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Abstract In this paper, an adaptive nonlinear controller is designed for rotor Surface Permanent
Magnet Synchronous Motor (SPMSM) drive on the basis of Input-Output Feedback Control (IOFC),
and Recursive Least Square (RLS) method. The RLS estimator detects the motor electromechanical
parameters, including the motor iron loss resistance online. Moreover, a Sliding-Mode (SM) observer
is developed for online estimation of the rotor speed and rotor position. In this control scheme, the
torque reference signal is generated by a conventional speed PI controller. The effectiveness and
feasibility of the proposed control approach is tested by simulation. Computer simulation results show
that the errors in the estimated quantities asymptotically converge to zero. These results also show
that the drive system is stable and robust against the parameter uncertainties and external load torque
disturbance.

Keywords  Surface Permanent Magnet Synchronous Motor (SPMSM), Input-Output Feedback
Control (IOFC), Recursive Least Square (RLS), Sliding-Mode (SM)

b £ s bliie 03K s ige St s e oS S Sy il 5 ok
(RIjS) S5k Sl e Blas iy, 5 TOFC) s 5 — (83555 3555wy =S 4l s (SPMSM)
5 S bt S5y s Gl SM) 8 - de S edalie SGopl posdle 5 e e |y 555 se
Syors PLodiS J 28 S abow gy 5318 w0 S (J 8 b cnl 53 55 0 11 5555 Candse
derd 2 pd e s G5l Sl b 3l SRS s Do e 5 se sd o0 3l
Syd o | Rad jho 4 bme sk ol 03] (eSSl S sl S das e LIS (55 5eelS (s3le
FRICRAY olizel 5 g bl sl el 4 s 5 SIL ﬁl)sws\s,u;& oLl @Lﬁ ol peeen

Lol ool S5 sk

1. INTRODUCTION

In recent years, because of the advancements
achieved in magnetic materials, semiconductor
power devices and nonlinear control theories, the
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PMSM drive plays a vital role in motion control
applications between low to medium power ranges
[1]. In the traditional field orientation method [2],
it is widely adopted to linearize the nonlinear
model and has obtained significant achievement.
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However, for higher performance requirements,
such as robots and machine tools, this method may
not be sufficient during speed transient. Over the
last 20 years, the state feedback linearization and
IOF linearization have been applied to induction
and PMSM drives [3-5]. The basic idea is to first
transforming the motor nonlinear system equations
into linear ones through nonlinear feedback, and
then using the well-known linear design techniques
to complete the controller design. These techniques
however require a full knowledge of motor
parameters and load conditions with sufficient
accuracy.

In [6], a nonlinear controller is described for a
SPMSM using the IOF linearization. In this
control scheme, an integral control method is
introduced to improve the motor drive robustness
against the inaccurate speed measurement.
However, in this system the variations of other
motor parameters are not considered. In [7,8]
adaptive IOF linearization techniques are
described for the speed control of the PMSM.
Although according to these methods a good
performance can be obtained, the controller
designs are quite complex. In addition, according
to these controllers, the drive system is not robust
to all parameter uncertainties. In [9], a nonlinear
adaptive speed controller approach is presented
for SPMSM based on adaptive backstepping. In
this control scheme, only the uncertainties in the
stator resistance and friction coefficient and load
torque disturbance are considered.

To the authors’ knowledge, the nonlinear
control methods applied so far for PMSM drives,
have not taken into account the motor iron loss. In
PM machines, iron loss forms a significant
fraction of total loss partly due to the non
sinusoidal flux density distribution. Despite the
number of papers that deal with online
identification of the iron loss resistance for
induction motor drives, there is little attention
paid to identification of iron loss resistance of
PMSM drives [10].

Using the SPMSM iron loss model described
in [10,11], the main aim of this paper is to
introduce a new controller for speed sensorless of
the SPMSM drive. The adaptive nonlinear
controller is designed on the basis of IOF
linearization and the RLS method. The RLS
method is a simple and strong estimation
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technique [12]. The RLS estimator is developed
for online detecting motor electromechanical
parameters including the iron loss resistance,
using the motor measured currents and voltages.
The RLS estimator operates in parallel with IOF
controller and a SM observer that estimates the
rotor speed and rotor position online. Based on
the Lyapunov’s stability theory, the SM observer
is developed by taking the motor iron loss into
account. This paper is organized as follows. In
Section 2 the SPMSM model is described. The
IOF linearizing controller is presented in Section 3.
In Section 4, RLS estimator is discussed. The SM
observer is developed in Section 5 and system
simulation is shown in Section 6. Finally, the
paper is concluded in Section 7.

