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Abstract   This paper proposes a comprehensive, multi-objective, mixed-integer, nonlinear 
programming (MINLP) model for a cell formation problem (CFP) under fuzzy and dynamic 
conditions aiming at: (1) minimizing the total cost which consists of the costs of intercellular 
movements and subcontracting parts as well as the cost of purchasing, operation, maintenance and 
reconfiguration of machines, (2) maximizing the preference level of the decision making (DM) and 
(3) balancing intracellular workload. Dynamic CFP divides the planning horizon to smaller periods 
and considers different product combinations and demands in each period, which may result in cell 
reconfiguration necessity. Moreover, it is more realistic to take into account the inexact and uncertain 
(fuzzy) nature of parameters, such as product demand or machine capacity. The main goals of the 
proposed model is to select a process plan with the minimum cost and also to identify the most 
appropriate production volume with respect to fuzzy demands and capacities in order to minimize the 
deviation from the desired production and balanced machine workload. 
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ريزي عدد صحيح مختلط بصورت غيرخطي براي مـساله   ن مقاله، يک مدل جامع چندهدفه برنامه      در اي چكيده          

 حداقل نمودن هزينه کل مشتمل بـر هزينـه حمـل و    )١(: تشکيل سلول توليدي در شرايط فازی و پويا با اهداف    
 حـداکثر  )٢( ،هـا  ينسپاري قطعات و نيز هزينه خريد، عملياتي، نگهداري و جابجايي ماش ـ سلولي و برون    نقل بين 

مـساله تـشکيل   . شـود  سـلولي، ارائـه مـي     نمودن بارکاری درونموازنه )٣(گيرنده و  دن سطح مطلوبيت تصميم کر
های کوچکتری تقسيم نموده و در هـر دوره امکـان در              ريزي را به دوره     سلول توليدي در شرايط پويا، افق برنامه      

بنـدی    كند که به نوبـه خـود لـزوم ترکيـب            واع قطعات ايجاد مي   نظر گرفتن ترکيب و تقاضاي متفاوتی را براي ان        
همچنين در دنياي حقيقي بهتر است ماهيت غيردقيق و غيرقطعي پارامترهـايي  . نمايد ها را ايجاب مي مجدد سلول 

مقصود نهايي مدل ارائه شـده، انتخـاب برنامـه توليـدي بـا      . ها لحاظ شود نظير تقاضاي قطعات يا ظرفيت ماشين   
ترين حجم توليد قطعات با در نظر گرفتن تقاضـا و ظرفيـت فـازی بـه منظـور                     هزينه و نيز تعيين مناسب    حداقل  

 .باشد ها مي  بارکاري ماشينموازنهحداقل کردن انحراف از سطح مطلوب توليد و 
 
 

1. INTRODUCTION 
 
Growing global competition has put an intensive 
pressure on manufacturing systems to increase 
their efficiency and agility. Considering principles 
of cellular manufacturing systems (CMSs), 
dynamic CMS (DCMS) initiated in 1990s [1] as a 
new concept useful in turbulent subcontracting 
environments and make-to-order (MTO) systems 
in order to increase the flexibility and quick 
response, and to decrease the setup times and 

work-in-process (WIP) inventories; Since one of 
the main limitations of the classic CMS is the lack 
of adoption with changes over time. The first and 
most significant step in designing a CMS is to 
identify independent machine cells (MC) and part 
families (PF), and to assign them to each other 
with minimum material movements and associated 
costs. This is known as a cell formation problem 
(CFP), in which most CFP models in the literature 
deal with one period production (i.e., static) and 
ignore the presence of changing environments. 
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TABLE 1. Reasons for Considering Impreciseness in CMS 
Design Parameters. 
 

