
IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 143

FINITE HORIZON ECONOMIC LOT AND DELIVERY
SCHEDULING PROBLEM: FLEXIBLE FLOW LINES WITH

UNRELATED PARALLEL MACHINES AND SEQUENCE
DEPENDENT SETUPS

M. Jenabi and S. M. T. Fatemi Ghomi

Department of Industrial Engineering, Amirkabir University of Technology
P.O. Box 15916-34311, Tehran, Iran

m.jenabi@aut.ac.ir - fatemi@aut.ac.ir

S. A. Torabi*

Department of Industrial Engineering, Faculty of Engineering
University of Tehran, P.O. Box 11155/4563, Tehran, Iran

satorabi@ut.ac.ir

*Corresponding Author

(Received: September 8, 2007 – Accepted in Revised Form: November 22, 2007)

Abstract This paper considers the economic lot and delivery scheduling problem in a two-echelon
supply chains, where a single supplier produces multiple components on a flexible flow line (FFL)
and delivers them directly to an assembly facility (AF). The objective is to determine a cyclic
schedule that minimizes the sum of transportation, setup and inventory holding costs per unit time
without shortage. We have developed a new mixed zero-one nonlinear mathematical model for the
problem. Due to the difficulty of obtaining the optimal solution, especially in the instances of medium
and large-sized problems, two meta-heuristic algorithms (HGA and SA) are proposed and evaluated
over randomly generated problems. Computational results indicate that the proposed HGA
outperforms the SA algorithm with respect to both the solution quality and computation times
especially in large-size problems.

Keywords Flexible Flow Lines, Lot and Delivery-Scheduling, Unrelated Parallel Machines, Finite
Planning Horizon, Hybrid Genetic Algorithm, Simulated Annealing

 در يک زنجيرة تأمين دو سطحي ای اقتصادیه توليد و تحويل انباشته بندی زمانمسئلة در اين مقاله، چكيده

کننده چندين محصول را در يک سيستم توليد جريان خطی در اين زنجيره، يک تأمين. گيرد مورد بررسی قرار مي
 هدف تعيين يک زمان. دهد تحويل می) مشتري(به يک مونتاژگر "ير توليد کرده و آنها را مستقيماپذ انعطاف

ها در واحد اندازی و نگهداری موجودی نقل، راه و های حمل که مجموع هزينهبندی سيکلی به نحوي است
يک مدل رياضی غيرخطی ترکيبی صفر و يک برای مسئلة فوق . زمان بدون بروز کمبود موجودی حداقل شود

با توجه به پيچيدگی حل اين مدل در مسائل با مقياس متوسط و بزرگ، دو الگوريتم . توسعه داده شده است
طراحی شده است و بر تعدادی مسئله نمونه تست) سازی تبريد الگوريتم ژنتيک ترکيبی و شبيه(ق ابتکاری فو

 برتری الگوريتم ژنتيک طراحی شده را هم به لحاظ ، عددییاه نتايج بدست آمده از آزمايش. گرديده است
 .رساند ی تبريد به اثبات میساز های حاصله و هم زمان محاسباتی موردنياز بر الگوريتم شبيه کيفيت جواب

1. INTRODUCTION

Increasing global competition forces all members
of supply chains to optimize their activities to
achieve higher level of customer satisfaction. One
of the main issues in supply chains is the efficient

and effective management of material flow [1]. In
this regard, a smooth and cost-efficient production
and also components delivery between adjacent
parties of a supply chain often depends on selecting
appropriate lot-size, production and delivery
schedules.

144 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

One of the most famous lot-sizing problems is the
economic lot-scheduling problem (ELSP).
Original ELSP concerns with lot sizing and
scheduling of several items in a single stage
production facility, so that corresponding
demands are met without shortage, and the
average inventory and setup costs per unit time
are minimized [2]. Researches on the ELSP have
usually focused on cyclic schedules (i.e.,
schedules that are repeated periodically) with
three scheduling policies: common cycle, basic
period and time varying lot size approaches.
Several authors have extended the classical ELSP
to more general systems such as single stage
systems with parallel machines, flow shop, and
job shop systems [3-5].
 The economic lot and delivery scheduling
problem (ELDSP) is an extension of ELSP into a
two-stage supply chain environment, where a
supplier produces several items for an assembly
facility and delivers them directly. Hahm, et al [6]
introduced the single item ELDSP, and then
extended it to multiple items case through two
other research works. In the first paper [7], they
used the common cycle for all components and
assumed that the time between deliveries is equal
to the duration of the common production cycle.
In the second one [8], they assumed that multiple
deliveries within a global production cycle are
allowed (i.e., the nested schedule case). Khouja
[9] considered ELDSP for a supplier that uses a
volume flexible production system where
component quality depends on both lot sizes and
unit production times and developed an algorithm
to solve the problem. Jensen, et al [10] developed
an optimal polynomial time algorithm for ELDSP
under common cycle approach. Vergara, et al [11]
extended ELDSP to multiple supplier, multiple
components supply chain and proposed an
evolutionary algorithm (EA) to obtain an optimal,
or near optimal, synchronized delivery cycle time
and suppliers’ component sequences.
 In all above works, it is assumed that the
planning horizon is infinite and the production
system of supplier(s) as a single production line or
machine. However, these assumptions considerably
reduce the usefulness of the proposed contributions,
because in practice, planning horizons and
production systems are often finite and multi-
stage [4].

