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Abstract   This paper introduces a model to make decision on the maintenance of a mechanical 
component subject to condition monitoring. A stochastic model is used to determine what 
maintenance action should be taken at a monitoring check and the follow up inspection times. The 
condition of component has a stochastic relation with measurements. A new state space model is 
developed and used, to predict the hazard rate and condition monitoring measurements, to indirectly 
asses the hazard rate of the system. The Proportional Covariate Model (PCM) which was proposed by 
Yong Sun (2004) was also used to develop the model. The known Kalman Filter was employed to 
derive the probability of the conditional hazard rate, which is predicted and updated for condition 
monitoring. The maintenance is being performed based on the estimated hazard rate so that the 
desired level of reliability is achieved, in a cost effective approach. This approach is validated by 
using the experimental data obtained from gearboxes which ran and failed on the Mechanical 
Diagnostic Test Bed (MDTB) at the Penn State University Applied Research Laboratory. 
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براساس . كند راي پايش شرطي است ارائه مياي كه دا گيري را براي قطعه اين مقاله يك مدل تصميمچكيده       

ها به  پايش. نمود توان نوع اقدام نگهداري و تعميرات لازم و زمان بازرسي بعدي را معين مدل ارائه شده مي
فضا ساخته شده و به منظور پيش بينی -حالتيك مدل . وضعيت قطعه و در يك شرايط احتمالي قرار دارند

شده بر پايه  مدل طراحي.  های لازم برای تعيين شرايط به کار برده شده استاندازه گيرینرخ خطر و مقدار 
از فيلتر كالمن براي استخراج احتمال شرطي نرخ خطر با توجه به پايش انجام . باشد مي) ٢٠٠٤( مدل يونگ

لوب و نگهداري و تعميرات ناشي از مدل هاي اين مقاله با هدف ايجاد پايايي مط. ه استشده، استفاده گرديد
مدل با اطلاعات واقعي برخي قطعات مكانيكي كه از مراجع رسمي و . گردند هاي قابل قبول تعيين مي هزينه

 .است  سنجي شده اخذ گرديد، اعتبار) مركز تحقيقات دانشگاه پن(المللي  معتبر بين
 
 

1. INTRODUCTION 
 
Production systems have critical components and 
their failure may lead to total shut down of a whole 
production line, which will result in a substantial 
loss. The failure of mechanical components may 
occur because of gradual deterioration, that comes 
from fatigue, like crack propagation, erosion and 
tool blunting. In addition, these kinds of failures in 
mechanical systems decrease safety and therefore 
cause more irreparable damages. The importance 
of preventive maintenance, whose aim is to repair 

or replace the components before complete failure, 
is notable. 
     If deterioration level of components correlated 
strongly with a control parameter that shows 
system's state, it is better to make a decision about 
preventive maintenance operations, based on 
system's condition which is called, Condition 
Based Maintenance (CBM). 
     In general CBM has two categories: Direct CBM 
and Indirect CBM. In CBM the decision about 
maintenance time and operation is made, based on 
the measurements of control parameters at 
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inspection points. In direct CBM, the control 
parameter is the original state of the component and 
shows its depreciation, so that, it can be measured 
directly, like the thicknesses of a brake pad. 
Sometimes it is not possible to measure the amount 
of depreciation during the operation. In this case 
some variables which are stochastically correlated 
with the amount of depreciation are measured. For 
example, the cutting forces, vibration or 
temperatures are measured to estimate the state of a 
machining tool in operation. In most of CBM 
models, a decision is made based on the thresholds 
which have been defined for control parameters. 
Maintenance should be carried out before functional 
failure, when these parameters exceed a defined 
limit. In many instances no clear set of limits or 
rules have been developed, to indicate whether or 
not a failure process is underway and how much 
time is available before the component is no longer 
able to perform one or all of its functions. In Wang 
and Christer’s model [1] the follow up inspection 
time is determined with the obtained data about the 
conditions, regarding critical values for the system's 
state. Based on their models, some rules and 
policies for inspection, repair or replacement were 
proposed and because of the system's diversity, they 
checked the mechanical parts of the proposed 
models. In this paper, the proposed model and the 
applied rules were tested on gearboxes as an 
important mechanical system in car industries. All 
previous models in the literature usually 
concentrated on periodic inspection. Chelbi, et al [2] 
presented a mathematical model for optimizing 
expected total cost in order to determine optimal 
inspection time interval. Barbara, et al [3] have used 
a dynamic method to make a decision about 
maintenance operation of a system with two series 
unit and fixed inspection intervals. The aim was 
minimizing the expected total cost. 
     Grall [4] developed a model for determining 
inspection points, based on some critical 
depreciation level. Another method is discussed by 
Chen, et al [5], in which the optimum amount of 
critical threshold for depreciation is determined for 
different values of the inspection rate, by using 
Semi Markov Process. When indirect information is 
involved such as vibration monitoring, or covariates 
such as the oil temperature of an engine, the 
ordinary approach is to model the hazard rate. One 
of the most widely used methods for the study of the 