CMS 
Design 

Parameter
Uncertainty Reason 

Part 
Demand 

1. Time gap between design and 
implementation 

2. High cost in acquiring system 
parameters with precision 

3. Insufficient market survey at 
design stage 

4. Product specifications not yet 
finalized 

5. Unknown product mix 
6. Competitor's competence and 

preparedness 

Machine 
Capacity 

1. Undecided machine type 
2. Failure, location of faults and 

maintenance 
3. Duplication possibilities of 

machines 

Mathematical programming is widely used in 
modeling CMS problems. Kusiak [2] proposed a 
generalized p-median model in the presence of 
alternative routings. Song, et al [3] considered a 
formation problem of a predetermined number of 
cells to maximize the total number of parts 
produced in cells by using the quadratic 
assignment problem (QAP) formulation. The 
proposed solution was a combination of the 
branch-and-bound (B,B) method based on the 
Lagrangian relaxation and a heuristic method. 
     In many practical cases, a product mix or 
demand level may vary under a multi-period 
planning horizon. A DCMS considers 
reconfiguration of cells in each period and brings 
flexibility to form machine cells and part families. 
Some investigations have been carried out in the 
field of CFPs under dynamic conditions by 
Vakharia, et al [4], Harhalaks, et al [5], Wilhelm, 
et al [6], and Askin, et al [7]. Chen [8] proposed a 
mixed-integer programming (MIP) model that 
minimizes the reconfiguration costs, machine's 
constant costs, and intracellular movements. Since 
the model is NP-Complete, the proposed 
decomposition of the model to some simple sub-
problems. Balakrishnan, et al [9] also considered a 
two-step model for the generalized machine 
assignment problem and dynamic programming for 
the CFP with changeable part demands. 
     Tavakkoli-Moghaddam, et al [10] developed 
the model, which was first proposed by Chen [8], 
with additional assumptions such as: alternative 
process plan, sequence operation, machine 
capacity and machine replication with the aim of 
minimizing the sum of machine total costs and 
inter-cell movement cost simultaneously. Defersha, 
et al [11] proposed a comprehensive mathematical 
model for a DCMS based on tooling requirements 
of the parts, tooling available on the machines, 
dynamic cell configuration, alternative routings, lot 
splitting, sequence of operations, multiple units of 
identical machines, machine capacity, operation 
cost, parts' outsourcing cost, tool usage cost, setup 
cost, cell size limits, and machine adjacency 
constraints. 
     Short life cycle, high variation manufacturing, 
unpredictable demand, and short lead-time have 
pushed production systems to operate dynamically 
under unreliable conditions [8]. Besides, marketing 
development takes the uncertain nature of the 

model parameters into consideration based on the 
fuzzy theory. Table 1 lists a number of reasons for 
considering uncertainty in CMS design parameters 
[12]. 
     It is necessary for dynamic and uncertain 
manufacturing requirements, to identify different 
demand and mixtures for each part type per period 
through a known membership function. Seifoddini, 
[13] considered uncertainty in form of probabilistic 
demands for a CFP, but under one period planning 
horizon. Harhalaks, et al [5] proposed a reliable 
procedure for dynamic CMS design and used a two-
stage method to obtain a cellular design with the 
minimum inter-cell material handling cost under 
multi-period planning horizon. Tavakkoli-
Moghaddam, et al [14] extended their previous 
model and considered trapezoid instead of triangular 
fuzzy numbers to show the demand uncertainty. 
They also modified the proposed mathematical 
model to a mixed-integer nonlinear programming 
(MINLP) model with fuzzy parameters [15]. 
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Safaei, et al [16] presented a mixed-integer 
programming model for a dynamic cell formation 
problem with fuzzy parameters, such as part 
demand and machine availability. They proposed a 
fuzzy programming approach to determine the 
optimal cell configuration in each period with the 
maximum degree of satisfying the fuzzy objective 
under the given constraints. Torabi, et al [17] 
presented a new multi-objective possibilistic mixed-
integer linear programming model with some fuzzy 
parameters, such as market demands, cost/time 
coefficients and capacity levels. They converted this 
model to a multi-objective linear model solved by 
their new interactive fuzzy approach. 
     In addition, the CFP considers many different 
objectives in a real-world situation; however, none 
of the above researchers have considered a 
comprehensive DCFP with multiple objectives and 
uncertain parameters for real-world conditions, 
such as sub-contraction possibilities or alternative 
process routings. This paper proposes an extended 
MINLP model with some fuzzy parameters for the 
CFP considering three objectives: 
 
1. Minimizing the dynamic system total cost 
2. Minimizing the intracellular workload 

variation; 
3. Maximizing the decision maker's (DM) 

utility (or minimizing the production volume 
deviation from the admissible demand). 

 

The main constraints are the cell size limitation, 
machine capacity, machine capability of processing 
an operation, machine investment, and production 
volume. 
     The novelty of the proposed model is to form 
cells in each period with respect to real-world 
practical aspects, such as lot splitting and 
outsourcing of parts and cell reconfiguration 
possibilities simultaneously. This model also 
considers uncertain environment using appropriate 
fuzzy membership functions for some parameters 
(i.e. production volume and machine capacity) and 
tries to reduce the computational complexity 
through arranging the mathematical model as 
simple and regular as possible to obtain an 
admissible set of answers for the DM. 
     The rest of this paper is organized as follows. 
Detailed description of the proposed model is 
described in Section 2. Section 3 discusses 
different approaches to multi-objective problems. 

