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Abstract This paper introduces a model to make decision on the maintenance of a mechanical
component subject to condition monitoring. A stochastic model is used to determine what
maintenance action should be taken at a monitoring check and the follow up inspection times. The
condition of component has a stochastic relation with measurements. A new state space model is
developed and used, to predict the hazard rate and condition monitoring measurements, to indirectly
asses the hazard rate of the system. The Proportional Covariate Model (PCM) which was proposed by
Yong Sun (2004) was also used to develop the model. The known Kalman Filter was employed to
derive the probability of the conditional hazard rate, which is predicted and updated for condition
monitoring. The maintenance is being performed based on the estimated hazard rate so that the
desired level of reliability is achieved, in a cost effective approach. This approach is validated by
using the experimental data obtained from gearboxes which ran and failed on the Mechanical
Diagnostic Test Bed (MDTB) at the Penn State University Applied Research Laboratory.
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1. INTRODUCTION

Production systems have critical components and
their failure may lead to total shut down of a whole
production line, which will result in a substantial
loss. The failure of mechanical components may
occur because of gradual deterioration, that comes
from fatigue, like crack propagation, erosion and
tool blunting. In addition, these kinds of failures in
mechanical systems decrease safety and therefore
cause more irreparable damages. The importance
of preventive maintenance, whose aim is to repair
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or replace the components before complete failure,
is notable.

If deterioration level of components correlated
strongly with a control parameter that shows
system's state, it is better to make a decision about
preventive maintenance operations, based on
system's condition which is called, Condition
Based Maintenance (CBM).

In general CBM has two categories: Direct CBM
and Indirect CBM. In CBM the decision about
maintenance time and operation is made, based on
the measurements of control parameters at
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inspection points. In direct CBM, the control
parameter is the original state of the component and
shows its depreciation, so that, it can be measured
directly, like the thicknesses of a brake pad.
Sometimes it is not possible to measure the amount
of depreciation during the operation. In this case
some variables which are stochastically correlated
with the amount of depreciation are measured. For
example, the cutting forces, vibration or
temperatures are measured to estimate the state of a
machining tool in operation. In most of CBM
models, a decision is made based on the thresholds
which have been defined for control parameters.
Maintenance should be carried out before functional
failure, when these parameters exceed a defined
limit. In many instances no clear set of limits or
rules have been developed, to indicate whether or
not a failure process is underway and how much
time is available before the component is no longer
able to perform one or all of its functions. In Wang
and Christer’s model [1] the follow up inspection
time is determined with the obtained data about the
conditions, regarding critical values for the system's
state. Based on their models, some rules and
policies for inspection, repair or replacement were
proposed and because of the system's diversity, they
checked the mechanical parts of the proposed
models. In this paper, the proposed model and the
applied rules were tested on gearboxes as an
important mechanical system in car industries. All
previous models in the literature usually
concentrated on periodic inspection. Chelbi, et al [2]
presented a mathematical model for optimizing
expected total cost in order to determine optimal
inspection time interval. Barbara, et al [3] have used
a dynamic method to make a decision about
maintenance operation of a system with two series
unit and fixed inspection intervals. The aim was
minimizing the expected total cost.

Grall [4] developed a model for determining
inspection points, based on some critical
depreciation level. Another method is discussed by
Chen, et al [5], in which the optimum amount of
critical threshold for depreciation is determined for
different values of the inspection rate, by using
Semi Markov Process. When indirect information is
involved such as vibration monitoring, or covariates
such as the oil temperature of an engine, the
ordinary approach is to model the hazard rate. One
of the most widely used methods for the study of the
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effect of covariates is the Proportional Hazard
Model (PHM). The basis of the model is the simple
assumption that the hazard rate is affected in a
multiplicative way by a risk factor. In all, condition
monitoring models, in which PHM is used, the
covariates are assumed to follow a Markov process.
In most of these models the goal is taking a critical
threshold for the hazard rate in order to minimize
expected cost and the inspections are taken
periodically [6-9]. Wang, et al [10] developed a
general approach in modeling indirect CBM to
determine  periodic  inspection  times  for
maintenance, based upon the condition monitoring
and preventive maintenance information obtained
by stochastic filtering theory. Wang, et al [11]
provided a CBM model for a factory in which the
decision was made based on the residual life time,
estimated at periodic inspection times. They
considered the maintenance history and the expert
judgment as indirect information. The hazard rate
was modeled as a continuous stochastic process.

In this paper an indirect condition monitoring
decision model is proposed for mechanical
components, which can be applied in different
conditions, even when the data on the history of
failure is limited.

Proportional Covariate Model (PCM) which
was proposed by Sun, et al [12] is used to define a
relationship between the covariates and the hazard
rate. A state space model described for predicting
the hazard rate. Kalman filter is used to estimate
and update the hazard rate according to condition
monitoring information obtained, at inspection
times; this approach is discussed in Section 4.2. A
decision model is proposed based on the estimated
hazard rate to determine what maintenance action
to take and when the next measurement shall be
taken, in order to achieve a desired level of
reliability for a cost effective way. This model can
be used for mechanical systems whose hazard rates
depend on deterioration.