effect of covariates is the Proportional Hazard 
Model (PHM). The basis of the model is the simple 
assumption that the hazard rate is affected in a 
multiplicative way by a risk factor. In all, condition 
monitoring models, in which PHM is used, the 
covariates are assumed to follow a Markov process. 
In most of these models the goal is taking a critical 
threshold for the hazard rate in order to minimize 
expected cost and the inspections are taken 
periodically [6-9]. Wang, et al [10] developed a 
general approach in modeling indirect CBM to 
determine periodic inspection times for 
maintenance, based upon the condition monitoring 
and preventive maintenance information obtained 
by stochastic filtering theory. Wang, et al [11] 
provided a CBM model for a factory in which the 
decision was made based on the residual life time, 
estimated at periodic inspection times. They 
considered the maintenance history and the expert 
judgment as indirect information. The hazard rate 
was modeled as a continuous stochastic process. 
     In this paper an indirect condition monitoring 
decision model is proposed for mechanical 
components, which can be applied in different 
conditions, even when the data on the history of 
failure is limited. 
     Proportional Covariate Model (PCM) which 
was proposed by Sun, et al [12] is used to define a 
relationship between the covariates and the hazard 
rate. A state space model described for predicting 
the hazard rate. Kalman filter is used to estimate 
and update the hazard rate according to condition 
monitoring information obtained, at inspection 
times; this approach is discussed in Section 4.2. A 
decision model is proposed based on the estimated 
hazard rate to determine what maintenance action 
to take and when the next measurement shall be 
taken, in order to achieve a desired level of 
reliability for a cost effective way. This model can 
be used for mechanical systems whose hazard rates 
depend on deterioration. 
     To illustrate the model and modeling process in a 
non-maintenance case, a numerical example based 
on the experimental data was taken from a gearbox 
ran to failure on the Mechanical Diagnostic Test 
Bed (MDTB) at Penn State University Applied 
Research Laboratory (ARL) is presented. 
     Some approaches were introduced to avoid 
unnecessary maintenance based on condition 
monitoring by Jardine, et al [13]. 
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They used mathematical models to optimize the 
related targets. Also, Zhou, et al [14] considered a 
predictive model for condition monitoring on 
mechanical system especially on monitored 
mechanical system. As a new approach for robust 
detection on gearbox, Zhan et al [15] developed a 
mathematical and statistical model that used 
previous data and autoregressive concepts. 
 
