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Abstract   In this paper, an adaptive nonlinear controller is designed for rotor Surface Permanent 
Magnet Synchronous Motor (SPMSM) drive on the basis of Input-Output Feedback Control (IOFC), 
and Recursive Least Square (RLS) method. The RLS estimator detects the motor electromechanical 
parameters, including the motor iron loss resistance online. Moreover, a Sliding-Mode (SM) observer 
is developed for online estimation of the rotor speed and rotor position. In this control scheme, the 
torque reference signal is generated by a conventional speed PI controller. The effectiveness and 
feasibility of the proposed control approach is tested by simulation. Computer simulation results show 
that the errors in the estimated quantities asymptotically converge to zero. These results also show 
that the drive system is stable and robust against the parameter uncertainties and external load torque 
disturbance. 
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در اين مقاله، يک کنترل کننده غيرخطی تطبيقی برای موتور سنکرون مغناطيس دائم نوع سطحی چکيده   

)SPMSM (خروجی  - خورد ورودیبر پايه کنترل پس)IOFC ( و روش حداقل مربعات بازگشتی)RLS (
 بصورت روی خط پارامترهای الکترومکانيکی شامل مقاومت تلفات آهن RLSگر  تخمين. شود طراحی می

برای تخمين روی خط سرعت و ) SM(لغزشی  - علاوه بر اين، يک مشاهده گر مد. زند موتور را تخمين می
 معمولی PIدر اين طرح کنترلی، سيگنال مرجع گشتاور بوسيله يک کنترل کننده . شود میموقعيت روتور ارائه 

نتايج شبيه . شود موثر و عملی بودن روش کنترل پيشنهادی با شبيه سازی کامپيوتری بررسی می. شود ايجاد می
. شود را میهای تخمين زده شده بطور مجانبی به صفر همگ دهد که خطای کميت سازی کامپيوتری نشان می
های پارامتری و اغتشاش گشتاور  دهند که سيستم درايو پايدار و نسبت به نامعينی همچنين اين نتايج نشان می

 .بار بيرونی مقاوم است
 
 

1. INTRODUCTION 
 
In recent years, because of the advancements 
achieved in magnetic materials, semiconductor 
power devices and nonlinear control theories, the 

PMSM drive plays a vital role in motion control 
applications between low to medium power ranges 
[1]. In the traditional field orientation method [2], 
it is widely adopted to linearize the nonlinear 
model and has obtained significant achievement. 
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However, for higher performance requirements, 
such as robots and machine tools, this method may 
not be sufficient during speed transient. Over the 
last 20 years, the state feedback linearization and 
IOF linearization have been applied to induction 
and PMSM drives [3-5]. The basic idea is to first 
transforming the motor nonlinear system equations 
into linear ones through nonlinear feedback, and 
then using the well-known linear design techniques 
to complete the controller design. These techniques 
however require a full knowledge of motor 
parameters and load conditions with sufficient 
accuracy. 
     In [6], a nonlinear controller is described for a 
SPMSM using the IOF linearization. In this 
control scheme, an integral control method is 
introduced to improve the motor drive robustness 
against the inaccurate speed measurement. 
However, in this system the variations of other 
motor parameters are not considered. In [7,8] 
adaptive IOF linearization techniques are 
described for the speed control of the PMSM. 
Although according to these methods a good 
performance can be obtained, the controller 
designs are quite complex. In addition, according 
to these controllers, the drive system is not robust 
to all parameter uncertainties. In [9], a nonlinear 
adaptive speed controller approach is presented 
for SPMSM based on adaptive backstepping. In 
this control scheme, only the uncertainties in the 
stator resistance and friction coefficient and load 
torque disturbance are considered. 
     To the authors’ knowledge, the nonlinear 
control methods applied so far for PMSM drives, 
have not taken into account the motor iron loss. In 
PM machines, iron loss forms a significant 
fraction of total loss partly due to the non 
sinusoidal flux density distribution. Despite the 
number of papers that deal with online 
identification of the iron loss resistance for 
induction motor drives, there is little attention 
paid to identification of iron loss resistance of 
PMSM drives [10]. 
     Using the SPMSM iron loss model described 
in [10,11], the main aim of this paper is to 
introduce a new controller for speed sensorless of 
the SPMSM drive. The adaptive nonlinear 
controller is designed on the basis of IOF 
linearization and the RLS method. The RLS 
method is a simple and strong estimation 

technique [12]. The RLS estimator is developed 
for online detecting motor electromechanical 
parameters including the iron loss resistance, 
using the motor measured currents and voltages. 
The RLS estimator operates in parallel with IOF 
controller and a SM observer that estimates the 
rotor speed and rotor position online. Based on 
the Lyapunov’s stability theory, the SM observer 
is developed by taking the motor iron loss into 
account. This paper is organized as follows. In 
Section 2 the SPMSM model is described. The 
IOF linearizing controller is presented in Section 3. 
In Section 4, RLS estimator is discussed. The SM 
observer is developed in Section 5 and system 
simulation is shown in Section 6. Finally, the 
paper is concluded in Section 7. 
 
