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Abstract   Flexible structures (such as long-span suspension bridges which undergo wind or 
earthquake excitations) exhibit complex dynamic behavior. Due to high cost of strengthening such 
structures, as well as the technological advances in recent years, much attention has been given to 
using innovative means of enhancing structural functionality and safety against natural hazards. 
Among the methods used to mitigate the excessive vibration of structures, the energy absorber 
systems are more promising. The present paper discusses parametric studies of the TMD system to 
find the optimal values of its parameters, to suppress the vertical responses of suspension bridges 
subjected to earthquakes’ vertical accelerations. Thomas Suspension Bridge located in Los Angles, 
U.S.A., is chosen as a case study, and the vertical acceleration records of 18 major worldwide 
earthquakes are used in numerical studies. The analysis is performed in time domain. The results of 
the numerical studies show that the proposed system is capable of reducing the maximum vertical 
displacement of the bridge to a considerably low value. 
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ار انعطاف ير باد و زلزله بسي نظيکينامي دي که دارند در مقابل بارهايل دهانه بلنديهای معلق به دل پلچكيده       

ن ي کاهش ايبرا. شوند ي مي بزرگيها ر شکلييروها دچار تغين ني در برابر ا"ل عموماين دليبه اند و هستر يپذ
توان به جرم هم ساز  يها م آن ةجمل ابداع شده است که از ي مختلفيها ر روشي اخيها ها، در سال رمکانييتغ

 مختلف استفاده يها ازهها قبل در س  از سالTMDستم يس.  اشاره نمود)TMD )Tuned Mass Damperا يشده 
ستم، با در نظر گرفتن حداکثر کاهش ي مختلف سينه پارامترهاير بهي شده تا مقاديدر مقاله حاضر سع. ه استشد

 ه عنوانب. ن گردنديي و خطا تعي زلزله و با استفاده از روش سعيروهاي معلق در اثر نيها  پليها رشکلييدر تغ
ل يزلزله مختلف تحل ۱۸کا انتخاب شده و تحت اثر ي لوس آنجلس امر پل معلق توماس واقع دريمثال عددک ي

 حداکثر پل را تا حد قابل يها ر مکانيي تغ،ستمين سيدهد که با استفاده از ا ي نشان مهجه مطالعينت. ه استشد
 .کاهش دادتوان  میتوجهی 

 
 

1. INTRODUCTION 
 
Since suspension bridges have long spans, their 
slender and flexible structures, are highly vulnerable 
to forces applied by support excitation during 
earthquake. Vibration control of these structures is 
being considered as an important issue in structural 
engineering. In recent years, many different 
structural control systems such as Tuned Mass 
Damper (TMD), Active Tuned Mass Damper 
(ATMD), and Base Isolation systems are widely 
used to mitigate the structural responses under 

dynamic loadings [1-4]. 
     The passive TMD control method is proved to 
be economically advantageous, due to its low cost 
maintenance. Warburton, et al [5] performed a 
study to find the optimum absorbing parameters 
for simple systems. Application of TMD systems 
in suspension bridges have been studied by many 
researchers. Lin, et al [6] studied the effect of 
TMD system in the reduction of torsional and 
vertical responses of suspension bridges subjected 
to wind loading. They used a TMD system with 
two degrees of freedom, vertical and torsional. 