To illustrate the model and modeling process in a
non-maintenance case, a numerical example based
on the experimental data was taken from a gearbox
ran to failure on the Mechanical Diagnostic Test
Bed (MDTB) at Penn State University Applied
Research Laboratory (ARL) is presented.

Some approaches were introduced to avoid
unnecessary maintenance based on condition
monitoring by Jardine, et al [13].
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They used mathematical models to optimize the
related targets. Also, Zhou, et al [14] considered a
predictive model for condition monitoring on
mechanical system especially on monitored
mechanical system. As a new approach for robust
detection on gearbox, Zhan et al [15] developed a
mathematical and statistical model that used
previous data and autoregressive concepts.

2. FAILURE PREDICTION APPROACH FOR
MECHANICAL SYSTEMS

Accurate estimation and prediction of the hazard
rates of mechanical systems are critical for
predictive maintenance activities. The failure
prediction of mechanical systems can be conducted
in two ways: fault diagnosis from condition
monitoring signals and statistical analysis of the
data on its history of failures.

Fault diagnosis techniques mainly focuses on
feature extraction and defects detection, using
different signal processing techniques and pattern
recognition. In these methods, different patterns
should be recognized due to different failure
modes, based on the operator's job training, hence
they can not be used in critical applications.

The failure of a mechanical component with a
specific failure mode is usually defined as inability
to perform its predefined function. Unlike routine
failures in electrical components, the failure of a
mechanical component usually occurs more
gradually rather than being a sudden occurrence.
This feature enables the quantification of the hazard
rate of mechanical components using deterioration
indicators such as the increment of crack's depth or
the degree of misalignment. The probability of
failure of such systems is dependent on two items:
the initiation of the failure, and its propagation.

In this paper a prognostic approach that takes
into account both of these events for estimating the
hazard rate is proposed.

3. PROPORTIONAL COVARIATE MODEL
(PCM)

Condition monitoring data are commonly termed
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as covariates in reliability theory and can be
classified into two categories [12]:

. Environmental covariates Z.(t). The changes
of these covariates will cause the
characteristics of the hazard to change.

. Response covariates Z,(t). The changes of
these covariates are caused by changes of
the system's hazards.

The majority of condition monitoring data can be
classified as response covariates. These are
symptoms that reflect the deterioration of a system.

The proportion hazard model (PHM), which
was introduced by Cox [16] and was developed to
predict system's hazard with a combination of
historical failure data and on-line condition
monitoring data. The hazard rate at time t; h(t) of
an item is modeled as a product of the baseline
hazard function hy(t) and a covariate function
y(Z(t),y) as follows:

H(t) = ho(t) v (Zc(D).7) (1

PHM needs sufficient failing data to estimate the
baseline function and to weight parameters for
each covariate. The effectiveness of PHM is
significantly reduced, where the data on the history
of its failure is insufficient. In PHM, it is assumed
that covariates are explanatory variables and
hazard is the response variable. However in
practice, response covariates are often monitored
to determine the state of the system and hence their
responses vary and so the covariates are
explanatory variables. PHM is not a perfectly
suitable and satisfactory model for this scenario as
Moore, et al [17] have demonstrated.

In order to predict the hazard rate of a
mechanical system when the history of failure is
not available, the PCM was proposed by Sun, et al
[12].

In PCM, a function of covariates y(Z(t)) is
expressed as follows:

Y(Z: (1) =C (O)-h (t) (2)
Where Z,(t) is the covariate function and C(t) is the
baseline covariate function and both of them are

usually time dependent.
The PCM represented by Equation 2 indicates
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that the covariate of a system may change, based
on the changes of hazard rate.

C(t) is typically estimated from historical
failure data and even in the case of sparse or even
zero historical data, it can be determined according
to anecdotal experience of the operators of a plant
and/or using supplementary information such as
data from accelerated life tests.

PCM is used to update the hazard function of a
system. The changes of this hazard function are
independent of the covariate and hence the updated
hazard function can be used to predict the failure
time.

In this paper a stochastic model based on the
well known Kalman filter is described, so that the
relationship between the covariates and the hazard
rate is determined by PCM in a state space model.

4. KALMAN FILTER AND THE STATE
SPACE MODEL

As mentioned in the previous sections, the focus
will be on the hazard rate, rather than the
distribution function, to formulate the behavior of
the mechanical system.

In this paper the hazard rate is considered to be
partially stochastic. There is some random
variable, n(t), which contributes to the hazard rate
at time t. Wang, et al [11] developed a CBM model
based on the same assumption that the hazard rate
is stochastic and can be described by a Gamma
process.

The fault propagation of mechanical systems is
sensitive to varying environmental and operational
conditions. Besides a common understanding of
such systems integrity, that is increased
deterioration and the likelihood of failure have
positive correlation [18,19]. Therefore it is
appropriate to consider stochastic models in hazard
prediction.

Given the monitoring information available to
date, the key concern is how to predict the hazard
rate, as a probabilistic estimation. The Kalman
filter is employed to provide an optimal solution to
the problems of prediction and updating.