A numerical example and the computational results 
are reported in Section 4. Discussion and conclusion 
are presented in Section 5. 
 
 
 

2. PROBLEM FORMULATION 
 
In this section, we present a novel, multi-objective 
dynamic CFP with fuzzy parameters. The 
considered manufacturing system consists of several 
parts that required a number of operations on 
different machines with limited capacities according 
to a given sequence and for a number of time 
periods. Each machine can process different 
operations based on the tooling available and can be 
considered as alternative route for part processing. 
The demand for each part type per period is a piece-
wise fuzzy number. Also, the uncertain capacity for 
each machine type is given as a triangular fuzzy 
membership function. The processing time for all 
operations on each machine type is known and each 
part has multiple process plans to be processed 
under. Machine maintenance cost is known and 
constant throughout the whole planning horizon, 
while it is independent from the assigned workload. 
The operation cost for each machine type per hour is 
known and varies with the workload assigned to that 
machine. Due to the dynamic reconfiguration of the 
cell in each period, the machine relocation from one 
cell to another is performed at the beginning of each 
period and with zero time duration. The relocation 
cost of any machine is independent from the existed 
primary place and its value is given. 
     All parts may split into different cells for the 
processing of an operation. Machines can be 
duplicated to meet capacity requirements and to 
reduce (or eliminate) inter-cell movements. These 
machines can be procured to certain numbers and 
with a constant cost at the beginning of each time 
period. Parts are moved between cells in batches of 
known and constant size and movement cost for 
each part type. The material handling cost is 
independent from the distance traveled. In case of 
capacity or capability limitations, some of the 
part's operations should be subcontracted with a 
known and constant cost in the whole planning 
horizon. The maximum cell number and size 
(number of machines in each cell) are constant 
over time and specified as a prior. 
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Figure 1. Membership function for a fuzzy demand of part p
in period t. 
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Figure 2. Membership function for a fuzzy capacity of 
machine type m. 

The workload assigned to machines of each cell is 
balanced within cells based on the time spent on 
processing of each part operation. The extra 
inventory between periods is zero; delayed order is 
forbidden and total demand in each period must be 
supplied in the same period. The setup time and the 
money time value are not considered. The time of 
machine installation is zero and machine 
breakdown is not considered. 
     In this paper, the problem considers the 
following attributes: 
 
• Dynamic cell configuration in each 

period. 
• Uncertain part-type demand. 
• Unreliable machine capacity. 
• Flow flexibility (multiple process plan). 
• Route flexibility (alternative routing). 
• Lot splitting. 
• Operation sequencing. 
• Outsourcing a portion of demand. 
• Machine relocation and cell 

reconfiguration. 
• Machine duplication in order to cover 

capacity limitations. 
• Inter-cell movements of parts in batches 

of different sizes and handling costs per 
part-type. 

• Intra-cell workload balance between 
machines. 

• Cell size and number limitations. 
 
The intervals for possible values of fuzzy 
parameters are specified by the user as ⎣ ⎦ul aa ,  
implicating a piece-wise membership function (see 
Figures 1 and 2). In general, piece-wise 
membership functions can be divided into two 
main intervals. The first interval represents “risk 
free” values in the sense that a solution should 
almost be implemental and realistic. On the other 
hand, the second interval represents “full risk” 
values that mean parameter values that are most 
certainly unrealistic, “impossible”, and the solution 
obtained by these values is not implemental. While 
moving from “risk free” toward “full risk” values, 
it is moved from solutions with a high degree to a 
low degree for implementation [18]. 
 
2.1. Notations   The notations of the proposed 

model are described as follows: 
 
p : Part types; Pp ,,2,1 K=  
j : Operations required by part p ; 

pJj ,,2,1 K=  

m : Machine types; pJj ,,2,1 K=  
c : Manufacturing cells; Cc ,,2,1 K=  
t : Time types; Tt ,,2,1 K=  
P : Number of part types. 

pJ : Number of operations for part p . 
M : Number of machine types. 
C : Maximum number of cells that can be 

formed. 
T : Number of manufacturing periods. 