 
 

2. SPMSM MODEL 
 
The d and q axis equivalent circuits of SPMSM 
drive are shown in Figure 1. In these circuits the 
iron loss resistance is taken into account. From 
Figure 1, the SPMSM mathematical model is 
obtained as 
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Where R, B, J, P and TL are stator resistance, 
friction coefficient, momentum of inertia, number 
of pole pairs and load torque. Also K and Kφ  are 

defined by 
 

)L
Ri

R(1K += , )φ
Ri

R(1Kφ +=  

 
Where Ri , φ and L are respectively the motor iron 
loss resistance, rotor permanent magnet flux, and 
stator inductance. 
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(a) 

 

 
(b) 

 
Figure 1. D and q axis equivalent circuits of SPMSM. 

3. INPUT-OUTPUT FEEDBACK 
CONTROLLER 

 
According to the nonlinear model of SPMSM, the 
linear control methods are not applicable for wide 
range operation of SPMSM. The input-output 
feedback linearization method (IOFC) is one of 
the effective nonlinear control methods that can 
be used to control nonlinear plants such as 
SPMSM. 
     The IOFC scheme is applied to SPMSM in the 
following way [4]. 
     Assume that 
 

idmy1= , iqmy2 =  (3) 
 
Thus from (1) the system output dynamics are  
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Considering the IOF linearizing technique, the new 
control inputs are defined by: 
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Linking (3) and (5), the error dynamics are 
 

de1αde −=& , qe2αqe −=&  (6) 

 
With 
 

idmrefidmed −= , iqmrefiqmeq −=  

 
Where subscript “ref ” denotes the reference value. 
     From (6), it is seen that the magnetizing 
currents converge exponentially to zero. Notice 
that the above IOF linearizing system has an order 
of zero dynamic and in [4], it has been proven that 
this zero dynamic is input to a state stable. 
 
 
 

4. RECURSISVE LEAST SQUARES 
METHOD 

 
The recursive least square (RLS) algorithm is well-
known as a simple and strong estimation technique 
[12]. This method can only be applied to the 
models defined by 
 

(t)θTy(t) ϕ=  (7) 
 
Where y is an observed variable. θ is the vector of 
constant or slowly variable parameters to be 
determined and φ is a vector of known functions 
that may depend on other known variables [12]. 
     Applying the RLS method to the model of (7), 
the vector θ is estimated in the following way 
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Where 0 < λ ≤ 1 and called the forgetting factor. 
     From Figure 1b, the q axis voltage equation of 
SPMSM can be obtained as 
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Where 
 

dt
dp =  

 

Multiplying both sides of (9) by 
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Assume that: 
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Then 
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Combining (10), (11) and (12), yields 
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Similarly the mechanical equation is rewritten as 
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Multiplying both sides of (14) by 
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Comparing (13) and (15) with (7), results in 
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5. SLIDING-MODE OBSERVER 
 
Using Equations 1 and 2, the SPMSM model in the 
fixed (α-β) axis reference frame, can be derived as: 
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 (17) 
 
Dividing the SPMSM drive system states 
respectively by measured and estimated states 
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which are respectively defined by (iαm,iβm) and 
(θr,ωr), the system state dynamics become [13,14] 
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Where 
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From (18), the system estimated dynamic is 
described by 
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Where (^) means the estimated value of each state 
and each parameter. 
     Assume the following SM-observer: 
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Where K1 and K2 are the observer gain matrices 
and vector Is is defined as 
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From (18) and (19), the system error dynamic 
obtained as 
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Define a Lyapunov function as follow: 
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The observer states convergence is ensured if 
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With 
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]θ̂rsinPiβmω̂rθ̂rcosPiαmω̂r[
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As the motor current errors ( i