 
 
2. FAILURE PREDICTION APPROACH FOR 

MECHANICAL SYSTEMS 
 
Accurate estimation and prediction of the hazard 
rates of mechanical systems are critical for 
predictive maintenance activities. The failure 
prediction of mechanical systems can be conducted 
in two ways: fault diagnosis from condition 
monitoring signals and statistical analysis of the 
data on its history of failures. 
     Fault diagnosis techniques mainly focuses on 
feature extraction and defects detection, using 
different signal processing techniques and pattern 
recognition. In these methods, different patterns 
should be recognized due to different failure 
modes, based on the operator's job training, hence 
they can not be used in critical applications. 
     The failure of a mechanical component with a 
specific failure mode is usually defined as inability 
to perform its predefined function. Unlike routine 
failures in electrical components, the failure of a 
mechanical component usually occurs more 
gradually rather than being a sudden occurrence. 
This feature enables the quantification of the hazard 
rate of mechanical components using deterioration 
indicators such as the increment of crack's depth or 
the degree of misalignment. The probability of 
failure of such systems is dependent on two items: 
the initiation of the failure, and its propagation. 
     In this paper a prognostic approach that takes 
into account both of these events for estimating the 
hazard rate is proposed. 
 
 
 

3. PROPORTIONAL COVARIATE MODEL 
(PCM) 

 
Condition monitoring data are commonly termed 

as covariates in reliability theory and can be 
classified into two categories [12]: 
 
• Environmental covariates Ze(t). The changes 

of these covariates will cause the 
characteristics of the hazard to change. 

• Response covariates Zr(t). The changes of 
these covariates are caused by changes of 
the system's hazards. 

 
The majority of condition monitoring data can be 
classified as response covariates. These are 
symptoms that reflect the deterioration of a system. 
     The proportion hazard model (PHM), which 
was introduced by Cox [16] and was developed to 
predict system's hazard with a combination of 
historical failure data and on-line condition 
monitoring data. The hazard rate at time t; h(t) of 
an item is modeled as a product of the baseline 
hazard function ho(t) and a covariate function 
ψ(Ze(t),γ) as follows: 
 
H(t) = ho(t) ψ (Ze(t),γ) (1) 
 
PHM needs sufficient failing data to estimate the 
baseline function and to weight parameters for 
each covariate. The effectiveness of PHM is 
significantly reduced, where the data on the history 
of its failure is insufficient. In PHM, it is assumed 
that covariates are explanatory variables and 
hazard is the response variable. However in 
practice, response covariates are often monitored 
to determine the state of the system and hence their 
responses vary and so the covariates are 
explanatory variables. PHM is not a perfectly 
suitable and satisfactory model for this scenario as 
Moore, et al [17] have demonstrated. 
     In order to predict the hazard rate of a 
mechanical system when the history of failure is 
not available, the PCM was proposed by Sun, et al 
[12]. 
     In PCM, a function of covariates ψ(Zr(t)) is 
expressed as follows: 
 
Ψ(Zr (t)) = C (t).h (t) (2) 
 
Where Zr(t) is the covariate function and C(t) is the 
baseline covariate function and both of them are 
usually time dependent. 
     The PCM represented by Equation 2 indicates 
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that the covariate of a system may change, based 
on the changes of hazard rate. 
     C(t) is typically estimated from historical 
failure data and even in the case of sparse or even 
zero historical data, it can be determined according 
to anecdotal experience of the operators of a plant 
and/or using supplementary information such as 
data from accelerated life tests. 
     PCM is used to update the hazard function of a 
system. The changes of this hazard function are 
independent of the covariate and hence the updated 
hazard function can be used to predict the failure 
time. 
     In this paper a stochastic model based on the 
well known Kalman filter is described, so that the 
relationship between the covariates and the hazard 
rate is determined by PCM in a state space model. 
 