24 - Vol. 22, No. 1, April 2009 IJE Transactions B: Applications 

They obtained a TMD mass ratio of 2 % for getting 
a reduction of 25 % and 33 % in vertical and 
torsional responses of the bridges, respectively. 
     Yozo Fojino [7] published a paper on vibration 
control and monitoring of long-span bridges, in 
particular, emphasizing on cable-supported bridges 
recently developed in Japan. The primary stress is 
placed on the vibration due to motion-dependent 
forces such as wind-induced aerodynamic forces 
and its control. Implementation of passive and 
active control in the long-span bridges in Japan 
was described. At the end of the paper, the 
importance and usefulness of vibration monitoring 
of long-span bridges was discussed with a real 
example. 
     Larsena, et al [8] studied design aspects of 
tuned mass dampers for Great Belt East Bridge. 
The Great Belt East Bridge includes two approach 
bridges with steel girders designed as multi-span 
beams. The design of these continuous long span 
girders led to a flexible structures characterized by 
closely spaced eigen frequencies for vertical 
vibration modes. Wind tunnel tests including 
section and full-bridge aeroelastic models have 
confirmed that the approach bridge structures are 
prone to vortex-shedding excitation at wind speeds 
encountered regularly at the bridge site. The paper 
discusses design aspects of tuned mass dampers 
(TMDs) for controlling wind-induced vibrations. 
     Gu, et al [9] published a paper on controlling 
wind-induced vibrations of long-span bridges by 
semi-active lever-type TMD. A new semi-active 
(SA) lever-type TMD with an adjustable frequency 
and the corresponding control strategy are 
primarily developed. A case study of the Yichang 
Bridge, a suspension bridge with a main span of 
960 m, shows that the SA lever-type TMD device 
is much superior to passive TMD in control 
efficiency and robustness. 
     As reported above, many research studies have 
been conducted on controlling the response of 
long-span cable supported bridges. However, 
challenges are still going on this topic for getting 
more findings. 
     Jung, et al [10] published a paper on hybrid 
seismic protection of cable-stayed bridges. They 
proposed a hybrid control strategy combining 
passive (i.e. base isolation) and semi-active control 
systems for seismic protection. A clipped-optimal 
control algorithm is used to determine the control 

action for semi-active dampers. However, it is 
shown that this hybrid system is quite effective 
compared to that of the passive control strategy. 
     Park, et al [11] conducted a study on fuzzy 
supervisory control (FSC) technique for the 
seismic response of cable-stayed bridges. The 
proposed technique is a hybrid control method, 
which adopts a hierarchical structure consisting of 
several sub-controllers and a fuzzy supervisor. 
Simulation results showed that both linear 
quadratic Gaussian (LQG) and FSC control 
systems can significantly reduce the seismic forces 
transferred to the towers, simultaneously keeping 
tensions in the stay cables within a recommended 
range of allowable values. 
     In the present study, optimization of the TMD 
different parameters for reducing the vertical 
displacement of suspension bridges subjected to 
earthquake vertical excitations is investigated 
using trial and error method. The analysis is 
performed in time domain. Thomas Suspension 
Bridge (Los Angles, U.S.A.) is chosen for the 
numerical studies. The optimal values of the TMD 
parameters are obtained under effect of 18 
worldwide major earthquakes. 
 
 
 

2. EQUATION OF MOTION OF THE 
SYSTEM 

 
The motion equation of the system is written using 
finite element method and energy principles. The 
system is subjected to vertical acceleration of 
earthquake transmitted to the bridge deck through 
the piers. The bridge deck is considered as a 
simply supported beam between the towers, 
connected by several hangers to the main cables 
(Figure 1). The end connections of the bridge 
girders to the towers are assumed to be hinged. In 
Finite element model of the bridge, two nodded 
beam elements with 2 degrees of freedom at each 
node, vertical displacement and bending rotation, 
are considered (Figure 2). As shown in Figure 3 
the bridge element consists of the bridge girder, at 
least two vertical hangers, and the main cables 
[12]. The stiffness matrix of each finite element 
can be derived through calculation of its potential 
energy and using the Hamilton’s principle. The 
total stiffness matrix of the bridge, then, can be 
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obtained by assembling the stiffness matrices of all 
elements [12]. 
     Since the main objective of this paper is to 
evaluate the optimal values of the TMD parameters, 
therefore, detail procedure of the finite-element 
modeling of the bridge is not presented here. Static 
condensation of the system stiffness matrix is 

performed resulting in elimination of the bending 
rotational degrees of freedom [13]. By considering 
the elements’ mass equally concentrated on the 
end nodes, a diagonal n × n lumped mass matrix 
will be obtained where n is the total number of 
vertical degrees of freedom. Finally, the equation 
of motion of the bridge (without TMD) can be 

 
 

Figure 1. Thomas suspension bridge model. 
 
 
 

 
 

Figure 2. Finite elements of the bridge (11, 28, 11 elements in each span) and 
the related DOFs (bending rotation and vertical displacement). 