Literature review in finite horizon case reveals
that there are few contributions. Ouenniche, et al
[4] studied the finite horizon ELSP in job shops
under common cycle approach and developed an
optimal solution method to solve the problem. In
another research work, Ouenniche, et al [12]
considered this problem using the multiple cycle
approach, and developed an efficient heuristic
method to obtain a near optimal solution.
Recently, Torabi, et al [13] presented a new
model for the finite horizon ELSP in flexible job
shops (i.e. job shop systems with parallel
machines at least at one stage) under the common
cycle approach, and developed an optimal
solution method for this problem. Moreover,
Torabi, et al [3] studied the finite horizon ELDSP
in flexible flow lines with identical parallel
machines and sequence-independent setup
times/costs at each stage under the common cycle
approach. They proposed an efficient hybrid
genetic algorithm to obtain near optimal (or
ideally optimal) solutions for the problem.
 In this paper, we extend our previous research
work [3] and study the finite horizon ELDSP in
flexible flow lines with unrelated parallel machines
(i.e., machines with different characteristics such
as production rates and/or setup times), and
sequence-dependent setup times/costs at each
stage. The objective is to determine a cyclic
schedule that minimizes the sum of transportation,
setup and inventory holding costs per unit time in
the supply chain without any stock-outs.
 To solve the problem, the common cycle
strategy is used for all components. That is, at
each production cycle, one lot of each component
at each stage is produced. Also, it is required that
the planning horizon is an integer multiple (F) of
the common cycle length (T). We have developed
a new mixed zero-one nonlinear program whose
optimal solution determines simultaneously the
optimal assignment of components to machines at
stages with multiple parallel machines, the
optimal sequence of components on each machine
at each stage, the optimal lot sizes and the optimal
production and delivery schedule for each
production run.
 The rest of the paper is outlined as follows.
Problem assumptions, notations and mathematical
formulation are presented in Section 2. The
proposed HGA and SA algorithms are introduced

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 145

in Sections 3 and 4, respectively. In Section
5, numerical experiments and corresponding
computational results are shown. Finally, Section 6
is devoted to some concluding remarks.

2. PROBLEM FORMULATION

2.1. Problem Assumptions The following
assumptions are considered for the problem
formulation:

• The lots of each component are of equal size

at different stages.
• Machines at stages, with multiple parallel

machines that can be identical (in all
characteristics such as production rates and
setup times/costs) or non-identical
(unrelated), but at least one stage must have
unrelated parallel machines.

• Machines of different stages are
continuously available and each machine
can only process one component at a time.

• At stages with parallel machines, each
component is processed entirely on one
machine.

• The structure of setup times and costs at the
supplier are sequence dependent.

• The production sequence on each machine at
each stage is unique and is determined by
the solution method.

• The supplier incurs linear inventory holding
costs on semi-finished components.

• Both the supplier and the assembler incur
linear holding costs on end components.

• Lot splitting and pre-emption are not
allowed.

• There are unlimited buffers between adjacent
stages.

• Total capacities of different stages are
sufficient to meet the demands; thus there
exists at least one feasible schedule.

• Zero switch rule is used which means the
production of each component at each cycle
begins when its inventory level reaches zero.

2.2. Model Notations The notations used for
the problem formulation are defined as follows:

2.2.1. Parameters

n Number of components
m Number of work centers (stages)
i, u Component indices
j Stage index
mj Number of parallel machines at stage j

(may be unrelated or identical)
Mkj K-th machine at stage j
di Demand rate of component i
pikj Production rate of component i on

machine k at stage j
ptikj Processing time for a lot of

component i on machine k at stage j
(ptikj = di.T/pikj)

siukj Setup time from component i to
component u on machine k at stage j

sciukj Setup cost from component i to
component u on machine k at stage j

hij Holding cost per unit of component i
per unit time between stages j and j + 1

hi Holding cost per unit of final
component i per unit time (both at the
supplier and at the assembler)

A Transportation cost per delivery
H Planning horizon length
M A large real number

2.2.2. Decision variables

σkj Production sequence vector at

machine Mkj
nkj Number of components assigned to

machine Mkj
T Common production and delivery

cycle length
Qi Production lot size of component i at

different stages (Qi = di.T)
F The number of production cycles over

the planning horizon
bij Process beginning time of component i

at stage j (after related setup operation)

It is noted that at stages with only one machine
the value of mj and index k would be only one.
Since after processing each component at each
stage, there would be a value added for the
component, values of hij parameters will be non-
decreasing. In other words, we have: hi,j-1 < hij; i =
1, …, n, j = 2, …, m-1.

146 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

2.3. Objective Function The objective of the
problem (Problem P) is to minimize the average of
transportation, setup, work-in-process and end
component inventory holding costs per unit time.
The average delivery cost per unit time is A/T. The
setup cost expression consists of two parts: the first
part computes the setup cost of the first component
which comes after the last assigned component to
Mkj. The second part computes the setup costs of
the subsequent products which are dependent on
the processing sequence on Mkj. This expression
would be as follow:

⎪
⎭

⎪
⎬

⎫
∑
=

∑
=

∑
=

∑
≠=

∑
=

−

⎪
⎩

⎪
⎨

⎧
+∑

=
∑
=

∑
=

∑
≠=

∑
=

=

m

1j

jm

1k

n

1i

n

iu1,u

n

2
kj1,i,.xkju.xiukjsc

m

1j

jm

1k

n

1i

n

iu1,u
i1kj.x

n

2
kju.xuikjsc

T
1

setupC

l
ll

l
l

 (1)

The inventory holding costs are incurred at both
the supplier and the assembler. The inventory level
for final component i at each cycle at the AF have
a simple saw tooth form. Therefore, the average
inventory of component i per unit time at the AF is
(1/T) {(diT).T/2} and then the total average
holding cost per unit time at the AF would be:
(1/2) (∑i dihiT).
 Two types of inventories are considered for the
supplier: WIP inventory and finished product
inventory. Figures 1 and 2 show the evolution of
WIP inventory of component i between two
successive stages j-1 and j, and the inventory level
of final component i, respectively.
 From Figure 1 it is obvious that the average
WIP inventory of component i between two
successive stages j-1 and j per unit time is:

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∑
−

=
∑
= −

−−−−

⎪
⎩

⎪
⎨

⎧
+∑

−

=
∑
= −

−=−

1jm

1k

n

1 1jik,p
1jk,ix

Tid1ji,bijb

Tid
1jm

1k

n

1 1jik,p
1jk,ix

2

2T2
id

T
1

1ji,I

l

l

l

l

⎟
⎟
⎟

⎠

⎞
∑
−

=
∑
= −

−−

⎜
⎜
⎜

⎝

⎛

−−∑
=

∑
=

+

=
⎪
⎭

⎪
⎬

⎫
∑
=

∑
=

1jm

1k

n

1 1jik,2p
1jk,ix

Tid

1ji,b
jm

1k

n

1 ikj2p
kjix

Tidijbid

jm

1k

n

1 ikjp
kjix

2

2T2
id

l

l

l

l

l

l

 (2)

Therefore, the total WIP holding cost for all
components per unit time at the supplier is:

⎪
⎭

⎪
⎬

⎫
∑
−

=
∑
= −

−

⎪
⎩

⎪
⎨

⎧
−−−∑

=
∑
=

+

∑
=

∑
=

−=

1jm

1k

n

1 1jik,2p
1jk,ix

Tid

1ji,b
jm

1k

n

1 ikj2p
kjix

Tidijb

id
n

1i

m

2j
1ji,hWIPTC

l

l

l

l (3)

From Figure 2, the average inventory of final
component i per unit time would be:

imbidT
mm

1k

n

1 ikm2p
kmix

.id1id

mm

1k

n

1 ikmp
kmix

TidimbTTid

mm

1k

n

1 ikmp
kmix

Ti.d
2
Tid

T
1

imI

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

∑
=

−=

⎪⎭

⎪
⎬
⎫

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

∑
=

−−

⎪⎩

⎪
⎨
⎧

+∑
=

∑
=

=

l

l

l

l

l

l

 (4)

Thus, the total inventory holding cost for all final
components per unit time is:

im.bid
n

1i
.ihT .

mm

1k

n

1 ikm2.p
kmix

id1

id
n

1i
.ihFITC

∑
=

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

∑
=

−

∑
=

=

l

l

 (5)

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 147

time

∑∑
= =

+
jm

k

n

ikj

kji
iij p

x
Tdb

1 1

.
l

l∑∑
−

= = −

−
− +

1

1 1 1,

1,
1, .

jm

k

n

jik

jki
iji p

x
Tdb

l

l1, −jib ijb

1-ji,I

Tdi .

Figure 1. WIP inventory between stages j-1 and j.

Td i .

time

imI

imb ∑∑
= =

+
mm

k

n

ikmkmiiim pxTdb
1 1

.
l

l
T

Figure 2. Final product inventory.

Therefore, the total cost per unit time (i.e.
objective function of Problem P) would be:

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−+

⎥
⎥
⎥

⎦

⎤

∑
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∑
−

=
∑
= −

−−∑
=

∑
=

−

∑
= ⎢

⎢
⎢

⎣

⎡
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

∑
=

−++

∑
=

∑
=

∑
=

∑
≠=

∑
=

−+

∑
=

∑
=

∑
=

∑
≠=

∑
=

=

n

1i
imbidih

n

1i

m

2j
1ji,bijbi.d1ji,h.T

m

2j

1jm

1k

n

1 1jik,p
1jk,ixjm

1k

n

1 ikjp
kjix

1ji,h

n

1i
.2

id
2
1mm

1k

n

1 ikmp
kmix

id3.i.dih
2
1A}

m

1j

jm

1k

n

1i

n

iu1,u

n

2
kj1,i,.xkju.xiukjsc

m

1j

jm

1k

n

1i

n

iu1,u
i1kj.x

n

2
kju.xuikjsc{

T
1

 TC

l

l

l

l

l

l

l
ll

l
l

 (6)

2.4. Proposed Mathematical Model A mixed
zero-one nonlinear model, Problem P, has been
developed to solve the problem which is presented
in Figure 3.
 Constraints (8) state that no component can be
processed before it is completed at the previous
stage. Constraints (9) show that no product can be
processed before the completion of its predecessor
in the related production sequence (σkj).
Constraints (10) secure that each product has a
unique position in the sequence of one machine at
each stage and Constraints (11) show that at each
position of each machine, there is at most one
component; because for each machine, it may be
assigned less than n components. Constraints (12)
state that one component can be assigned at one
position of each machine; if another product is to
be assigned at the previous position of this
machine.
 Constraints (13) show that if component i is the
first component in the sequence of one machine at

148 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−

+
⎥
⎥
⎥

⎦

⎤

∑
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∑
−

=
∑
= −

−
−∑

=
∑
=

−∑
= ⎢

⎢
⎢

⎣

⎡
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

∑
=

−

+
⎪
⎭

⎪
⎬

⎫
+∑

=
∑
=

∑
=

∑
≠=

∑
=

−

⎪
⎩

⎪
⎨

⎧
+∑

=
∑
=

∑
=

∑
≠=

∑
=

=

n

1i
imbidih

n

1i

m

2j
1ji,bijbi.d1ji,h

.T
m

2j

1jm

1k

n

1 1jik,p
1jk,ixjm

1k

n

1 ikjp
kjix

1ji,h.2
id

2
1n

1i

mm

1k

n

1 ikmp
kmix

id3.i.dih
2
1

A
m

1j

jm

1k

n

1i

n

iu1,u

n

2
kj1,i,.xkju.xiukjsc

m

1j

jm

1k

n

1i

n

iu1,u
i1kj.x

n

2
kju.xuikjsc

T
1 Min Z

l

l

l

l

l

l

l
ll

l
l

 (7)

m2,...,j n,1,...,i ; ijb
1jm

1k

n

1 1jik,p
1jk,ix

 .T.id1-ji,b

:Subject to

==≤∑
−

=
∑
= −

−
+

l

l (8)

; kj1,u,xkjix2Mujbiukjs
ikjp

.Tid
ijb ⎟

⎠
⎞⎜

⎝
⎛

+−−≤−++ ll n ,jm1,...,k i,u m,1,...,j n,1,...,i <=≠== l (9)