)(~ tDp : Fuzzy demand for part p  in period t  
in form of a fuzzy number (see Figure 1) 
with a piecewise membership function 
(see Equation 1 [19]. 
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From the point of the DM, the demand of part p  
in period t  should be presumably equal and 
greater than )(tDu

p . In other words, )(tDu
p  

indicates a desirable level for part demand. 
Therefore, the interval ( )∞),(tDu

p  presents a “risk-

free” value-interval and ( ))(),( tDtD u
p

l
p  presents a 

“risk-full” value-interval for the decision maker. In 
the proposed model, there is a trade-off between 
maximizing the decision maker’s utility and 
minimizing the sum of traditional costs of the CFP. 
Thus, interval [ )∞),(tDu

p  is not considered in our 
model, because the production volume within this 
interval causes simultaneous increasing operation 
costs while the decision maker’s utility remains 
constant. 
     mC~ : Fuzzy capacity of machine m  in terms of 
a triangular fuzzy number, as shown in Figure 2. 
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 Equation 2 ensures that the capacity of each 
machine type m is supposed to be almost equal to 

m
mC . However, by considering unplanned failure to 

the machines or implementation of an accurate 
productive maintenance (PM) plan, this target may 
vary between ( )u

m
l
m CC ,  according to the specified 

membership function. 
 
α  Cut-level. This parameter is 

determined by the DM and used to 

convert the fuzzy proposed model into 
a crisp parametric model. The α -
level cut concept [20] limits the range 
of demand for part p  in period t and 
capacity of machine type m  
according to the DM's preferences. 
For any α  value, we have an optimal 
solution; so the solution with α  grade 
of membership is actually fuzzy [21]. 

pB  Batch size for inter-cell material 
movements for processing two 
consecutive operations of part type 
p . 

pV  Inter-cell material movement cost for 
each batch of part type p . 

pU  Subcontracting cost for each batch of 
part type p . 

mM  Maintenance cost of machine type m  
(constant). 

mO  Operating cost of machine type m  
per hour (variable). 

jpmh  Time required performing operation 
j  of part type p  on machine type 
m (constant). 

 

⎪
⎩

⎪
⎨

⎧

=
=

) ( otherwise  0
  typemachineon 

done becan   part type of operation if  1

0h
 m

pj
β

jpm

jpm  

 
mr  Relocation cost of machine type m . 

UB  Upper bound for the cell size. 
)(tPm  Purchasing cost of machine type m  in 

period t . 
)(tYm  Maximum allowed number of machine 

type m  to procure in period t . 
)(twjpmc  Workload on machine type m  in cell 

c due to performing operation j  of 
part type p  in period t . 

)(twjpc  Average workload on each machine in 
cell c due to performing operation j  
of part type p  in period t . 
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2.2. Decision Variables 
 

)(tNmc  Number of machine type m  in cell c  
in period t . 

)(tnmc
+  Number of increased machine type m  

to cell c  in period t . 
)(tnmc

−  Number of decreased machine type 
m  from cell c  in period t . 

)(~ tQp  Production volume of part type p  in 
period t . 

)(tjpmcε  The proportion of the total demand of 
part type p  with operation j  to 
perform by machine type m  in cell c  
during period t . 

)(tpδ  The proportion of the total demand of 
part type p  to be subcontracted in 
period t . 
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)t(Z jpc  

 
2.3. Mathematical Model   Based on the above 
definitions, the proposed model for the CFP under 
dynamic and fuzzy conditions is illustrated as 
follows: 
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The multi-objective function given in Equation 3 is 
a mixed-integer nonlinear equation consisting of 
three sub-functions. The first function ( 1Z ) 
minimizes the total sum of machine maintenance 
costs (fixed), machine operating costs (variable), 
inter-cell material handling costs, machine 
relocation costs, operation outsourcing costs, and 
machine purchase costs. The first term of this 
equation is obtained by the product of the number 
of machine type m in cell c in period t and their 
associated constant costs. The second term is the 
sum of the product of the operational time that 
each machine needs to process the allocated 
quantity of parts and their associated variable 
costs. The third term is obtained by summing the 
product of the number of inter-cell transfers in 
batches and the unit batch inter-cell movement 
cost. The operation sequence directly affect the 
intercellular movements; i.e. if two consecutive 
operations must be processed by two machines in 
two different cells, then an unit inter-cell 
movement cost incurres. The forth term is the cost 
for sub-contracting parts based on their quantities. 
The fifth term is the sum of the number of products 
relocated (added or removed) machines and their 
associated cost. The sixth term is the machine 
procurement cost. If the total number of machines 
in a period is less than its previous period, this cost 
will not be considered. 
     The second and third functions (i.e., 2Z , 3Z ), 
are to overcome the deviation of the desired 
production volume and average intra-cell 
workload, respectively. 2Z  tries to minimize the 
deviation of the production volume from the 
admissible demand for all parts and in the whole 
planning horizon. It can be also considered 
equivalent to “ αmax ” in the fuzzy theory. The 
last objective function also minimizes the deviation 
of each machine type workload from the cell 
average, in order to balance the intracellular 
workload due to processing parts. 
     Equation 4 guarantees that each part of 
operation is assigned to a machine, which has the 
required tools for processing the job. Equation 5 
ensures that machine capacity is not exceeded and 
can satisfy the demand. Moreover, this constraint 
determines the desired number of each machine 
type in each cell. Equation 6 specifies the upper 
bound of the cell size. It is obvious that lower sized 