 
 
 

 
 

Figure 3. Finite element of the bridge deck containing the girder, 
main cables and at least two hangers. 
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written in the form [14]: 
 
[ ]{ } [ ]{ } [ ]{ } [ ] { } )t(gu1mukucum &&&&& −=++  (1) 

 
Where [m], [c] and [k] are n × n mass, damping 
and stiffness matrices, respectively; ( )tgu&&  is the 

earthquake vertical acceleration assumed to be the 
same for all piers; {u} is the displacement vector; 
dot denotes to the time derivatives; and {1} is a n × 1 
vector, all terms equal to unity. 
      Generally, there is no need to develop the 
damping matrix for classically damped MDOF 
systems, because for these systems the modal 
damping ratios are sufficient for any linear 
structural analysis purposes. However, when the 
control devices are added to the structures to 
mitigate the vibrations, then the damping of the 
combined structure will not be classical, and 
therefore, the damping matrix is needed to be 
developed. For this purpose, sine the Rayleigh 
method is the simplest way to formulate a classical 
damping matrix, so the structural damping matrix 
[c] is assumed to be a Rayleigh damping, which is 
considered to be proportional to a combination of 
the mass and stiffness matrices as: 
 
[ ] [ ] [ ]k1am0annc +=×  (2) 

 
in which the coefficients a0 and a1 can be obtained 
from the following equation [14]: 
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Where ωm and ωn are natural circular frequencies 
of the bridge modes m and n, usually assumed to 
be the first two vibration modes of the bridge; and 
ξ is the corresponding structural damping ratio of 
the same two modes, again assumed to be the same 
for both modes and about 1 %. The frequencies 
and mode shapes can be obtained from free 
vibration equation of the undamped system, which 
indeed is an eigen value problem. 
     The equation of motion of a system with TMD 
can be derived by considering an additional degree 
of freedom for TMD mass and adding the 
corresponding stiffness and damping coefficients 

of the TMD system to initial stiffness and damping 
matrices, appropriately, increasing their size to 
(n+1) × (n+1). For clarification, the stiffness matrix 
is given below: 
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Where the (n+1)th DOF represents the TMD mass 
and is tuned to the mth DOF of the bridge; kmm is 
the initial stiffness of mth degree of freedom and kT 
is stiffness of the TMD system. In a similar 
manner, the mass and damping matrices of the 
system with TMD can be obtained. 
     The differential equations are solved utilizing 
MATLAB software. For this purpose, the 
equation of the system is transformed to a first 
order equation in state-space in the following 
form [15]: 
 
{ }
[ ] { } { } )t(gu)1n2(B)1n2(X)n2n2(A
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Where {X}is the state vector; [A] and {B} are the 
state-matrix and input-vector, respectively, given 
by the following equations: 
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in which [I] is the identity matrix of order n; [0] 
and {0} are zero n × n matrix and n × 1 vector, 
respectively. It should be noted that by replacing n 
with (n+1), the equation 5 represents the motion of 
a system with one TMD in state-space form, when 
the TMD characteristics kT, mT and cT are added, 
appropriately, to the structural properties of the 
initial system [k], [m], and [c], respectively. 
Similarly, when p TMDs are installed, n should be 
replaced with (n+p), and appropriate modification 
in the structural properties of the initial system 
should be made. 
 
 
 

3. NUMERICAL STUDY 
 
Vincent Thomas Suspension Bridge is chosen for 
numerical study (Figure 1). The bridge is situated 
in Los Angeles, California, U.S.A., and has three 
spans: central span of 460 m and two side spans 
of 155 m. The weight of the decks and two main 
cables are 52438 N/m and 12390 N/m, respectively. 
The cable cross-section area is 780 cm2 and the 
initial tension in the cable due to dead load is 
30038*103 N per cable [12]. Frequencies and mode 
shapes of the first 6 modes of the bridge are given 
in Figure 4. The earthquake acceleration records of 
18 worldwide major earthquakes have been used to 
investigate the optimum values of the TMD 
parameters for getting the maximum reduction 
on bridge responses. These earthquakes are 
selected such that a variety range of peak ground 
accelerations (PGA), frequency content levels, and 
distance to fault rupture (near field and far field 
effects) can be included in the study. More details 
of some earthquake records are provided in Table 1. 
In finite-element model of the bridge, for each 
side spans 11 elements and for middle span 28 
elements are considered [12]. Therefore, there 
would be 51 nodes in total length of the bridge 
span (Figure 2). In this part of the study, three 
TMD systems are considered for the bridge, one at 
the center of each span (node numbers 5, 24, and 
42 on Figure 2, respectively) with a mass ratio 
(ratio of all TMDs mass to bridge total mass) of 

 
ω = 1.1661 (red/s) 

 

 
ω = 1.3 (red/s) 

 

 
ω = 2.0441 (red/s) 