∑
=

===∑
=

jm

1k
n1,...,i m,1,...,j ; 1

n

1
kjix

l
l (10)

n1,..., ,jm1,...,k m,1,...,j ; 1
n

1i
kjix ===≤∑

=
ll (11)

n ,jm1,...,k m,1,...,j ;
n

1i
kjix

n

1i
kj1,i,x <==∑

=
≤∑

=
+ lll (12)

n1,...,i m,1,...,j ;
jm

1k

n

iu1,u

n

2
i1kj.xkju.xuikjsijb ==∑

=
∑

≠=
∑
=

≥
l

l (13)

,n,...1,i; T
mm

1k

n

1 ikmp
kmix

 .T.idimb =≤∑
=

∑
=

+
l

l (14)

HF.T = (15)
integer and , 1F ≥ (16)

{ } j.k,,i,;0,1kji xj,i, ; 0ijb 0,T ll ∀=∀≥≥ (17)

Figure 3. Mathematical model of problem P.

stage j, it’s processing cannot get started before
setting up the corresponding machine.

Constraints (14) assures the resulting schedule is
cyclic so that the process completion time for each

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 149

component at the final stage is less than or equal to
the cycle time. Constraint (15) implies that the
planning horizon H is an integer multiple of
common cycle T. Constraints (16) show that F is
an integer greater than or equal to one. Finally,
Constraints (17) indicate the type of variables.
 It is noteworthy that finding the optimal
solution of the original ELSP and consequently the
ELDSP (i.e., considering a single machine with
sequence-independent setup times/costs as
supplier’s production system) is known to be quite
difficult due to the NP-hardness of the problem
[14]. In this paper, we deal with an extended
version of the ELDSP where supplier’s production
system is assumed to be a flexible flow line with
unrelated parallel machines and sequence-
dependent setup times/costs at each stage.
Therefore, it is obvious that our generalized
problem is definitely NP-Hard. This issue itself
justify applying the heuristic or meta-heuristic
approaches instead of optimal ones for the
problem. In this paper, we develop two meta-
heuristics i.e., a hybrid genetic algorithm (HGA)
and a simulated annealing (SA) algorithm, and
provide corresponding numerical results.

3. PROPOSED HYBRID GENETIC
ALGORITHM

Genetic algorithms (GAs) have been proved to be
highly successful in solving combinatorial
optimization problems where the search space is
highly unstructured or the standard techniques like
the branch and bound method fail to provide
efficient solutions. This intelligent stochastic
optimization technique is based on the mechanism
of natural selection and genetics. To improve the
solution quality of GA and to overcome the
problem of converging to local optima, various
strategies of hybridization have been suggested to
improve the performance of the simple GA [15-
17]. Usually, in a typical HGA, a neighbourhood
search (NS) heuristic, acts as a local improver into
a basic GA loop.

3.1. Chromosome Representation Component
sequences have been used for chromosome
representation. For example, in a five components

problem a chromosome could be [13245]. Such a
vector by itself does not specify the complete
solution for a discrete part of the problem. Thus,
we need to develop an appropriate procedure to
construct a complete discrete solution for every
given permutation vector (i.e., determining the
sequence vectors σkj). So, we have developed a
simple heuristic approach to construct the complete
discrete solution from a given permutation (for
example V) in Figure 4. This heuristic is presented
at following.
 The basic idea behind this heuristic is to use the
costs of our problem to construct a complete
discrete solution from a known vector V. The
products based on vector V and their dependent
setup costs are assigned to machines of each stage
then those are arranged in a non-decreasing order
of their process completion times. These make
fewer setup costs, flow time of products and
consequently holding costs.

3.2. Initial Population Generation Several
simple and effective constructive heuristics have
been used to find good initial permutation vectors.
Five constructive heuristics, i.e., the CDS
(Campbell, Dudek, and Smith [18]) heuristic, the
SPT heuristic, the LPT heuristic, the WSPT
heuristic, and the HY heuristic [7], have been used.
To apply the above heuristics it is required to
estimate the processing time of each component at
each stage. So, the following equation has been
used:

m1,...,j n,1,...,u ; jm
jm

1k
iukjs

i
min

ujp
ud

ujtp jm
jm

1k
ukjpujp

==
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
∑
=

+
′

=′⇒∑
=

=′

 (18)

Through utilizing the above heuristics, we can
obtain at most 5 m-1 different permutation
vectors. If the initial population size generated by
the above heuristics is greater than the tuned
population size (in our algorithm, n), we can
delete the worst excessive vectors (in terms of
corresponding fitness values). Otherwise, the
remaining distinct permutation vectors can be
generated randomly.

150 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

for j = 1 to m
 if mj = 1; σ1j = V

 else
 while V ≠ ∅

 u = first component at V.
 for k = 1 to mj

 if σkj =∅; SC(k) = min (sciukj) i = 1,…, n, i ≠ u, i ∈ V (product i' is result of this minimum)
 else; SC(k) = scu′ukj. u′ is the last component which previously assigned to σkj.
 end

 end
 min_SC = min {SC} k = 1,…, mj.
 if min_SC is related to a machine with empty sequence vector (σkj);

 assign components i' and u to that sequence vector and delete them from V.
 else; assign component u at the end of σkj. Delete component u from V.
 end
end

 end
 V = non-decreasing order of components completion times at stage j.
end

Figure 4. Pseudo code for constructing a complete discrete solution.

3.3. Fitness Evaluation Function In order to
mimic the natural process of survival of the fittest,
a fitness value via a fitness evaluation function is
assigned to each member of the population. In our
problem, the fitness value of each chromosome has
been obtained by solving the corresponding NLP
model (Problem P1) presented in Figure 5. Note
that the chromosomes with a lower cost imply the
better solutions.
 Problem P1 is derived from problem P by
substituting xiℓkj values by corresponding ones.
Also, σkj(i) indicates the i-th component on
sequence vector of Mkj. This problem can be
solved by the following iterative procedure:

3.3.1. Iterative step Let F = 1, and solve the
corresponding linear program.

3.3.2. Iterative step Increase F by 1 and solve
the corresponding linear program for this new
value of F. If this model has no feasible solution,
stop; else, if the objective function for current
value of F (ZF) is less than this value for previous
F (Z), then set Z = ZF and T* = H/F, and go to the
next iteration.