cells are more desirable. Equation 7 ensures that 
the number of machines in the current period is 
equal to the number of machines in the previous 
period, plus the number of machines being moved 
in, is deducted from the number of machines being 
moved out. In other words, this constraint acts like 
history for the problems. Equation 8 limits the 
maximum number of machines to be procured at 
the beginning of each period. Equation 9 ensures 
that a portion of operation j of part p can be done 
in cell c, if and only if the aforesaid cell is active in 
the period t. Equation 10 ensures that if a part is 
not subcontracted, the processing of each operation 
of this part must be assigned to a machine. 
Equation 11 determines upper bounds in form of 
the maximum demand for production volume 
related to each part in each period. Equations 12 
and 13 identify the workload for each machine 
type in each cell and the average intra-cell 
workload, respectively, based on performing each 
part operation in every period. The values of 

)(tpδ  are limited within [0,1] given by Equations 
14 to 16. 
 

2.4. Selection of Objectives   Though, there are 
several important objectives associated with the CF 
problem, it is very difficult to consider all 
objectives in a particular formulation. Ideally, it is 
preferred that a whole family of parts to be 
processed in one machine cell. However in typical 
industrial applications, it is difficult to accomplish, 
and hence, most studies have focused on 
minimizing inter-cell moves [22]. 
     It is worthy to note, that the considered 
objectives in the form of cost centers have different 
and conflicting natures. For instance, minimization 
of inter-cell traffic, as a major CMS design goal, 
increases the system efficiency through decreasing 
movement requirements, reducing mean flow time, 
and simplifying shop floor control. However, 
considering minimization of machines duplication 
conflicts with the former objective (i.e., decreasing 
machine number results in an increase in 
intercellular movements). Besides, cell 
reconfiguration due to dynamic requirements of the 
system, increases the system efficiency in different 
periods because of the dynamic adoption; but, it 
approaches an increase of relocation costs and 
production disruption; so, the intercellular 
movement or machine duplication will be 
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increased as expected results. Therefore, all these 
objectives have been proposed as cost centers in an 
integrated objective function in order to overcome 
the inherent conflict.  
     On the other hand, minimizing the tolerance 
between real and desirable production volume is 
necessary due to the fuzzy nature of the proposed 
model. Actually, the aim of this term is to 
maximize the decision maker's utility. 
     As the third independent objective, minimizing 
cell load variation, which is calculated as the 
difference between the workload on the machine 
and the average load on the cell, aids a smooth 
flow of materials inside each cell leading to the 
minimization of WIP within each cell [23]. 
 
2.5. Model Defuzzification   Since some 
parameters in form of variables and resources are 
uncertain and showed as fuzzy numbers, the 
proposed non-symmetric fuzzy model is converted 
into a crisp one by applying the α -cut concept 
according to the Verdegay's approach [24]. It means 
that the minimum preference level determined by the 
DM is equal to α . Therefore, we substitute the fuzzy 
demand for part p ( pQ~ ) and fuzzy capacity of 

machine type m, by crisp parameters, named pQ  and 

mC  respectively, through defining appropriate α -
cut constraints (see Equations 17 to 19): 
 
( ) tptDp ,)( ∀≥αμ  (17) 

 
( ) mCm ∀≥αμ  (18) 

 
10 ≤≤α  (19) 

 
Membership functions of Equations 1 and 2 are 
substituted and then the following constraints are 
added to the primary model, which limit the 
production volume and machine capacity and 
indicate the confidence level of the DM. 
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2.6. Model Linearization   Since the objective 
function and some of the given constraints are 

nonlinear due to maximum, absolute, and variables 
multiplication functions, we propose the 
linearization procedures below: 
 
2.6.1. Linearizing the absolute function   The 
third term in the objective function can be linearized 
by introducing two non-negative variables )(tjpc

+τ  

and )(tjpc
−τ  and a binary variable )(tjpcσ . 

