) and 
drag (Cd) as conflicting objectives. Such study may 
unveil some interesting and important optimal 
design principles that would not have been 
obtained without the use of a multi-objective 
optimization approach. 
 
 
 

5. MULTI-OBJECTIVE OPTIMIZATION 
 
Multi-objective optimization which is also called 
multi criteria optimization or vector optimization 
has been defined as finding a vector of decision 
variables satisfying constraints to give acceptable 
values to all objective functions [38,53]. In 
general, it can be mathematically defined as 
follows: 
 

Find the vector T]*
nx,...,*

2x,*
1x[*X =  to optimize 

[ ]T)X(kf),...,X(2f),X(1f)X(F =  (29) 
 
Subject to m inequality constraints: 
 

mto1i,0)X(ig =≤  (30) 
 
and p equality constraints: 
 

p    to1j, 0)X(jh ==  (31) 
 

Where n*X ℜ∈  is the vector of decision or design 

variables, and k)X(F ℜ∈  is the vector of objective 
functions which each of them be either minimized 
or maximized. However, without loss of 
generality, it is assumed that all objective functions 
are to be minimized. Such multi-objective 
minimization based on Pareto approach can be 
conducted using some definitions. 
 
5.1. Definition of Pareto Dominance   A vector 

[ ] k
ku,...,2u,1uU ℜ∈=  is dominance to vector 

[ ] k
kv,...,2v,1vV ℜ∈=  (denoted by VU p  ) if and 

only if }{ k,...,2,1i∈∀ , iviu ≤  ∧ }{ k1,2,...,j∈∃ : ju  

< jv . In other words, there is at least one ju  which 

is smaller than jv  whilst the remaining u ’s are 

either smaller or equal to corresponding v ’s. 
 
5.2. Definition of Pareto Optimality   A point 

Ω*X ∈  (Ω  is a feasible region in nℜ  satisfying 
Equations 2 and 3) is said to be Pareto optimal 
(minimal) with respect to the all Ω∈X  if and only 
if )X(F)*X(F < . Alternatively, it can be readily 
restated as 
 

}{ k,...,2,1i∈∀ , }X{X *−Ω∈∀  (X)if)*(Xif ≤  ∧ 

}k,...,2,1{j∈∃ : )X(jf)*X(jf < . 
 
In other words, the solution *X  is said to be Pareto 
optimal (minimal) if no other solution can be found 
to dominate *X  using the definition of Pareto 
dominance. 
 
5.3. Definition of Pareto Set   For a given 
MOP, a Pareto set Ƥ٭ is a set in the decision 
variable space consisting of all the Pareto optimal 
vectors Ƥ٭ |X{ Ω∈= ∄ )}X(F)X(F:X <′Ω∈′ . In other 
words, there is no other X' as a vector of decision 
variables in Ω that dominates any X ∈ Ƥ٭. 
 
5.4. Definition of Pareto Front   For a given 
MOP, the Pareto front ƤŦ٭ is a set of vector of 
objective functions that are obtained using the 
vectors of decision variables in the Pareto set Ƥ٭, 
that is ƤŦ٭ = {F(X) = (f1(X), f2(X),…, fk(X)): X ∈ 
Ƥ٭}. In other words, the Pareto front ƤŦ٭ is a set of 
the vectors of objective functions mapped from Ƥ٭. 
     Evolutionary algorithms have been widely used 
for multi-objective optimization because of their 
natural properties suited for these types of 
problems. This is mostly because of their parallel 
or population based search approach. Therefore, 
most of the difficulties and deficiencies within 
the classical methods in solving multi-objective 
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optimization problems are eliminated. For example, 
there is no need for either several runs to find the 
Pareto front or quantification of the importance of 
each objective using numerical weights. In this 
way, the original non-dominated sorting procedure 
given by Goldberg [33] was the catalyst for several 
different versions of multi-objective optimization 
algorithms [36,37]. However, it is very important 
that the genetic diversity within the population be 
preserved sufficiently. This main issue in MOPs 
has been addressed by many related research works 
[49]. Consequently, the premature convergence of 
MOEAs is prevented and the solutions are directed 
and distributed along the true Pareto front if such 
genetic diversity is well provided. The Pareto 
based approach of NSGA-II [50] has been used 
recently in a wide area of engineering MOPs 
because of its simple yet efficient non-dominance 
ranking procedure in yielding different level of 
Pareto frontiers. However, the crowding approach in 
such state of the art MOEA [51] has been modified 
by the work of some of authors [29,30] which is 
used in this paper to obtain the Pareto front of two 
conflicting objective function, namely, CL and Cd. 
 