3.4. Parent Selection The tournament
selection approach has been adopted for choosing
some parents [15]. It randomly chooses two
individuals from the parent pool, and then
chooses the fittest one if a random generated
value (r) is smaller than a pre-set probability
value ϕ (0.5 < ϕ < 1). Otherwise, the other one is
chosen. The unselected individual is returned to
the parent pool, and can be chosen again as a
parent. This process is repeated until the mating
pool is filled. We have also used the spouse
duplication method to duplicate and to select pairs
of chromosomes as a parent to undergo the
crossover operation [19].

3.5. Crossover Operator The main purpose of
the crossover operator is to exchange information
between randomly selected parent chromosomes
with the aim of producing better offspring. Based
on the permutation representation of solutions,
several crossover operators have been suggested
[20,21,3]. In this problem, we have used the
similar job 2-point order crossover (SJ2OX)
operator based on our initial experiments. This
crossover operator works as follows:

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 151

() () ()

()
()

() ()
()

()

()

()
∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−+∑
=

∑
−

=
∑
= −−

−

−∑
=

∑
=

∑
=

+
⎢
⎢
⎢

⎣

⎡

∑
=

∑
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+∑

=
∑
=

∑
=

−+∑
=

∑
=

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

n

1i
imbidih

n

1i

m

2j
1ji,bijbi.d1ji,h

m

2j

1jm

1k

kjn

1i 1jk,,i1jk,σp

2
i1jk,σd

m

2j

jm

1k

kjn

1i kj,ikjσp

2
ikjσd

 ikmσh.
mm

1k

kjn

1i km,ikmσp
ikmσd

3.ikmσd
2
T

A
m

1j

jm

1k

kjn

2i
kj,ikjσ,1ikjσsc

m

1j

jm

1k kj,1kjσ,kjnkjσ
sc

T
1 min Z

 (19)

()
()

() () 1jm1,...,km,2,...,j,1jk,Ji ;j,i1jk,σb
1jk,,i1jk,σp

i1jk,σT.d

1j,i1jk,σb

:oSubject t

−==−∈
−

≤
−−

−
+−−

 (20)

()
()

() () () () 1jm1,...,km,2,...,j,kjn2,...,i ;j,ikjσbkj,ikjσ,1ikjσs
kj,1ikjσp

1ikjσT.d

j,1ikjσb −===≤−−
−

−
+− (21)

() () jm1,...,km,1,...,j ;
kj,1kjσ,kjnkjσ

sj,1kjσb ==≥
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
(22)

()
()

() mm1,...,k,kmJi ; T
km,ikmσp

ikmσT.d

m,ikmσb =∈≤+ (23)

1F and HF.T ≥= (24)
j.i, 0ijbT, ∀≥ (25)

Figure 5. The NLP model for a given discrete solution.

First both selected parents are examined on a
position-by-position basis and the similar building
blocks of jobs are directly copied to the offspring.
Then, two random cut points are drawn and the
section between these points at each parent is
directly copied to one of the offspring. Finally, the
missing elements of each offspring are copied in the
relative order of the other parent so as to maintain
feasibility in the job permutation. Figure 6
represents a sample of this crossover operator.

3.6. Mutation Operator Mutation is a
background operator that produces spontaneous
random changes in the various chromosomes in

order to implement diversification strategy. A
simple way to achieve mutation is to alter one or
more genes. There are several mutation operators
for permutations such as swapping, inversion,
insertion and shift mutation [15]. In our HGA, the
swapping operator has been selected based on our
initial tests as a mutation operator. Figure 7
represents a sample of this mutation operator.

3.7. Local Improvement Procedure Our
local improvement procedure is based on an
iterative neighborhood search (NS) so that within
successive interchanges, a given offspring is
replaced with an elite (dominating) neighbor.

152 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

1 6 3 5 2 7 10 9 4 8

1 10 2 5 8 3 7 9 4 6

1 2 5 8 9 4

1 3 5 2 9 4

Parent 1

Offspring 1

Parent 2

Offspring 1

1 6 3 5 2 7 10 9 4 8

1 10 2 5 8 3 7 9 4 6

1 5 9 4

1 5 9 4

Parent 1

Offspring 1

Parent 2

Offspring 2

1 6 2 5 8 3 7 9 4 10

1 10 3 5 2 8 7 9 4 6Offspring 1

Offspring 2

1 6 3 5 2 7 10 9 4 8Parent 1

1 10 2 5 8 3 7 9 4 6Parent 2

Figure 6. Illustration of SJ2OX operator

Offspring

2 3 5 6 1 4 7

2 3 4 6 1 5 7

Parent

Figure 7. Illustration of swapping.

Among many definitions of NS [5,16], we have
adopted the insertion neighborhood procedure. By
this neighborhood structure, first two random
positions are selected (say x < y), then the
component x is removed and inserted at the initial
position of y, and components between x and y are
shifted by one unit to the left. Figure 8 shows an
example of this NS.

3.8. Population Replacement Chromosomes
for the next generation are selected from the
enlarged population. After the generation of
offspring via main GA operators (i.e., crossover
and mutation) and improvement using the
neighbourhood search procedure, the improved
offspring are added to the current population.
Then, n better chromosomes are chosen as the new
population from the enlarged population, where n
is the population size.

3.9. Termination Criteria The termination
criterion determines when GA will stop. In our

implementation we stop when pre-determined
number of generations, max_gen, has been executed
or when the algorithm has run for max_nonimprove
generations without improvement.