     So, the term ( )∑ = + −
M

m jpmcpmcj tt
1 )1( )()( εε  is 

replaced by )()( tt jpcjpc
−+ +ττ  through adding 

Equation 22 [11]. 
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Consider M as a large positive number. The same 
procedure is used for linearization of the last term 
of the objective function. 
 
2.6.2. Linearizing the maximum function   The 
sixth term in the objective function can be also 
linearized introducing two non-negative variables 

)(tkm
+  and )(tkm

−  and a binary variable )(tmθ . So, 

the term ( ){ }∑ =
−−

C
c mcmc )t(N)t(N,max

1
10  is 

replaced by )(tkm
+  through adding Equation 23 [11]. 
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2.6.3. Linearizing the decision variables 
multiplication function   The second and forth 
terms in Equation 3 can be linearized by two 
variable transformations as illustrated in Equation 
24. Equations 4, 9, 10 and 14 are replaced by 
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Equations 25 to 28, respectively, as follows: 
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3. MULTI-OBJECTIVE SOLUTIONS 
 
The solution approaches to the multi-objective cell 
formation (MOCF) problem may be classified to 
four broad categories: 1. Weighting method; 2. 
goal programming; 3. heuristic methods; and 4. 
search methods [23]. 
     In the first approach, which is applied to this 
paper, a set of objectives are considered and is 
converted into a single objective by the weighted 
sum of individual objectives. Although this 
approach offers only a compromise solution whose 
non-dominance is not guaranteed, it provides the 
flexibility of assigning different weights to different 
objectives based on DM's requirements, which is a 
great advantage in MODM and fuzzy environment 
[25]. 
     The second approach attempts to minimize a set 
of deviations from the prescribed multiple goals, 
which are considered simultaneously; however, 
these goals are satisfied according to their priority 
levels. The main drawback of the approach is the 
ability to provide only a single non-dominated 
solution, so the model has to be solved again with 
a different set of parameters in case of DM's 
dissatisfaction [26]. 
     The third and forth approaches are kinds of 
heuristic and meta-heuristic methods, such as 
simulated annealing (SA), tabu search (TS), and 
genetic algorithm (GA), that are very effective in 

solving complex multi-objective optimization 
problems. However, these methods may not find 
optimal solutions, and the associated results are 
somehow dependent on the chosen values of search 
parameters [23]. These methods are not addressed in 
this paper; however, they are recommended for 
future studies to prevail over computational 
complexity of the novel proposed model. 
     Since the proposed triple objective model 
consists of a comprehensive cost function and two 
deviation minimization objectives, we use a type of 
weighting method and consider two monetary 
penalty parameters, named 1λ  and 2λ , to 
overcome the deviation of the desired production 
volume and average intra-cell workload, 
respectively. 
 

1λ  Unit penalty of the production volume 
deviation from the admissible demand 
( )(tDu

p ). 

2λ  Unit penalty of each machine 
workload deviation from the average 
intra-cell workload ( )(tDu

p ). 
 
Thus, the multi-objective function, which has been 
proposed by Equation 3, is converted to an 
integrated cost-based single-objective one (see 
Equation 29). 
 

32211 Z.Z.ZZmin λ+λ+=  (29) 
 
Besides, the penalties are defined by the DM in 
order to provide required flexibility and take the 
real-world conditions into consideration. However, 
the prescribed range to both the parameters can be 
obtained by analyzing multiple examples with 
different values. 
 