 
 

4. KALMAN FILTER AND THE STATE 
SPACE MODEL 

 
As mentioned in the previous sections, the focus 
will be on the hazard rate, rather than the 
distribution function, to formulate the behavior of 
the mechanical system. 
     In this paper the hazard rate is considered to be 
partially stochastic. There is some random 
variable, η(t), which contributes to the hazard rate 
at time t. Wang, et al [11] developed a CBM model 
based on the same assumption that the hazard rate 
is stochastic and can be described by a Gamma 
process. 
     The fault propagation of mechanical systems is 
sensitive to varying environmental and operational 
conditions. Besides a common understanding of 
such systems integrity, that is increased 
deterioration and the likelihood of failure have 
positive correlation [18,19]. Therefore it is 
appropriate to consider stochastic models in hazard 
prediction. 
     Given the monitoring information available to 
date, the key concern is how to predict the hazard 
rate, as a probabilistic estimation. The Kalman 
filter is employed to provide an optimal solution to 
the problems of prediction and updating. 
     The Kalman filter is a set of mathematical 
equations that provides an efficient computational 
(recursive) means to estimate the state of a process, 

in a way that minimizes the mean of the squared 
error [20]. 
     This filter is carried out in two steps. The first is 
to form the optimal prediction of the state variable, 
h(t), The second is to incorporate the new 
observation into the estimator of the state variable 
using updating equations. 
     Based on the estimated and predicted hazard 
rate, an online model is developed to achieve the 
optimal CBM point. 
 
4.1. The State Space Model   It is supposed 
that the increments of h(t) are described by 
stochastic model. In this section we formulate the 
correlation between the condition monitoring 
measurements, covariates. The hazard rate will be 
formulated to establish a state space model. 
     The structure of such a space model is: 
 
Z(ti) = C(ti).h(ti) + ξ(ti)                            i = 1,2,...,n 
 (3) 
 
h(ti) = A(ti).h(ti-1) + η(ti)                         i = 1,2,…,n 
 (4) 
 
Z(ti): The Covariate, Condition at Time ti 
A(ti) and C(ti): The Scalar Coefficients at Time ti, 

Which Relates the h(ti) to Z(ti) 
h(ti): The Hazard Rate at Time(ti) 
ti: The Inspection Point. 
 
At discrete inspection point, a new measurement 
obtained and the relation between this covariate 
and the hazard rate is described via Equation 3, 
which is called measurement equation. 
     ξ(ti) is the disturbance at time ti which is 
assumed to follow N(0,R(t)), where R(t) is the 
covariance of the disturbances and in our case, is 
assumed as time varying. 
     Equation 4 is a transition equation which 
describes the stochastic behavior of h(t) between 
two measurement points ti and ti-1. 
     A(ti) relates the unobservable h(ti) to the 
previous one, h(ti-1). 
     η(ti) is the stochastic part of the equation which 
was introduced before and is assumed to follow 
N(0,Q(t)). It should be noted that all disturbances 
are uncorrelated. 
     As mentioned before because of the common 
property of deterioration increments of mechanical 
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components a very suitable function for their 
hazard rate is Weibull, which has the form: 
 
h(t) = αβ.β(βt)β−1 (5) 
 
With β > 0 and α > 0 called the shape and scale 
parameter, respectively. In industrial applications, 
time usually represents working age. The shape 
parameter is related to the nature of failure, while 
the scale parameter is related to the size and 
operational conditions of the component. 
     Therefore it is reasonable to assume that similar 
components should have approximately the same 
shape parameter as a general characteristic. 
     There are also some references to achieve this 
parameter for different components, like the 
manufacturers of the components. 
     Based on this reality, A(t) can be specified in 
transition equation in the form: 
 
A(ti) = (ti/ti-1)β-1 (6) 
 
Where ti and ti-1 are two simultaneous 
measurement times. 
     The relationship between the covariate and the 
hazard rate in Equation 3 is determined based on 
the proportional Covariate Model (PCM), that is: 
 
Z(t) = C(t).h(t) 
 
Where C(t) is the baseline covariate function. 
 
4.2. Prediction and Updating   h^-(ti) is defined 
to be a priori hazard estimate at time ti given 
knowledge of the stochastic behavior prior to 
measurement point ti, and h^(ti) to be a posteriori 
hazard estimate at time ti based on previous 
measurements. 
     So the priori and posteriori estimate errors are 
 
ē(ti) = h(ti)-h^-(ti) 
 
e(ti)= h(ti)-h^-(ti) (7) 
 
Then priori and posteriori estimate error co 
variances are: 
 
P¯(ti) = E[ē(ti)2] 
 
P(ti) = E[e(ti)2] (8) 

The estimator of Kalman filter provides an optimal 
solution to the problems of prediction and 
updating. 
     At time ti, the state of knowledge about h(ti) is 
embodied in the following probability statement 
for h(ti). 
 