4. PROPOSED SIMULATED ANNEALING
ALGORITHM

SA is a random neighborhood search technique. A
standard SA procedure starts by generating an
initial solution. At each stage (temperature), the
new solution taken from the neighborhood of the
current solution is accepted as a new solution when
it has a lower or equal cost; otherwise it is accepted
with a probability depending on the difference
between the current and new solution, and the
current temperature. This temperature is reduced
periodically with a temperature reduction scheme,
so that it moves gradually from a relatively high
value to near zero.

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 153

2 3 5 6 1 4 7

7 3 6 1 4 5 4

Parent

Neighbor

Figure 8. Illustration of SJ2OX operator.

4.1. Initial Solution Generation The quality
of the initial solution has a major effect on the
efficiency of a SA algorithm. Also, the solution
space searched by HGA must be agreed with the
solution space searched by SA until these two
proposed meta-heuristics can fairly be compared
with each other. Therefore, the initial solution of the
SA is selected through the best solution generated
by the approaches presented in Section 3.1.

4.2. Evaluation Function To determine the
quality of each discrete solution, the NLP model
presented in Figure 5 has been applied.

4.3. Neighborhood Structure Based on
results of initial experiments, the insertion operator
has been used in the implementation of the SA. An
example of this operator has been shown in Figure 8.

4.4. Candidate List To improve the quality of
the final solution, on the best out of these four
candidate solutions has been selected: (1) the best
solution in the annealing processes so far, ∗

GS , (2)

the best solution at the specific temperature T, ∗
TS ,

(3) the current solution at the specific temperature

T, 0
TS , (4) and a randomly generated solution at

the specific temperature T, R
TS .

4.5. Temperature Reduction Mechanism
We have used linear cooling strategy: Tnew = Told ×
α, which α is the cooling rate.

4.6. Termination Criteria To increase search
speed of the SA algorithm, we have considered
three termination criteria. The first condition can
terminate the algorithm, and the two other

conditions can terminate the search process of the
algorithm in a specific temperature.

Condition 1. If the temperature reaches a final
predetermined temperature, the algorithm is
terminated.

Condition 2. If the number of times that the best

solution at a specific temperature, ∗
TS , is replaced

with the better solution, reaches a pre-set number,
NT, the search of the algorithm at that temperature
is terminated.

Condition 3. If the number of iterations at a
specific temperature exceeds a pre-set number,
Imax, the search process at that temperature is
terminated.
 The steps of proposed SA algorithm are stated
below:

Step 1. Initialization step

1.1. set the parameters such as, T, Tf, cooling

rate α, NT, Imax.
1.2. obtain initial solution ST

0 (from Section 4.3)
and set SG

* = ST
* = ST

0.
1.3. set numI = 0, numT = 0.

Step 2. Iteration step

2.1. while (T > Tf)
2.1.1. while (numI < Imax) and (numT < NT)
2.1.1.1. select a neighbor solution, ST

1
(Sections 4.3 and 4.4)

2.1.1.2. compute Δ = f(ST
1) – f(ST

0).
2.1.1.3. if Δ ≤ 0, set ST

0 = ST
1.

2.1.1.3.1. compute Δ = f(ST
1) – f(ST

*).
2.1.1.3.2. if Δ ≤ 0, set ST

* = ST
1 and numT =

numT + 1.
2.1.1.3.2.1. compute Δ = f(ST

*) – f(SG
*).

2.1.1.3.2.2. if Δ ≤ 0, set SG
* = ST

*.
2.1.1.4. else if Δ > 0, select a random variable

X ~ U (0,1);
if e-Δ/T > X, set ST

0 = ST
1.

2.1.1.5. set numI = numI +1.
2.1.2. set T = T × α and numT = 0, numI = 0.

Step 3. Return the solution found for SG

*.

154 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

5. COMPUTATIONAL EXPERIMENTS

To evaluate the efficiency of the proposed
algorithms, in terms of the solution quality and the
required computation time, some experiments have
been conducted. All of the experimental tests have
been implemented on a personal computer with an
Intel Pentium IV 1800 MHz CPU and all of the
proposed algorithms have been coded with
MATLAB 6.5. Moreover, Lingo 8.0 has been used
to solve the mixed zero-one non-linear models.
 Parameters of the proposed HGA after initial
tests have been adjusted as: population size:
pop_size = n, maximum number of generations:
max_gen = m × n, maximum number of generations
without improvement: max_nonimprove = round
(n/2), crossover probability: Pc = 0.8, mutation
probability: Pm = 0.2, and the tournament selection
parameter: ϕ = 0.7.
 Moreover, parameters of the proposed SA
after initial tests have been set as: initial
temperature: T = 100, final temperature: Tf = 1,
cooling rate: α = 0.9, number of times that the
current solution at a specific temperature is
replaced with better solution: NT = 3 or 5
depending on the size of the problem, and number
of iterations at a specific temperature: Imax = n.
 The parameters for each problem instance have
been randomly generated from the following
uniform distributions:

di ~ U(100, 1000), pikj ~ (5000, 15000), sikj ~ (0.01,
0.25),

hi1 ~ U (1, 10), A ~ U (10000, 20000)

Because processing at each stage has a value added
on components; hij values should be non-
decreasing with j. So, after random generation of
hi1 for each component i from a uniform
distribution between 1 and 10, other associated hij
values are determined by adding a randomly
generated number between [1,5] to hi,j-1. Also there
could be a correlation between sciukj and siukj
values. Therefore, for each randomly generated
siukj, its corresponding sciukj parameter has been
computed using the following equation:

sciukj = 15000 × siukj + 1000 × U (0,1).