 
 

4. COMPUTATIONAL RESULTS 
 
To illustrate the behavior of the proposed model 
and verify the performance of the developed 
approach, two comprehensive numerical examples 
generated in random are solved by the branch-and-
bound (B,B) method using the LINGO 8.0 
software and on an Intel ® Core™ 2 Duo CPU, 2.0 
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TABLE 2. Input Data for the First Test Problem. 
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0.40 0.63  0.74  0.67  0.73  0.18 M1 500 12 490 [1800,2000,
2500] 1 7 12700 12500 

 0.10        0.03 M2 600 11 298 [1600,1800,
2100] 1 6 52200 24800 

0  0.08 0.06 0.88  0.15 0.80   M3 800 8 151 [1700,1900,
2000] 3 5 10200 10000 

    0.93    0.52  M4 400 10 529 [1500,2100,
2700] 2 3 11200 11200 

4350,4900 3260,4150 4110,4800 3150,3980 1118,2600 )1(~
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pD  
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[ ]u

p
l
p DD ,   

GHz Laptop with 2.00 Gb RAM. Then, the 
associated computational results are reported. 
     The first example is a small-sized problem and 
considers M = 4, P = 5, and C = 2 to produce parts 
with fuzzy demands in two periods, and each 
product must be processed under 2 operations. In 
addition, some of the operations can be done on 2 
alternative machines with different processing 
times. 
     The input parameters are shown in Table 2. The 
maximum cell size (number of machines in each 
cell) is set to 10 and the deviation penalties, λ1 and 
λ1, are supposed equivalent to 0.3 monetary units. 
The uncertainty parameter is set to 0.8 to provide a 
high imprecision utility for the DM. In addition, 
the software run time is limited to one hour (i.e. 
3600 seconds). 
     The NP-hardness of standard CFP models has 
been explicitly discussed in some previous studies 
[10,27]. Furthermore, compromising a number of 
fuzzy parameters in the proposed model 
contributes to increase the problem NP-hardness. 
Therefore, the proposed model cannot be solved 
optimally within a reasonable amount of time for 
real-world instances, because of its nonlinear and 
NP-hard nature. 
     The cells generated in each period and the parts 

assigned to the various cells are given in Tables 3 
and 4, respectively. The values in the table 
intersections show the value of εjpmc(t). The 
operation sequence can be obtained from the 
parentheses in these tables. The best feasible 
objective value found so far is 292558 monetary 
units while the objective bound is 290699. 
     Thus, the optimal objective value of the given 
test problem must be in [Obj Bound, Best Obj] = 
[290699,292558] interval, with a gap of 0.64 %, 
according to the Lingo software documents. As 
shown in Table 3, in the first period, Part 1 must 
move between cells 1 and 2 to do consecutive 
operations resulting in an inter-cell transportation 
cost. So, this part is considered as “exceptional 
element”. Part types 2 and 4 split between two 
cells due to alternative process plans. 
     Table 4 illustrates a cell configuration in the 
second period, in which the same exceptional 
element (i.e. part type 1) still exists. Lots of part 
types 2, 3 and 4 splits between two cells, and two 
units of machine type 3 are made inactive in cell 2. 
However, the same machine types as the first 
period exist in the 2 cells in this era. The machine 
relocation costs are also considered. Other useful 
results are listed in Table 5. The workload 
associated with different operations of parts on 
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TABLE 3. Cell Formation for Period 1 of the First Test Problem. 
 

Parts Machine 
P4 P2 P5 P4 P3 P2 P1 Quantity Type 

Cells 

  1(2)  1(1)   3 M1 
  1(1)    1(1) 1 M2 
   0.55(1,2) 1(2) 0.76(1,2)  4 M3 

C1 

0.45(1,2) 0.24(1,2)      1 M3 
      1(2) 2 M4 

C2 

 
 
 

TABLE 4. Cell Formation for Period 2 of the First Test Problem. 
 

Parts Machine Cells 
P4 P3 P2 P5 P4 P3 P2 P1 Quantity Type  

   1(2) 1(1) 0.5(1)  3 M1 

   1(1)   1 (1) 1 M2 
    0.73(1,2)0.6(2) 0.25(1,2) 2 M3 

C1 

0.27(1,2)0.4(2) 0.25(1) 
0.75 (2)      1 M3 

       1(2) 2 M4 
C2 

 
 
 

TABLE 5. Values of the Decision Variables for the First Test Problem. 
 