2. SPMSM MODEL

The d and q axis equivalent circuits of SPMSM
drive are shown in Figure 1. In these circuits the
iron loss resistance is taken into account. From
Figure 1, the SPMSM mathematical model is
obtained as

dig R . _ 1 digm

o mtPimertievd TS
. . PKe 1

_Elqm_Pldmﬂ)r—_(Dr*'EVq

dor _3Pp. B = _TL

23 9™ g )

i (2)

a T

Where R, B, J, P and T_ are stator resistance,
friction coefficient, momentum of inertia, number
of pole pairs and load torque. Also K and K¢ are

defined by

R R
K=(1+—)L, Ko=(1+-)
Rj Rj

Where R;j, ¢ and L are respectively the motor iron

loss resistance, rotor permanent magnet flux, and
stator inductance.
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Figure 1. D and q axis equivalent circuits of SPMSM.

3. INPUT-OUTPUT FEEDBACK
CONTROLLER

According to the nonlinear model of SPMSM, the
linear control methods are not applicable for wide
range operation of SPMSM. The input-output
feedback linearization method (IOFC) is one of
the effective nonlinear control methods that can
be used to control nonlinear plants such as
SPMSM.

The IOFC scheme is applied to SPMSM in the
following way [4].

Assume that

¥Y1=idm> Y2 Tigm (3)

Thus from (1) the system output dynamics are

. dldm _ R . . 1
=4 —_Eldm+qum(Dr+EVd

di R PK 1
.o qm K. 4 _ ¢ 4
Y2774 T "xlam Pigmor or K Va
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Considering the IOF linearizing technique, the new
control inputs are defined by:

di
_ dmref _ o
d™ 7 ¢ %N
di )
_ qmref e =<
a7 & 2% 2
Linking (3) and (5), the error dynamics are

With
ed= idm —idmref > €q = lqm - iqmref

Where subscript “ref” denotes the reference value.

From (6), it is seen that the magnetizing
currents converge exponentially to zero. Notice
that the above IOF linearizing system has an order
of zero dynamic and in [4], it has been proven that
this zero dynamic is input to a state stable.

4. RECURSISVE LEAST SQUARES
METHOD

The recursive least square (RLS) algorithm is well-
known as a simple and strong estimation technique
[12]. This method can only be applied to the
models defined by

y©) =l (1) (7)

Where y is an observed variable. 0 is the vector of
constant or slowly variable parameters to be
determined and ¢ is a vector of known functions
that may depend on other known variables [12].

Applying the RLS method to the model of (7),
the vector 0 is estimated in the following way

0(t)=0(t—1) + KO (y() - T ()0t —1))
K(t) = P(t=D)@(t) (AL + T ())P(t—1)p(t)) : (3)
P(t)=(I-K() ! (t)P(t—1)/A
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Where 0 <A <1 and called the forgetting factor.
From Figure 1b, the q axis voltage equation of
SPMSM can be obtained as

Kplq = _Riq_KP(Drid_P(P(Dr"' Vq+

)

Lp +LP
— PV — I orv
R; V4R ervd

Where

Multiplying both sides of (9) by L, equation
pt+a

(9) becomes

p .
Kp-i—alq_
R K Pupig)—0——Port  (10)
p+a d p+a | p+a |
1 L p L

vqt— - Vq+_;(P(DrVd)
p+a Rip+a Rip+a

Assume that:

1 1 1

qu:p+a1q’ Vdf=p+ana werp:wr an
(Dldf:p:@rld, (Dvdfzﬁmrvd
Then

iq=iq-aigf» ——vq=vq-avgf  (12)
piald”laT gty (R VGT Vg TV
Combining (10), (11) and (12), yields
vgf = K(iq —aigf +Poigr) + Rigf +

(13)

L
OP opf — E(Vq —avgf +Povdr)
i

Similarly the mechanical equation is rewritten as

dor 3P R vq
120 20 (14— L) B - 14
i (- Bor-TL (19)
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Multiplying both sides of (14) by % , yields
p