 

 
ω = 2.0583 (red/s) 

 

 
ω = 2.7171 (red/s) 

 

 
ω = 3.2408 (red/s) 

 
Figure 4. Frequencies and mode shapes of the first 6 modes of 
the example bridge. 
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about 4 %; and TMD damping ratio of about 20 % 
for each TMD. As the maximum vertical 
displacement of the bridge along the span occurs at 
the centre of each span, therefore, TMDs are 
considered at these nodes. The frequency of the 
TMD system is tuned to the frequency of the first 
mode of the bridge. Therefore, TMD characteristics 

can be written as (Figure 5): 
 

2)1(TMTK ω×=  (8) 
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TABLE 1. The Most Important Earthquake Records Considered in this Study. 
 

Magnitude 

No. Earthquake Country Station Year 

Mb Ml Ms Mw 

PG
A

 V
er

tic
al

 
C

op
m

. Hypocentral 
Distance 

(km) 

Closest 
Distance 
to Fault 
Rupture 

(km) 

1 Imperial 
Valley U.S.A. El Centro 

Array # 6 
1979 

(October) 6.5 6.6 6.9 - 1.655 - 1.0 

2 Northridge U.S.A. Newhall-
Fire Sta 

1994 
(January) 6.7 6.6 6.7 - 0.548 - 7.1 

3 Loma 
Prieta U.S.A. Corralitos 1989 

(October) 6.9 - 7.1 - 0.455 - 5.1 

4 Cape 
Mendocino U.S.A. Petrolia 1992 (April) 7.1 - 7.1 - 0.168 - 9.5 

5 Northridge U.S.A. 
Santa 

Monica 
City Hall 

1994 
(January) 6.7 6.6 6.7 - 0.230 - 27.6 

6 Loma 
Prieta U.S.A. 

Hollister-
South and 

Pine 

1989 
(October) 6.9 - 7.1 - 0.197 - 28.8 

7 El Centro U.S.A. 
Imperial 
Valley 

(Array Sta. 9) 
1940 (May) 7.0 - 7.2 6.9 0.205 12.0 - 

8 Kobe Japan Takatori 1995 
(January) - - - 6.9 0.272 22.2 1.5 

9 Bam  Iran Bam 2003 
(December) - - - 6.5 1.008 10.2 - 

10 Sarein Iran Kariq 1997 
(February) - - - 6.1 0.221 60.1 - 

11 Zanjiran Iran Zanjiran 1994 (June) - - - 6.1 1.003 12.2 - 

12 Roodbar Iran Abbar 1990 (June) 7.3 - 7.7 7.7 0.547 35.0 - 
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Figure 6a shows the comparison between controlled 
and uncontrolled vertical responses of the example 
bridge subjected to the Roodbar earthquake, for 
which the time history of vertical acceleration is 
shown in Figure 6c. The figure indicates a 
considerable reduction in the maximum deflection 
of the bridge. In the figure, the maximum vertical 
responses of the bridge at each node along the 
bridge span are compared. For more comparison, 
time histories of the controlled and uncontrolled 
responses of the bridge at the middle point of the 
center span (node No. 24) are compared in Figure 
6b. Here also a considerable reduction in bridge 
response is seen. 
     Since the effectiveness of the TMD system 
highly depends on its properties such as mass, 
stiffness, and so on, therefore in rest of the study, a 
sensitivity analysis is conducted to optimize these 
parameters for getting maximum reduction in 
bridge responses. 
 
3.1. Optimum Mass Ratio of the TMD 
System   In order to investigate the optimum 
values of the TMD characteristics, the bridge 
is analyzed under vertical component of 18 
worldwide major earthquake accelerations, from 
which some of the most important ones are: El 
Centro 1940, Northridge 1994, Kobe 1995, 
Roodbar (Iran) 1990, and Bam (Iran) 2003. These 
earthquakes are selected such that a variety range 
of earthquake PGA and frequency content levels 
and distance to fault rupture can be included in the 
study (Table 1). Subsequently, the obtained results 
could be more reliable in practice. By applying the 
 
 
 

 
Figure 5. TMD system used in the study. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6. The graphs show: (a) controlled and uncontrolled 
maximum displacements of the bridge along the span (ξT = 20 
%, MT = 4 % and 3TMD is used), (b) time histories of the 
controlled and uncontrolled responses of the bridge at the 
middle of the center span and (c) time history of the vertical 
component of the Roodbar earthquake acceleration. 