 
 

6. PARETO OPTIMIZATION OF STALL 
CONTROL USING POLYNOMIAL NEURAL 

NETWORK MODELS 
 
In order to investigate the optimal control 
parameters of the synthetic jet in different 
condition of design variables, i.e. momentum 
coefficient, reduced frequency and the direction of 
the outlet, the polynomial neural network models 
obtained in previous sections are now deployed in 
a multi-objective optimization procedure. The two 
conflicting objective in this study are time-
averaged lift coefficient (CL) and time-averaged 
drag coefficient (CD) to be simultaneously 
optimized with respect to the design variables, 
Cμ, F+ and αjet. Evidently, it can be observed 
that the CL is maximized whilst the CD is 
minimized in the set of objective functions 
(CL,CD). The evolutionary process of Pareto multi-
objective optimization is accomplished by using 
the modified NSGA-ІІ approach [29,30] where 
a population size of 100 has been chosen in 
different runs with crossover probability Pc 

and mutation probability Pm is 0.95 and 0.1, 
respectively. However, in order to refine the 
obtained results as non-dominated points, the 
Pareto front is moved to a better one by using a 
single-objective optimization technique for each 
non-dominated points. The scheme is represented in 
Figure 15, where each non-dominated points is 
regarded as an initial guess for the single-objective 
optimization technique by keeping one objective 
fixed whilst improving the other objective by 
changing the design vector. The corresponding 
Pareto front of two objectives CL and CD has been 
shown in Figure 16, using the hybridized approach 
of this work. It is clear from this figure that 
choosing appropriate value for the parameters of 
the synthetic jet for obtaining a better value of one 
objective would cause a worse value of another 
objective. 
 
 
 

Pareto front using GA 

Pareto front using hybridized GA

Drag 

Lift 

 
Figure 15. Hybridization procedure of initial Pareto front. 
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Figure 16. Pareto front of two objectives lift and drag. 
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     However, if the set of decision variables is 
selected based on each of the Pareto sets, it will 
lead to the best possible combination of those two 
objectives. In other words, if any other pair of 
decision variables is chosen, the corresponding 
values of the pair of objectives, i.e. CL and CD, will 
locate a point inferior to the corresponding Pareto 
front. Such inferior area in the space of the two 
objectives is in fact bottom/right side of Figure 16. 
Clearly, there are some important optimal design 
facts between the two objective functions which 
have been discovered by the Pareto optimization of 
the polynomial neural network models obtained 
using the numerical data of stall control with a 
synthetic jet. Such important design facts would be 
very important to the designer to switch from one 
optimal solution to another for achieving different 
trade-off requirements of the objectives and could 
not have been found without the multi-objective 
Pareto optimization of those polynomial models. In 
this way, two sections, A and B, can be seen from 
Figure 16 which demonstrate these important 
optimal design facts. Section A exhibits decrease 
of lift coefficient (CL) whilst the amount of 
decrease in drag coefficient is very small. Section 
B exhibits a significant increment of drag 
coefficient (Cd) with a small change in lift (CL). 
Therefore, changing the parameters of a synthetic 
jet as decision variables should be in such a way 
that stall control performance on airfoil in terms of 
lift (CL) and drag (Cd) lies between sections A and 
B (section C) of the Pareto optimal front. This will 
not only ensure the optimal process of the stall 
control but also prohibit such deficiency involved 
in both sections A and B. 
     In this numerical study, the end optimized best 
non-dominated individuals with the maximum 
control fitness for the angle of injection (αjet) is: 
αjet < 2˚. These results are consistent with several 
reported numerical and experimental works that 
demonstrated the effective control angles on the 
airfoil for synthetic jets. For example, regarding 
the appropriate direction of injection of the fluid 
(αjet), it was found in numerical experiments [66] 
that no effective flow separation control can be 
achieved for a jet exiting normally to the airfoil 
surface (αjet = 90 deg). It was also found, on the 
other hand, that for αjet = 30 deg large amplitude 
oscillations of the computed loads (e.g. lift and 
drag forces) are obtained. This load oscillation is 

undesirable and therefore a jet exit angle αjet ≤ 10 
deg is recommended by the numerical simulations. 
Other examples include Seifert, Darabi and 
Wygnanski [67], who studied the effect of periodic 
excitation at 0˚ (wall-jet) on a NACA0015; Gilarranz, 
et al [68] and Hassan, et al [69] who studied a 
synthetic jet that is almost tangential to the wall. 
     Figures 17 and 18 demonstrate the corresponding 
variations of lift coefficient (Cl) versus the other 
decision variables, namely momentum coefficient 
(Cμ) and reduced excitation frequency (F+), 
respectively. It can be seen that the corresponding 
sections of A and B of the Pareto front (Figure 16) 
can be verified in these figures. Therefore, it can 
be readily concluded that section A corresponds to 
lower values of reduced excitation frequency (F+) 
around 0.8 with some small values of momentum 
coefficient (Cμ) less than 0.059. On the other hand, 
section B corresponds to higher value of reduced 
 
 
 

Figure 17. Optimal variation of the lift with respect to the 
momentum coefficient. 
 