=2]
qu zﬁ((ﬂr_b(l)rf) + (R1+ R)qu -

(15)
2BRj _2RiTL
3P T 3pg
Comparing (13) and (15) with (7), results in
y= Yaf o = (PIT °
vaf |’ 0 of
T
K R [0} L
R:
0= 1 16
-2] R:+R -2BR; -2R;TL (16)
3pp ! 3Pg 3Pg
Where

of =liq—aiqf + Poidf igf Porf-
(vq—avqf +Pavdr)]

(Pg:[ﬂ)r_b@rf igf orf 1]

5. SLIDING-MODE OBSERVER

Using Equations 1 and 2, the SPMSM model in the
fixed (a-B) axis reference frame, can be derived as:

di K

oam :—Ei +P—2 sinPo +iv

dt K om K T r g a
di

pm  R. Ko 1

i —Elﬁm —P?a)rcosPGr +EVB
do 3P B

r_ 3Po . . . TL
T 7(1BmCosP9r —1amSmP9r) —Tmr -
a0
a "

(17)

Dividing the SPMSM drive system states
respectively by measured and estimated states
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which are respectively defined by (igm,ipm) and
(0,,@,), the system state dynamics become [13,14]

%1 =f1(x,u)

18
X2 = fZ(Xau) ( )

Where

_ T ot . 4T _ T
x=[x1x2]", xi=liomipml , x2=[wr6;]" and
uz[VaVB]T.

From (18), the system estimated dynamic is
described by

)A(l = fl (ﬁ,u)

19
)’\(2=f2(iau) ( )

Where (*) means the estimated value of each state
and each parameter.
Assume the following SM-observer:

)21 =11 ()2,11) —kilg

. ' (20)
),‘(2 = f2 (Xau) - k2 IS

Where K, and K, are the observer gain matrices
and vector I is defined as

Is = [sgn(-2), sgn(ﬁ)] 1)
01 (]

Where

Sa:iqm_iam: iam
and
S = f[sm ~ifm = ipm-

From (18) and (19), the system error dynamic
obtained as

X1 = f1&w-f1(x,u)

22
X7 =f2(X,u)—f2(x,u) 22)

Define a Lyapunov function as follow:
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_ld 7
V_zdt (s's) (23)

The observer states convergence is ensured if
V = sT s<0.
Let the observer errors are chosen as

e1= X} —X]1 24)
€2 =X2 X2
Substituting (22) into (24) gives

e1=Af1-kilg
ér=Afr-kolg

(25)
Where
Afr=f1(X,u)—f1(x,u)
and

Afz =f2()2,u)—f2(x,u) .

Approximate fq(x,u) and fp(x,u) with first terms
of Taylor series, Af] and Af, become

Af1=F11E1+F12E2

(26)
Afp=F21E1+F22E2

Where from (17),
R
— B
of of -
Fl_a_l_ K R’Fz:azz ] p
X1 0 = X2 1
K
27)
of
F12=F21=8_1=
X2
K K
P Q. 28
P?smPer P?Q)rcosPer (28)

Ko Ko .
—P?cosPer P?(DrsmPer
With
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_ 3P

5] [~ ®rigm cosP ér ~ dripm sinP ér]

As the motor current errors (7 G’TB ) tend

asymptotically to zero, or in other words the sliding

behavior occurs (s=$§=0), then ep =¢7=0.
Combining (25) and (26), yields

¢2=Af-koki 1Af1=(F2—koki TFi)e2  (29)

Equation 29 shows the system estimated errors (e,)
will exponentially decrease to zero with a time

constant determined by (Fy7—k» kl_lFlz) .

In (29), the gain matrices k; and k, can be
adjusted so that the eigenvalues of nonsingular

matrix (Fp2—k2 kl_lFl ) become negative and as a

result vector e, exponentially tends to zero.
Let the gain matrix k; is to be chosen as:

_|bs O
kl—{o bJ (30)

Where bg is a positive constant that has to be
selected.