(h(ti)⏐Z(ti)) ∼ N(h^(ti),P(ti)) (9) 
 
Where 
 
Z(ti) = (Z(ti),Z(ti-1),…,Z(t1)) 
 
h^(ti) is the posteriori estimate of h(ti) and p(ti)is 
the covariance which is defined by Equation 8. A 
recursive procedure commences at time t = 0 by 
choosing h^(t0). 
     p0 is the best estimates of the mean and 
covariance of the hazard rate at time t0. 
 
h^-(ti) = A(ti).h^(ti-1) 
 
P¯(ti)=A(ti).p(ti-1) + Q(ti) (10) 
 
h^(ti) is estimated in two stages: 
 
• Prior to observing Z(ti): 
 
h(ti)⏐Z(ti-1) (11) 
 
• After observing Z(ti): 
 
h(ti)⏐Z(ti) (12) 
 
These are affected by means of prediction and 
updating stages. 
     Prediction, At time ti-1, our estimate for h(ti)is 
governed by the transition Equation 4, that is: 
 
(h(ti)⏐Z(ti-1)) = (A(ti).h(ti-1) + η(ti)η⏐Z(ti-1)) (13) 
 
Because of the well known result for normal 
probability distributions and due to the fact that the 
covariances in Equation 3 and 4 are normally 
distributed, it can be found that [1]: 
 

))i(tP,)i(t
-

ĥ(N~))1-i(tZ)it((h −  

 
Updating, The second stage, namely updating, is to 
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re-evaluate h(ti)⏐Z(ti-1) given Z(ti). The updating 
equation is essentially  
 
(h(ti)⏐Z(ti)) = ((h(ti)⏐Z(ti-1),Z(ti)) (14) 
 
The error between the actual observed condition at 
time ti and its value predicted at time ti-1 is: 
 

)i(tẐ)iZ(t)ie(t −−=  (15) 

 
Where from Equation 3, 
 

)i(tĥ ).iC(t)i(t-Ẑ −=  (16) 

 
The above quantity is the estimated of Z(ti). Using 
results in multivariate statistics and standard 
properties of normal distribution, it could be 
resulted that: 
 
(h(ti)⏐Z(ti)) = ((h(ti)⏐e(ti),Z(ti-1)) (17) 
 
h(ti)⏐e(ti),Z(ti-1)) ∼ 
 
N(ĥ(ti) + K(ti),(Z(ti)-C(ti).h^-(ti)),P(ti)) (18) 
 
Where 
 

))iC(t )ik(t)(1i(tp)ip(t ⋅−−=  
 
K(ti): the gain or blending factor that minimizes 
the posteriori error covariance (8). 

     The difference ))i(tĥ . )iC(t)i(Z(t −−  in (18) is 
called the measurement innovation, or residual. 
The residual reflects the discrepancy between the 
predicted measurement, C(ti).h^-(ti), and the actual 
measurement Z(ti). 
 
4.3. Estimation of the System Parameters   
To apply the state space model, values of 
parameters are required. 
     The classical theory of maximum likelihood of 
observed events is used for estimation. In this 
approach all events are independent and identically 
distributed. However, in our case the observations 
are not independent and a conditional probability 
density function is used to formulate the joint 

density functions as: 
 

L = ∏
=

n

1i
p (Z(ti)⏐Z(ti-1)) (19) 

 
Where P(Z(ti)⏐Z(ti-1)) denotes the pdf of Z(ti) 
conditional on the information set at time ti. 
 
1 ≤ i ≤ n. 
 