(s) 

(s) 



30 - Vol. 22, No. 1, April 2009 IJE Transactions B: Applications 

vertical component of the earthquake accelerations 
on the bridge piers, the maximum responses of the 
bridge with and without TMD control system are 
calculated. The highest values of bridge responses 
have been observed under Roodbar, Zanjiran and 
El Centro earthquakes and will be presented 
hereafter. 
     In this part of the study, the effect of TMD 
mass ratio (The ratio of all TMDs masses to the 
bridge total mass) on the reduction of bridge 
vertical response is investigated using trial and 
error method. In total 5 TMDs are used, one in 
the middle of center span (node No. 24) and 2 in 
each side spans (node numbers 4,7,41 and 44). 
The frequencies of the TMDs are tuned to the 
frequencies of the bridge first, second, and third 
modes (three cases). The results are shown in 
Figures 7 to 9. Figure 7a shows the results for 
Roodbar earthquake when the TMDs are tuned to 
the frequency of the bridge first mode (case 1). 
Figures 7b,c show that of the Roodbar earthquake 
for tuning to the frequencies of the bridge second 
and third modes, respectively (cases 2 and 3). As 
well, Figures 8 and 9 show the same results 
obtained for Zanjiran and El Centro Earthquakes, 
respectively. 
     All these figures are plotted for different values 
of the TMD damping ratios. It can be seen from the 
figures that the optimum values of the mass ratios 
for Roodbar, Zanjiran and El Centro earthquakes are 
about 3 %, 5 % and 4 %, respectively. The results 
of the study for other earthquake records, which 
are not shown here, indicate similar ratios. 
Therefore, an optimal mass ratio of 4 % seems to 
be a reasonable value. From the figures it is seen 
that, in each case, after reaching the mass ratio to 
an optimal value, the controlled response of the 
bridge increases with the increase in the value of 
mass ratio. This is due to the fact that by increasing 
the mass ratio, the total mass of the bridge 
(including the TMD mass) will increase such that 
after which the TMD system instead of reducing 
the bridge response, will increase it and therefore 
becomes ineffective in controlling the bridge 
vibration. 
 
3.2. Optimum Bridge Mode to which the 
TMD is to be Tuned   Which bridge mode does 
give the best result when the TMD frequency is 
tuned to? Answer of this question depends on 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 7. Effect of the TMD mass ratio on reduction of the 
bridge maximum displacement for different TMD damping 
ratio under Roodbar earthquake: (a) tuned to the frequency of 
the bridge first mode (Case 1), (b) tuned to the frequency of 
the bridge second mode (Case 2) and (c) tuned to the 
frequency of the bridge third mode (Case 3). 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 8. Effect of the TMD mass ratio on reduction of the 
bridge maximum displacement for different TMD damping 
ratio under Zanjiran earthquake: (a) tuned to the frequency of 
the bridge first mode (Case 1), (b) tuned to the frequency of 
the bridge second mode (Case 2) and (c) tuned to the 
frequency of the bridge third mode (Case 3). 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 9. Effect of the TMD mass ratio on reduction of the 
bridge maximum displacement for different TMD damping 
ratio under el Centro earthquake: (a) tuned to the frequency of 
the bridge first mode (Case 1), (b) tuned to the frequency of 
the bridge second mode (Case 2) and (c) Tuned to the 
frequency of the bridge third mode (Case 3). 
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modal properties of the bridge and frequency 
content of the earthquake. One bridge vibrational 
mode in which the frequency lies in the range of 
frequency content of the input earthquake maybe 
considered as the dominant mode of the bridge to 
which the TMD system is to be tuned. This mode 
may be found using a mode by mode analysis and 
comparing the results of the uncontrolled 
responses obtained in each mode. Since, in this 
study, the bridge is analyzed in state space, 
therefore in order to recognize the dominant mode 
to which tuning the TMD system gives the best 
result, a trial and error method is used. For this 
purpose, the TMD was tuned to the frequencies of 
the bridge modes 1 to 3 and the structure is 
subjected to 18 earthquake records. The results of 
the controlled and uncontrolled maximum responses 
of the bridge along total span for Roodbar, 
Zanjiran and El Centro earthquakes are shown in 
Figure 10. The analyses are performed in two cases 
using 3 and 5 TMDs (the arrangements are 
mentioned earlier), but for briefness, only the 
results of the 3 TMDs are presented. Figure 10a 
shows that the maximum uncontrolled response of 
the bridge under Roodbar earthquake is about 1.8 
m and tuning of the TMD system to the bridge first 
mode gives the most reduction in maximum 
deflection of the structure. The results obtained 
from Zanjiran and El Centro earthquakes both 
indicate that tuning to the bridge third mode is 
more effective in comparison with other two 
modes. Since the bridge maximum response under 
Roodbar record is considerably higher than the 
other earthquakes, hence, the first mode of the 
bridge, which provides the most reduction under 
this earthquake, is chosen as the optimal mode, in 
rest of the study, to which the TMD is to be tuned. 
 