 
 

Figure 18. Optimal variation of the with respect to the 
reduced frequency. 
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frequency (F+) greater than 1.44 with same large 
values of momentum coefficient (Cμ) greater than 
0.09. The corresponding values of decision 
variables, (Cμ) and F+, in conjunction with the 
Pareto front are shown in Figure 19. Evidently, 
choosing the value of reduced frequency 0.85 < 
(F+) < 1.38 with a range of momentum coefficient 
(Cμ), 0.065 < Cμ < 0.085, according to Figure 19, 
in conjunction with αjet < 2˚ ensures the best 
possible combination of stall control performance 
in terms of lift (Cl) and drag (Cd) relating to the 
area C of the Pareto optimal front shown in Figure 
16. For example, it can be seen that for non-
dominated optimum design point (1.58,0.229) 
relating to the area C of the pareto optimal front lift 
coefficient increase by 60 % with respect to the 
baseline airfoil and 20 % with respect to the initial 
control parameters. On the other hand, drag 
coefficient decrease by 31 % w.r.t the baseline and 
13 % w.r.t the initial control parameters. Figure 20 
demonstrate the corresponding variation of drag 
(Cd) versus the momentum coefficient (Cμ). The 
Pareto front obtained from the GMDH-type neural 
network model (Figure 16) has been superimposed 
with the corresponding numerical simulation 
results in Figure 21. It can be clearly seen that such 
obtained Pareto front lies on the best possible 
combination of the objective values of numerical 
data which demonstrates the effectiveness of the 
approach of this paper both in deriving the model 
and in obtaining the Pareto front. 
 
 
 

7. CONCLUSION 
 
Genetic algorithms have been successfully used 
both for optimal design of generalized GMDH type 
neural networks models of stall control using a 
synthetic jet and for multi-objective Pareto based 
optimization of such control process. The 
simulation of aerodynamic stall control using a 
synthetic jet actuator is firstly performed on a 
NACA0015 airfoil at Reynolds number of 12.7 × 
106 and angle-of-attack 18-deg. the LES 
predictions for time-average lift versus angle of 
attack and pressure coefficient agreed quite well 
with the experimental data of [62]. Then, two 
different polynomial relations for lift and drag of 
controlled NACA0015 airfoil using a synthetic jet 
with different parameters or design variables have 

been found by evolved GS-GMDH type neural 
network using input-output data obtained from 
numerical simulation. The derived polynomial 

Figure 19. Optimal variation of reduced frequency with 
respect to the momentum coefficient. 
 
 
 

 

Figure 20. Optimal variation of the drag with respect to the 
momentum coefficient. 
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Figure 21. Overlay graph of the obtained optimal Pareto front 
with the numerical data. 
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models have been used in an evolutionary multi-
objective Pareto based optimization process so that 
some interesting and informative optimum design 
aspects have been revealed for aerodynamic stall 
control with respects to the control parameters, i.e. 
momentum coefficient, reduced frequency and the 
direction of the outlet. The evolutionary multi-
objective optimization process has helped to 
discover important relationships with relatively 
few efforts of modeling preparation that would 
otherwise have required at least a very through 
mathematical analysis. Such combined application 
of GMDH neural network modeling of numerical 
input-output data and subsequent non-dominated 
Pareto optimization process of the obtained models 
is very promising in discovering useful and 
interesting design relationships. 
 
 
 

8. NOMENCLATURE 
 
C Airfoil Chord 
CL Lift Coefficient 
CD Drag Coefficient 
CP Pressure Coefficient 
Re Reynolds Number 
α Airfoil Angle of Attack 
P Pressure 
U∞ Free-Stream Velocity 
h Slot Width 
μt Subgrid-Scale Turbulent Viscosity 
ρ Density 
F+ Reduced Frequency 
Cμ Blowing Momentum Coefficient 
xi Spatial Coordinate, i = 1, 2,… 
ui Velocity Component 
ν Kinematic Viscosity 

jetd
r

 Jet Direction 

H(x) Ramp Function 
τ Subgrid Scale stress 

ijS  Strain rate Tensor 

Δ  Filter Length 
Φ Fitness 
E Mean Square of Error 
X* Vector of Optimal Design Variables 
F(x) Vector of Objective Functions 
Ƥ٭ Pareto Set (Set of Decision Variables) 
ƤŦ٭ Pareto Front (Set of Objective Functions) 

8.1. Subscripts 
 

∞ Free-Stream Conditions 
jet Conditions at Blowing Slot 
 
8.2. Superscripts 
 
‘ Fluctuating Variables 

 Filtered Variables 
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