Combining (25) with (26) and (27), using
equation (29), yields

V=sTs=el (Fliei+Froea—kilsel (31

Substituting (27) in (31) for F;; and F,, one can
conclude that if bs is chosen upon following
inequality,

K N R
¢ : R
bS > max {? (emsmPO +P &y eecosPG),
(32)
Ko .
?(emcosPe +P @reesmPG)}

Then the sliding reaching condition is always
satisfied, if the gain matrix k; is also chosen as:

_1_ja1r 0.1
kallzL ajFu 33)

Where a; and a, are assumed positive constants.
Linking (26) and (33) gives
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ap 0 b 1 P
. ———a
= - = 34
e2=F2> {0 az} J0 . (34)

The eigenvalues of the above matrix are obtained as

B
Aoy = _T_al > Ap=—ap
The observer convergence rate is determined by
adjusting a; and a,. Once positive constants bs, a;

and a, are set, the gain matrix k, corresponding to
system estimated states is obtained from (33) as:

a1——sinP —a1——cosP
1 K 0r 1 K Or

¢ ¢
K . . K cosPg
k2=bg| —sinP§, +ap— Aer (35)
K(P K(P P(Dr
K sinP§,

K cosPg,. +
- a2
Ko ! Ko Por |

Equation 35 shows the elements of matrices k; and
k> depend on estimated states o =[¢ ér] and as a

consequence they have to wupdate at each
computation step At of time.

Replacing gain matrices k; and k, from (30) and
(35) into (20), the system estimated states
]T

X =[x] x2]" can be obtained by solving (20). From

1 .

(35), one can see that the term — will overflow
Or

numerically for very low speeds.

This problem can be solved if in the speed
region ¢, <1, the gain matrix k; is changed to
alisinPér —alicosP Or
Ko Ko
K .. K n
k2=bg| —sinPj. +ap—P@cosP§, (36)
K K
¢ ¢
—LcosPér + aZLPd)rsinPér
K

Ko ®

It is not difficult to show the eigenvalues of matrix
(36) are

B 2
X(D:—T—al, AQ=—a20ofr
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Which also guaranty that the SM-observer stability
and convergence is still ensured.

6. SYSTEM SIMULATION

The proposed control approach is implemented in an
overall block diagram shown in Figure 2 Using the
d-q axis equivalent circuits shown in Figure 1, a
C++ computer program was developed for system
modeling. A static fourth order Runge-Kutta
method is used to solve the nonlinear equations.
Simulation results are obtained for a SPMSM with
the parameters shown in Table 1. These results are
obtained for R = 2R,, L = 0.5L,, ¢ = 0.8¢,, R; =
0.5R;,, J = 1.8],, B = 3B, and the load torque and
speed profiles respectively as shown in Figures 3¢
and 3d, where subscript 'n' denotes the nominal
value. From simulated results given in Figure 3, one
can see that the drive system performance is robust
and stable against parameter variations and external

load torque disturbance. These results also show
that the SM observer asymptotically detects the
desired speed reference command.

7. CONCLUSIONS

A robust nonlinear controller has been designed for
speed sensorless SPMSM drives based on IOFC
and RLS methods. The RLS estimator detects the
motor electrical parameters including the motor
iron loss resistance and motor load torque online.
The estimated parameters are used by IOFC and a
SM-observer that estimates the rotor speed and
rotor position online. The proposed control
approach is verified by computer simulation. The
simulation results obtained show that the estimated
parameters rapidly converge to their actual values
and the drive system control is stable and robust
subject to parameter variations and external load
torque disturbance occurrences.

Inverter

B Te [ 2ca J
v L = Input - [
SMC . d
_.®_ SMC 5= 3Te - Output N 1 abe > ".. PMSM
o qug, controller |
r
2]
4 4 22 2 G
abc
off
o Ve I
SMO :
L, YV
g |=F
- dq

Estimator | g

RS ez ]

Figure 2. Block diagram of SPMSM drive system.

TABLE 1. Machine Parameters.

P=2 J,=0.0004 nms/rad

J,=0.00617 Kg m* ¢, =0.5wb

R,=1.6Q L,=9.4mH

Ri,=50Q
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Figure 3. (a) Stator direct axis currents, (b), Stator q axis currents, (c) Motor torque, (d) Motor speed estimation
(e) Stator resistance estimation, (f) Rotor magnetic flux estimation, (g) Motor iron loss resistance estimation
(h) Inductance estimation, (i) Estimation of parameter J, (j) Motor load torque estimation.
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