~
β,i

~
α ) tend 

asymptotically to zero, or in other words the sliding 
behavior occurs ( 0ss == & ), then 0e2e2 == & . 
     Combining (25) and (26), yields 
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Equation 29 shows the system estimated errors (e2) 
will exponentially decrease to zero with a time 
constant determined by )F12k 1

1k2F22( −− . 
     In (29), the gain matrices k1 and k2 can be 
adjusted so that the eigenvalues of nonsingular 
matrix )F12k 1

1k2F22( −−  become negative and as a 
result vector e2 exponentially tends to zero. 
     Let the gain matrix k1 is to be chosen as: 
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Where bS is a positive constant that has to be 
selected. 
     Combining (25) with (26) and (27), using 
equation (29), yields 
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Substituting (27) in (31) for F11 and F22 one can 
conclude that if bS is chosen upon following 
inequality,  
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Then the sliding reaching condition is always 
satisfied, if the gain matrix k2 is also chosen as: 
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Where a1 and a2 are assumed positive constants. 
     Linking (26) and (33) gives 
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The eigenvalues of the above matrix are obtained as 
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The observer convergence rate is determined by 
adjusting a1 and a2. Once positive constants bS, a1 
and a2 are set, the gain matrix k2 corresponding to 
system estimated states is obtained from (33) as: 
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Equation 35 shows the elements of matrices k1 and 
k2 depend on estimated states ]θ̂rω̂r[x̂2 =  and as a 
consequence they have to update at each 
computation step ∆t of time. 
     Replacing gain matrices k1 and k2 from (30) and 
(35) into (20), the system estimated states 
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(35), one can see that the term 
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numerically for very low speeds. 
     This problem can be solved if in the speed 
region 1ω̂r < , the gain matrix k2 is changed to 
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It is not difficult to show the eigenvalues of matrix 
(36) are 
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Figure 2. Block diagram of SPMSM drive system. 
 
 
 

TABLE 1. Machine Parameters. 
 

P = 2 Jn = 0.0004 nms/rad Jn = 0.00617 Kg m2 φn = 0.5 wb 

Rn = 1.6 Ω Ln = 9.4 mH Rin = 50 Ω   

Which also guaranty that the SM-observer stability 
and convergence is still ensured. 
 
 
 

6. SYSTEM SIMULATION 
 
The proposed control approach is implemented in an 
overall block diagram shown in Figure 2 Using the 
d-q axis equivalent circuits shown in Figure 1, a 
C++ computer program was developed for system 
modeling. A static fourth order Runge-Kutta 
method is used to solve the nonlinear equations. 
Simulation results are obtained for a SPMSM with 
the parameters shown in Table 1. These results are 
obtained for R = 2Rn, L = 0.5Ln, φ = 0.8φn, Ri = 
0.5Rin, J = 1.8Jn, B = 3Bn and the load torque and 
speed profiles respectively as shown in Figures 3c 
and 3d, where subscript 'n' denotes the nominal 
value. From simulated results given in Figure 3, one 
can see that the drive system performance is robust 
and stable against parameter variations and external 

load torque disturbance. These results also show 
that the SM observer asymptotically detects the 
desired speed reference command. 
 
 
 

7. CONCLUSIONS 
 
A robust nonlinear controller has been designed for 
speed sensorless SPMSM drives based on IOFC 
and RLS methods. The RLS estimator detects the 
motor electrical parameters including the motor 
iron loss resistance and motor load torque online. 
The estimated parameters are used by IOFC and a 
SM-observer that estimates the rotor speed and 
rotor position online. The proposed control 
approach is verified by computer simulation. The 
simulation results obtained show that the estimated 
parameters rapidly converge to their actual values 
and the drive system control is stable and robust 
subject to parameter variations and external load 
torque disturbance occurrences. 
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                                            (a)                                                                                 (b) 
 

          
 
                                            (c)                                                                                (d) 
 

                                              R and R̂                                                                                                    φ  and φ̂  

          
 

                                            (e)                                                                                 (f) 
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                                            (g)                                                                                 (h) 
 

                                                                                                                                                             lT̂ and lT  

          
 
                                            (i)                                                                                (j) 
 

Figure 3. (a) Stator direct axis currents, (b), Stator q axis currents, (c) Motor torque, (d) Motor speed estimation 
(e) Stator resistance estimation, (f) Rotor magnetic flux estimation, (g) Motor iron loss resistance estimation 

(h) Inductance estimation, (i) Estimation of parameter J, (j) Motor load torque estimation. 
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