Moreover, the numbers of parallel machines at

each stage are randomly set to 1 or 2. To evaluate
the performance of the solutions obtained via
proposed algorithms, we have compared the total
cost obtained by HGA and SA algorithms for each
problem instance, with an associated lower bound
(LB) in medium and large-size problems, and with
the solution obtained by LINGO for the small size
problems, respectively. We have calculated an
index λ = (TC-LB)/LB where TC is the total cost
of a problem instance obtained by each algorithm,
and LB is the associated lower bound cost. This
lower bound is obtained for each problem instance
by eliminating the components assigning and
sequencing constraints in problem P.
 In our computational experiments, we have
considered nine different problem sizes with 4, 5
and 10 components, and 2, 3, 5 and 10 production
stages. For each problem size, 20 problem
instances have been randomly generated. To
identify the superiority among the proposed
algorithms, we have divided our problem instances
into two parts: problem instances with 4 and 5
components, 2 and 3 stages (small-sized
problems), and with 5 and 10 components and 2, 5
and 10 stages (medium and large-sized problems).
For the small size problem instances, the solutions
of HGA and SA have been compared with the
Lingo’s solution. Moreover, for the medium and
large size problem instances, the quality of
solutions, CPU time and performance ratio λ
obtained by the HGA and SA have been compared
with each other. Table 1 shows the structure of the
test problems. Table 2 represents the results for the
small size problem instances, and Table 3 gives
these results for medium and large size problem
instances.
 In summary, we have made the following
observations from our numerical experiments:

1. The results shown in Table 2 indicate which

for the small size problem instances, the
solutions obtained by the proposed HGA
and SA are 67 and 62 times better than the
Lingo’s solutions. Also, in average, the
solutions quality obtained by the HGA and
SA are 9.68 and 8.01 percent better than the
solutions quality obtained by the Lingo,
respectively. Moreover, the results shown in
Table 2, indicate the superiority of proposed
algorithms with respect to both CPU time

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 155

TABLE 1. Structure of the Test Problems.

Problem Size

Problem
Set

Number of
Components

Number of
Stages

Number of Machines at
Each Stage

Number of
Integer

Variables

Total
Number of
Variables

Number of
Constraints

Number of
Nonlinear

Constraints

1 4 2 2-1 49 58 169 30

2 4 3 2-1-1 65 78 229 42

3 5 2 2-1 76 87 326 47

4 5 3 1-1-2 101 117 441 67

5 5 5 1-1-2-2-1 176 202 764 112

6 5 10 1-1-2-1-2-2-1-2-1-2 376 427 1618 227

7 10 2 2-1 301 322 2701 192

8 10 5 2-1-1-2-1 701 752 6329 472

9 10 10 2-2-1-1-2-1-2-1-1-2 1501 1602 13493 952

TABLE 2. Results of the Small Size Test Problems.

Problem
Size

(n×m)

The Number of
Times Which

the HGA’s
Solution was

Better Than the
Lingo’s Solution

The Number of
Times Which the
SA’s Solution is
Better Than the

Lingo’s Solution

The Average
Percentage of

Decrease in the
Total Cost of

HGA’s Solution
Compared to

Lingo’s Solution
(%)

The Average
Percentage of

Decrease in the
Total Cost of SA’s
Solution Compared
to Lingo’s Solution

(%)

Average
CPU Time
for Lingo

(In
Seconds)

Average
CPU Time
for HGA

(In
Seconds)

Average
CPU

Time for
SA (In

Seconds)

4 × 2 16 14 6.94 5.62 2348.75 19.9 33.92

4 × 3 17 16 10.42 8.6 4878.07 47.43 80.26

5 × 2 16 15 8.27 6.95 4952.13 50.86 87.59

5 × 3 18 17 13.12 10.9 8356.5 137.14 203.86

156 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

TABLE 3. Results of the Mdium and Large Size Test Problems.

Problem Size
(n×m)

The Average
Performance Ratio

of the HGA (%)

The Average
Performance Ratio

of the SA (%)

The Average CPU
Time of HGA (In

Seconds)

The Average CPU
Time of SA (In

Seconds)

Comparison of the
SA Versus HGA in

Percent (%)

5 × 5 11.51 13.17 331.43 445.28 12.6

5 × 10 15.7 18.84 1364.33 1748.23 16.66

10 × 2 14.52 16.43 73.5 126.08 11.62

10 × 5 23.65 29.11 595.01 767.06 18.75

10 × 10 32.26 39.74 2384.99 4077.5 18.82

 and the solution quality when compared to
Lingo’s solutions. It is noted that Problem P
is a mixed integer non-linear program
(MINLP). So, in finding an optimal solution
by Lingo 8.0 solver, the solver traps in a
local optimal solution in most of the time
even in small-sized problems. On the other
hand, because of good ability of the
proposed HGA and SA algorithms in both
local and global search, in the majority of
test problems, the solutions obtained by
heuristic methods are better than the
corresponding solution found by Lingo 8.0.

2. For the medium and large size problem
instances, performance ratio λ have been
calculated and used as a measure to compare
the proposed algorithms. In Table 3, we
have compared the performance of the
proposed algorithm with each other. The
results indicate that the qualities of HGA’s
solutions in average are 15.69 % better than
the quality of SA’s solutions.

3. As it is mentioned before, the permutations in
HGA are converted to complete discrete
solutions via a proposed heuristic (see Section
3.1). This heuristic considers the setup costs,
demand rates and the processing times when
assigning and sequencing of components to
machines. Computational results indicate
which is an effective constructive heuristic in
the context of the problem.

6. CONCLUSION REMARKS

In this paper, the common cycle approach has been
used to solve the economic lot and delivery
scheduling problem, in flexible flow lines with
unrelated parallel machines, and sequence
dependent setup times/costs over a finite horizon
planning. First, a new mixed zero-one nonlinear
model is developed to solve the problem to
optimality. Providing an optimal solution is not a
practical approach especially for medium and large
size problems. Thus, two efficient meta-heuristic
(HGA and SA) have been developed to obtain near
optimal (or ideally optimal) solutions in a
reasonable time.
 In our HGA, the following approaches have
been used for hybridization: incorporating simple
and effective heuristics into initialization step of
GA to generate a good initial population,
developing a new simple heuristic to convert a
permutation to a complete discrete solution, and
incorporating an efficient neighborhood search
method to the main GA loop of recombination and
selection as a local optimizer.
 Furthermore, in our SA, for improving the
solution quality and efficiency of the algorithm, a
specific candidate list for selecting a good
neighbor has been developed. Also, to increase the
searching speed, some additional termination
criteria have been used.
 Computational results indicate that due to non-