 M1 M2 M3 M4 

Machine Capacity 2100 1860 1920 2220 

 Periods P1 P2 P3 P4 P5 

T1 2304 3814 4662 3972 4790 Part Quantity 
T2 6120 0 4848 5920 2980 

 

each machine is balanced in each cell of the given 
example and increases the efficiency of the cell 
formation. 
     The second example is a medium-sized 
problem considering M = 5, P = 6 and C = 3 to 
produce parts with fuzzy demands in two periods, 
in which each product must be processed under 2 
operations and some operations can be done on 
2 or 3 alternative machines with different 

processing times. The whole data set is based on 
Table 6. In this example, the local optimal 
solution has been reached at iteration 46194 and 
the objective function is equal to 358204 that is 
lower than the objective bound. The results for 2 
periods and the related values are shown in 
Tables 7 to 9. In these tables, the number of 
exceptional elements and relocated or purchased 
machines has been increased in a larger-sized 
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TABLE 6. Input Data for the Second Test Problem. 
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00,2500] 2 4 10000 12300 

0.42 0 0 0 0.08 0 0.25 0 0 0.8 0.14 0 M3 220 5 350 [2500,31
00,4000] 4 2 15000 25000 

0 0 0.4 0.1 0 0.5 0.52 0 0.8 0 0 0.2 M4 420 35 240 [3000,40
00,5000] 1 1 11200 11200 

0.44 0.7 0 0.11 0 0 0 0.07 0 0 0.12 0 M5 700 10 952 [4300,45
00,4700] 0 1 60000 40000 

1800,2800 2500,3000 0 2350,4200 4000,5200 3200,5000 )1(~
pD
 

 

2000,3350 2500,3100 5200,6500 0 2600,3800 3400,5000 )2(~
pD
 

Fuzzy Demand 
[ ]u

p
l
p DD ,  

 

problem. The first cell is reconfigured in the 
second period by purchasing a unit of machine 
type 1. In addition, the part assigned to the three 
cells has noticeable changes during period 
alteration. 
 
 
 

5. CONCLUSION 
 
In this paper, we have proposed a new multi-
objective dynamic cell formation model as a fuzzy 
parametric mixed-integer nonlinear programming 
to minimize dynamic manufacturing costs, 
maximize the decision maker's utility, and balance 
the intracellular workload simultaneously by 
integrating the objectives into a complex cost-
based objective function. The main advantages of 
the proposed model are to form part families and 
machine cells simultaneously, determine the best 
processing route for each part type per period, 

reconfigure cells between two consecutive periods 
if necessary, and specify the most suitable 
production quantity for each part. 
     This model also considers the alternative 
routing, alternative process plan, operation 
sequence, machine relocation, machine duplication, 
cell number flexibility, outsourcing possibility, 
inter-cell and intra-cell material handling in 
batches, and lot splitting. We solved a 
comprehensive example and verified that the 
approach can determine the optimal cellular 
configuration for each period. The proposed model 
cannot be solved within a reasonable time even for 
small-sized problems due to NP-completeness of 
the model; thus the use of meta-heuristics for 
solving such a hard problem to obtain more 
efficient solutions is suggested for future research. 
Furthermore, by considering the fuzzy environment, 
some parameters have been defined, whose 
acceptable and optimal range of value must be 
examined as a potential improvement. 
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TABLE 7. Cell Formation for Period 1 of the Second Test Problem. 
 

Parts Machine Cells 
P2 P6 P3 P2 P1 P6 P5 P4 P3 P1 Quantity Type  

       1(1) 1(1) 2 M2 
       1(2)  1 M3 
     0.9(1) 1(1)  1(1)  1 M5 

C1 

 0.8(2) 0.8(2) 0.3(1) 0.69(2)     1 M3 
      1(2)    1 M4 

C2 

1(2)          1 M1 
0.7(1)     0.1(2)   0.2(2) 0.31(2) 1 M3 

C3 

 
 
 

TABLE 8. Cell Formation for Period 2 of the Second Test Problem. 
 

Parts Machine Cells 
P4 P2 P6 P2 P1 P6 P5P4 P3 P1 Quantity Type  

        1(1)  1 M1 
       1(1)  1(1) 2 M2 
        1(2)  1 M3 
     1(1) 1(1)   1 M5 

C1 

  0.69(2) 0.68(1) 0.54(2)  0.17(2)   1 M3 
      1(2)    1 M4 

C2 

 1(2)         1 M1 
0.83(2)0.32(1)   0.31(2)   0.45(2) 1 M3 

C3 

 
 
 

TABLE 9. Values of the Decision Variables for the Second Test Problem. 
 

 M1 M2 M3 M4 M5 

Machine Capacity 3020 2260 3280 4200 4540 

 Periods P1 P2 P3 P4 P5 P6 
T1 4640 4960 3830 0 2900 2600 Part Quantity 
T2 4680 3560 0 6240 2980 3080 
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