Since at time t, the estimate Z¯(ti) is known, it is 
resulted as before 
 
(Z(ti)⏐Z(ti-1)) = (e(ti)⏐Z(ti-1)) (20) 
 
Further, it can be shown that 
 

))iF(tN(0,~))1iZ(t)i(e(t −  (21) 
 
Where: 
 

)iR(t)i(tP ).i(t2C)iF(t +−=  (22) 
 
It follows that the log likelihood function for the 
observed covariates based upon the multivariate 
normal distribution is given by: 
 

)i(t1F . )it(2e
n

1i2
1)i(tFlog

n

1i2
1

)π2(log
2
ntLlog

−

=
∑−

=
∑

−−=−

 (23) 

 
Maximizing in terms of unknown parameters, 
Equation 23 will give the estimated values of 
these parameters. It is noted that the likelihood, 
Equation 23, is very unstable and produce a large 
variance in parameter estimates. Christer, et al [7] 
have resolved this problem with introducing just 
one actual measure of the state variable. 
     However, in our case the state variable is the hazard 
rate. In this case the problem has been observed to be 
resolved by enforcing two limitations and maximizing 
Equation 23 subject to these limitations. 
     Mechanical components have approximately the 
same shape parameter as a general characteristic, so 
bounds can be determined for this parameter. 
     Also, the reliability of the component should be 
at neighborhood of failure time, so with due 
attention to the relationship between the hazard 
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rate and the reliability, the area under the obtained 
h(t) should reflect reliability. 
 
 
 

5. THE DECISION RULE 
 
In this section, the decision rule is developed. The 
proposed rule has a preventive approach for 
maintenance planning. It is assumed maintenance 
has to provide the right Reliability of production 
equipment (or system) and give an economic value 
to the maintenance result. In most production 
processes there are critical components which their 
failure may result in substantial costs. In these 
cases, the down time cost is much greater than the 
costs of maintenance, then the primary objective 
will achieve high reliability. 
     A decision model is developed to aid in 
choosing, the best maintenance option and a follow 
up time to inspect, at each inspection time so that a 
predefined level of reliability is achieved in a cost 
effective way. This is a dynamic condition based 
maintenance model. It is assumed that failure is 
detected instantaneously upon a failure and the 
component is renewed and the process of condition 
monitoring is restarted. 
     At each monitoring check, a decision is made 
based on the latest condition monitoring obtained, 
where permitted actions are: 
 
• To leave the unit as it is (a = 0) 
• To carry out preventive maintenance on the 

unit with a specific level of efficiency ε. 
 a = ε, 0 < ε < 1 
• To replace the unit with an identical new item 

immediately, a = r (a is a maintenance action 
index) 

 

The next best inspection point is determined by the 
action taken. 
     Assuming that the unit monitored, is still 
operative at the i'th monitoring check time ti, based 
on the estimated hazard rate h^(ti), an estimate of 
cumulative hazard rate from ti to ti + Δt is given by: 
 

)i(tĥ1βtβ

)βit
βΔt)i((t

)dxi(tĥ1β)
t

xt(
Δt

0

)tΔi(tĤ

×
−×

−+
=×−+

∫

=+

 (24) 

and an expected reliability at time ti + Δt is 
approximately given by 
 

)Δt)i(tĤexp()Δti(tR +−≈+  (25) 
 
Since the primary objective is achieving high 
reliability, the next inspection time is defined in 
such way, that the expected reliability is greater 
than or equal to a desired level. 
     Assuming that α denotes the desired level of 
reliability, then we have: 
 

) α)Δt i t(R̂(infΔt ≥+=∗  (26) 
 
Where Δt* is an optimal period from the current 
time, at the end of which, the next inspection should 
be done. Because of the dynamic updating nature of 
condition monitoring only the expected cost per unit 
time within a period from current time ti to 
     ti + Δt is considered. Let new definitions for cost: 
 
Ci: The average cost per monitoring  
Cf: The average cost of a failure replacement 
CR: The average cost of a preventive replacement  
Cp(ε): The average cost of a preventive maintenance 

with efficiency of ε. 
 