3.3. Optimum Value of TMD Damping 
Ratio   Figure 11 shows the relationship between 
TMD damping ratio (ξT) and the controlled 
maximum displacement of the bridge. Results 
obtained from Roodbar, El Centro, Zanjiran, 
Lucern, and Garmkhan earthquakes are shown in 
the figure for comparison. The figures show that 
initially the maximum deflection decreases when 
the value of ξT increases, but there is some certain 
value of ξT after which increase in the TMD 
damping ratio has no positive effect on the bridge 
response. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 10. Effect of the tuning mode on reduction of the 
bridge maximum response for 3 TMDs: (a) under Roodbar 
earthquake, (b) under Zanjiran earthquake and (c) under el 
Centro earthquake. 
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     The optimum values of ξT obtained from figures 
are respectively about 40 %, 60 %, 67 %, 63 %, 
and 50 % for the above mentioned earthquakes. In 
general, the average value of optimal TMD damping 
ratio is obtained about 60.4 % (by considering 18 
earthquakes), which is difficult to provide in 
practice. But, by referring to the figures, it is seen 
that before reaching to the optimum value of the 
ξT, most of the curves almost are horizontal, and 
increase in the value of ξT does not have much 
effect in decreasing the bridge response. Therefore, 
from economical and practical point of view a 
TMD damping ratio equal to 34 % can be 
suggested. A comparison of the results obtained by 
applying the suggested value and the optimum 
value obtained earlier (i.e. ξT= 60.4 %) consolidates 
this finding (Figure 12). No major difference can 
be found between the results. Figure 12 is plotted 
for El Centro earthquake and 5TMD systems have 
been considered in the analysis. 
 
3.4. Effect of Tuning Frequency   In the 
earlier sections it was recommended to use the 
frequency of the first mode for tuning the TMD 
system. Further analyses indicate that the best 
result can be obtained when TMD system is tuned 
to a percentage of this frequency. Figure 13 
expresses the relationship between the controlled 
response of the bridge and the frequency ratio (the 
ratio of frequency of TMD to that of the bridge 

first mode, 
1

T

ω
ω ). It can be seen that tuning to 90% 

of the bridge first mode frequency yields better 
result in comparison to the whole value. The figure 
shows the response of the bridge for Roodbar 
Earthquake. Similar results are obtained for other 
earthquake records, which for brevity, are not 
presented in this paper. 
 
 
 

4. CONCLUSIONS 
 
The effect of passive TMD control system on 
seismic behavior of the suspension bridges is 
discussed. Thomas Suspension Bridge in Los 
Angles, U.S.A., is chosen as a case study. 18 
worldwide major earthquakes are used in the 
analyses, and the optimum values of different 
parameters of the TMD system are obtained using 
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Figure 11. Effect of TMD damping ratio on bridge maximum 
displacement reduction: (a) under Roodbar earthquake, (b) 
under el Centro, Zanjiran, Lucerne earthquakes and (c) under 
Garmkhan earthquake. 
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trial and error method. The results of the numerical 
study indicate that: 
 
1. The appropriate mass of the TMD is equal to 

4 % of the total mass of the bridge. 
2. The best mode for tuning TMD system is the 

bridges’ first mode of vibration, and it is 
recommended to use 90 % of the frequency 
of this mode for tuning. 

3. The optimum value suggested for TMD 
damping ratio is about 34 %. 

4. It is recommended to install at least one 
TMD in each span of the bridge. 
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Figure 12. Comparison of the bridge controlled responses 
along the bridge span for 60.4 % and 34 % TMD damping 
ratios. 
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Figure 13. Effect of tuning frequency on reduction of the 
bridge maximum displacement. 