IJE Transactions A: Basics Vol. 21, No. 2, June 2008 - 157

linearity nature of the original Problem P, the
quality of solutions generated by the heuristic
methods are usually better than Lingo’s solutions
even in small-sized problems. Moreover, when
comparing two proposed HGA and SA algorithms,
the HGA outperforms the SA algorithm with
respect to both solution quality and computation
time especially in large-size problem instances.
 The problem considered here can be extended
in different ways. Among them, we suggest the
following ones as possible directions for further
studies:
 Considering the Problem P under multiple-cycle
(i.e., basic period) cyclic approach and allowing
the different items having different cycle times in
order to find solutions with lower total cost.
 Extending the current model to more complex
supply chains, for example, a multiple supplier,
multiple assembler case in which, each assembler
could receive different items from different
suppliers.

7. ACKNOWLEDGEMENT

This research has been supported by Tehran
University which is acknowledged.

8. REFERENCES

1. Handfield, Jr. R. B. and Nichols, E. L., “Introduction to

Supply Chain Management”, Prentice-Hall, Upper
Saddle River, New Jersey, U.S.A., (1999).

2. Eilon, S., “Scheduling for Batch Production”, Institute
of Production Engineering Journal, Vol. 36, (1957),
549-579.

3. Torabi, S. A., Fatemi Ghomi, S. M. T. and Karimi, B.,
“A Hybrid Genetic Algorithm for the Finite Horizon
Economic Lot and Delivery Scheduling in Supply
Chains”, European Journal of Operational Research,
Vol. 173, (2006), 173-189.

4. Ouenniche, J. and Boctor, F. F., “Sequencing, Lot
Sizing and Scheduling of Several Components in Job
Shops: The Common Cycle Approach”, International
Journal of Production Research, Vol. 36, No. 4,
(1998), 1125-1140.

5. Ouenniche, J., Boctor, F. F. and Martel, A., “The Impact
of Sequencing Decisions on Multi-Item Lot Sizing and
Scheduling in Flow Shops”, International Journal of
Production Research, Vol. 37, No. 10, (1999), 2253-
2270.

6. Hahm, J. and Yano, C. A., “The Economic Lot and
Delivery Scheduling Problem: The Single Item Case”,
International Journal of Production Economics, Vol.
28, No. 2, (1992), 235-252.

7. Hahm, J. and Yano, C. A., “The Economic Lot and
Delivery Scheduling Problem: The Common Cycle
Case”, IIE Transactions, Vol. 27, (1995a), 113-125.

8. Hahm, J. and Yano, C. A., “The Economic Lot and
Delivery Scheduling Problem: Models for Nested
Schedules”, IIE Transactions, Vol. 27, (1995b), 126-
139.

9. Khouja, M., “The Economic Lot and Delivery-
Scheduling Problem: Common Cycle, Rework, and
Variable Production Rate”, IIE Transactions, Vol. 32,
(2000), 715-725.

10. Jensen, M. T. and Khouja, M., “An Optimal Polynomial
Time Algorithm for the Common Cycle Economic Lot
and Delivery Scheduling Problem”, European Journal
of Operational Research, Vol. 156, No. 2, (2004), 305-
311.

11. Vergara, F. E., Khouja, M. and Michalewicz, Z., “An
Evolutionary Algorithm for Optimizing Material Flow
in Supply Chains”, Computers and Industrial
Engineering, Vol. 43, (2002), 407-421.

12. Ouenniche, J. and Bertrand, J. W. M., “The Finite
Horizon Economic Lot Scheduling Problem in Job
Shops: The Multiple Cycle Approach”, International
Journal of Production Economics, Vol. 74, (2001), 49-
61.

13. Torabi, S. A., Karimi, B. and Fatemi Ghomi, S. M. T.,
“The Common Cycle Economic Lot Scheduling in
Flexible Job Shops: The Finite Horizon Case”,
International Journal of Production Economics, Vol.
97, (2005), 52-65.

14. Hsu, W., “On the General Feasibility Test for
Scheduling Lot Sizes for Several Products on One
Machine”, Management Science, Vol. 29, (1983), 93-
105.

15. Cheng, R. and Gen, M., “Parallel Machine Scheduling
Problems using Memetic Algorithms”, Computers and
Industrial Engineering, Vol. 33, (1997), 761-764.

16. Taillard, E., “Some Efficient Heuristic Methods for the
Flow Shop Sequencing Problem”, European Journal of
Operational Research, Vol. 47, (1990), 65-79.

17. Wang, H. F. and Wu, K. Y., “Hybrid Genetic Algorithm
for Optimization Problems with Permutation Property”,
Computers and Operations Research, Vol. 31, No. 14,
(2004), 2453-2471.

18. Brah, S. and Loo, L. L., “Heuristics for Scheduling in a
Flow Shop with Multiple Processors”, European
Journal of Operational Research, Vol. 113, (1999),
113-122.

19. Luu, D. T., Bohez, E. J. and Techanitisawad, A., “A
Hybrid Genetic Algorithm for the Batch Sequencing
Problem on Identical Parallel Machines”, Production
Planning and Control, Vol. 13, No. 3, (2002), 243-252.

20. Ruiz, R., Maroto, C. and Alcaraz, J., “Solving the Flow
Shop Scheduling Problem with Sequence Dependent
Setup Times using Advanced Meta-Heuristics”,
European Journal of Operational Research, Vol. 165,
No. 1, (2005), 34-54.

158 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics

21. Ruiz, R. and Maroto, C., “A Genetic Algorithm for
Hybrid Flow Shops with Sequence Dependent Setup
Times and Machine Eligibility”, European Journal of
Operational Research, Vol. 169, No. 3, (2006), 781-

800.
22. Gen, M. and Cheng, R., “Genetic Algorithms and

Engineering Design”, Wiley, New York, U.S.A.,
(1997).