Denote that CR and Cp(ε) << Cf 
     The expected cost per unit time, given no 
preventive maintenance at time ti and the next 
inspection at ti + Δt, is determined by: 
 

Δt)ΔtiR(tdx
X

x))iR(t(1
(x)

Δt

0

Δt)iR(t .repp .pcΔt))iR(t(1 .fcΔt)i.R(tic

Δt)(0ECT

++
∂

+−∂
∫

+++−++

=

 

 (27) 
 
Where 
 
Prep = P(h(ti + Δt) > h*(ti + Δt)) 
 

βΔt)i(tβ)ptΔti(t

1βΔt)i(t β. .lnR
Δt)i(th

+−++

−+∗−
=+∗  (28) 

 
If a preventive maintenance is undertaken at ti 
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Figure 1. The kurtosis of the residual signal for test run 7. 

(Immediately after monitoring check), the 
estimated hazard rate which should be used in 
Equation 24 is: 
 

ε))(1i(tĥ)i(tĥ −=+  (29) 
 
ε is the influence of preventive maintenance and if 
ε = 0 maintenance is ineffective and if ε = 1 the 
maintenance is perfect and the hazard rate will 
reduced to zero. 
     In this case the expected cost is determined by: 
 

Δt)ΔtiR(tdx
X

))xit(R(1
(x)

Δt

0

Δt)it(.Rrep.ppcΔt))it(R.(1fc)Δti(t.RiCPc

Δt)(εECT

++
∂

+−∂
∫

+++−+++
ε

=

 

 (30) 
 
The optimal next inspection time is computed by 
maximizing the efficiency value })Δt(εE,Δt)(0E{  
describing in the following equations, subject to 
Equation 26. 
 

Δt)(0ECT
Δt)iR(t

Δt)(0E
+

=  

 
and 
 

Δt)(εECT

Δt)iR(t
Δt)(εE

+
=  (31) 

 
The component will be replaced if Δf * to be 
smaller than or equal to the time needed for 
preventive replacement preparation. 
 

ptΔt ≤∗  (32) 

 
In other words, preventive replacement is taken 
when Equation 26 is cancelled by Equation 32. 
 
 
 

6. NUMERICAL RESULTS 
 
In this section a numerical result is presented to 

predict the hazard rate based on a proposed model. 
The data used here is from three gearboxes run to 
failure on the Mechanical Diagnostic Test Bed 
(MDTB) at Penn State University Applied 
Research Laboratory (ARL). This source was 
selected after some negotiation with two car 
producing research centers in Iran. ARL is one of 
the reference laboratories for mechanical systems 
data in the world. 
     The gearboxes were run at 540 in lb torque for 
the first 96 hours of each test and overloaded 
during the tests to accelerate the onset of failure. 
The gearboxes consist of a gear and a pinion with 
gear ratio 1:1.533. 
     Figure 1 shows the kurtosis of the residual 
signal measured at operation hours for test run 7. A 
residual signal is obtained from the signal average 
by filtering out gear meshing harmonics. It 
represents random transmission errors for healthy 
gears. For faulty gears, the transmission errors will 
include a sudden change, which becomes non-
Gaussian. Kurtosis is a good measure of non-
Gaussian (e.g. spikiness) in a signal. Vibration 
acceleration readings were taken at 8-h intervals 
during the 96 run in period and at 30 minutes 
intervals during the high load operational phase. 
     The failure mode examined here is “Gear tooth 
fracture” [21,22]. 
     Previous researches [1,18,19] have revealed that 
the kurtosis of the residual signal has a good 
relation  with crack of the test gear. 
     Four options for the format of the parameters 
have been tested: 
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TABLE 1. Log-Likelihood Values of Parameter Options. 
 

Option (1) (2) (3) (4) 

Log-likelihood 98.25 185.72 148.45 100.43 

 
 
 

TABLE 2. Fitted Results for Option (1). 
 

Parameter A B r β C D 

Value 8.16(108) -3.51 0.5 4.65 4(10-7) 2.55 

Standard error 0.4 0.7 0.004 0.04 1(10-6) 0.03 

• Q(t) and R(t)are time-invariant 
• Q(t) takes a time-invariant, and R(t) has the 

form of Q(t) = ctd 

• Q(t) = ctd and R(t) = rth 
• Q(t) is time-invariant and R(t) = rth 
 
A(t) is undertaken the form of (ti/ti-1)β-1 as 
mentioned before. It has been shown that C(t) is 
taken the form of C(t) = ctd for gearboxes [1]. 
     The largest log-likelihood value using Equation 
23 is model option (2) (see Table 1). 
     The parameter values obtained for test run 7 
based upon option (2) is shown in Table 2. 
     The potential number of time-variant model 
options is unlimited. However, the model option 
(2) has produced a good fit to the data. The form of 
Q(t), ctd are reasonable, since hazard rate increase 
rapidly near and after crack initiation, the 
magnitude of Q(t) is increased in order to account 
for both uncertainty about hazard’s increments and 
uncertainty in the model. Figure 2 shows the 
estimated hazard rate using the estimated 
parameter values from Table 2 based on the data 
obtained over test run 7. 
     In order to show the applied estimated hazard 
rate in the proposed decision model, the following 

data were used: 
 

Ci 15 Unit Cost; 
 

CR 100 Unit Cost; 
 

Cf 1000 Unit Cost; 
 

tp 0.5 Hour 
 

R* 0.95 
 

In this case, since there is no preventive 
maintenance data available, ECTε(Δt) is excluded 
and therefore the decision variable at each decision 
epoch is whether or not to replace the gearbox; and 
if not, when the next measurement should be taken. 
If the current time is set at 122.5 which is the time 
near the crack initiation point [21] using Equation 
26, it is resulted that Δt* ≤ 1.14. 
     Since it is smaller than tp = (0.5), The next step 
is calculating E0(Δt) to identify the best next 
inspection point. 
     Figure 3 shows the efficiency value graphically, 
which has a maximum at t = 123.6. It is noted that 
in this case, since the measurements has been taken 
only at 30 minutes intervals, Δt* is restricted to be 
approximated to 123.5. Similarly at time t = 123.5 
it is Δt* ≤ 1.06 and subsequently the efficiency 
value will be as in Figure 4, which is maximized at 
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Figure 2. Estimated hazard rate for test run 7. 
 
 
 

 
 

Figure 3. The efficiency value calculated at t = 122.5. 
 
 
 

 
 

Figure 4. The efficiency value calculated at t = 123.5. 
 



IJE Transactions A: Basics Vol. 21, No. 1, February 2008 - 55 

time t = 124.5. 
     At this time point Δt* is smaller than tp(Δt* ≤ 0.4), 
so the optimal policy is preventively replacing the 
gearbox. As expected and also as time increases, 
the optimal inspection time decreases to satisfy the 
desired level of reliability. Furthermore, it is also 
observed that preventive replacement is made 
before failure, without an unnecessary removal of 
the un-failed gearbox. 
 
 
 

7.  CONCLUSION 
 
A preventive maintenance policy based on indirect 
condition monitoring information was proposed. A 
stochastic model using Kalman filter was presented 
to estimate and predict the hazard rate based on 
monitoring up dated data. The optimal policy at 
each inspection point advices what maintenance 
action to take and also determine the optimal next 
inspection time. It was shown that the proposed 
policy is a good one when cost of loosing 
production is much greater than the maintenance 
costs and the primary objective is achieving high 
reliability. The proposed decision model can also 
be applied to other maintenance models; in which 
hazard rate is estimated from the indirect condition 
monitoring. Some simplifying restrictions in this 
paper can be lifted in future researches to yield a 
better filter. For example, a nonlinear state space 
model could be developed, which of course, 
increases computational problems. 
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