The Kalman filter is a set of mathematical
equations that provides an efficient computational
(recursive) means to estimate the state of a process,
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in a way that minimizes the mean of the squared
error [20].

This filter is carried out in two steps. The first is
to form the optimal prediction of the state variable,
h(t), The second is to incorporate the new
observation into the estimator of the state variable
using updating equations.

Based on the estimated and predicted hazard
rate, an online model is developed to achieve the
optimal CBM point.

4.1. The State Space Model It is supposed
that the increments of h(t) are described by
stochastic model. In this section we formulate the
correlation between the condition monitoring
measurements, covariates. The hazard rate will be
formulated to establish a state space model.

The structure of such a space model is:

Z(t;) = C(t;).h(t;) + E(t) i=1.2,.,n
3)
h(t;) = A(t).h(ti.1) + n(t;) i=12,...,n
“
Z(t): The Covariate, Condition at Time t;

A(t) and C(t;)): The Scalar Coefficients at Time t;,
Which Relates the h(t;) to Z(t;)

h(t): The Hazard Rate at Time(t;)

t;: The Inspection Point.

At discrete inspection point, a new measurement
obtained and the relation between this covariate
and the hazard rate is described via Equation 3,
which is called measurement equation.

E(t) is the disturbance at time t; which is
assumed to follow N(O,R(t)), where R(t) is the
covariance of the disturbances and in our case, is
assumed as time varying.

Equation 4 is a transition equation which
describes the stochastic behavior of h(t) between
two measurement points t; and t; ;.

A(t;)) relates the unobservable h(t) to the
previous one, h(t;.;).

n(t) is the stochastic part of the equation which
was introduced before and is assumed to follow
N(0,Q(t)). It should be noted that all disturbances
are uncorrelated.

As mentioned before because of the common
property of deterioration increments of mechanical
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components a very suitable function for their
hazard rate is Weibull, which has the form:

h(t) = " p(BH™" )

With B > 0 and o > 0 called the shape and scale
parameter, respectively. In industrial applications,
time usually represents working age. The shape
parameter is related to the nature of failure, while
the scale parameter is related to the size and
operational conditions of the component.

Therefore it is reasonable to assume that similar
components should have approximately the same
shape parameter as a general characteristic.

There are also some references to achieve this
parameter for different components, like the
manufacturers of the components.

Based on this reality, A(t) can be specified in
transition equation in the form:

A(t) = (ti/ti)™! (6)

Where t; and t.; are two simultaneous
measurement times.

The relationship between the covariate and the
hazard rate in Equation 3 is determined based on
the proportional Covariate Model (PCM), that is:

Z(t) = C(t).h(t)
Where C(t) is the baseline covariate function.

4.2. Prediction and Updating h"(t) is defined
to be a priori hazard estimate at time t; given
knowledge of the stochastic behavior prior to
measurement point t; and h'(t}) to be a posteriori
hazard estimate at time t; based on previous
measurements.

So the priori and posteriori estimate errors are

&(t;) = h(t)-h"(t)
e(t)=h(t;)-h"(t;) (7

Then priori and posteriori estimate error co
variances are:

P (t) = E[3(t)’]

P(t;) = E[e(t)’] ®)
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The estimator of Kalman filter provides an optimal
solution to the problems of prediction and
updating.

At time t;, the state of knowledge about h(t;) is
embodied in the following probability statement
for h(ty).

(h(t) | 2(t)) ~ N(h'(8),P(19) ©)
Where

Z(t) = (Z(t:),Z(ti1),. ... Z(11))

h'(t) is the posteriori estimate of h(t) and p(t)is
the covariance which is defined by Equation 8. A
recursive procedure commences at time t = 0 by
choosing h'(t).

po is the best estimates of the mean and
covariance of the hazard rate at time t,.

h™(t) = A(t)-h'(ti)

P (t)=A(t).p(ti1) + Q(t) (10
h'(t)) is estimated in two stages:

. Prior to observing Z(t;):

h(t) | Z(tir) (11)
. After observing Z(t;):

h(t) | Z(t) (12)
These are affected by means of prediction and
updating stages.

Prediction, At time t;.;, our estimate for h(t;)is
governed by the transition Equation 4, that is:

(h(t) | Z(t1)) = (A(t).h(t) + ntom | Z(tr) — (13)

Because of the well known result for normal
probability distributions and due to the fact that the
covariances in Equation 3 and 4 are normally
distributed, it can be found that [1]:

(h(t)|Z(t;_)~N(h (£).P7(t,)
Updating, The second stage, namely updating, is to
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re-evaluate h(t;) | Z(ti) given Z(t). The updating
equation is essentially

(h(t) | Z(t)) = (h(t) | Z(t:1).2(t) (14)

The error between the actual observed condition at
time t; and its value predicted at time t;.; is:

oft) = Z(t) — 27 (t,) (15)
Where from Equation 3,
Z7(t;)=C(t).h7(t) (16)

The above quantity is the estimated of Z(t;). Using
results in multivariate statistics and standard
properties of normal distribution, it could be
resulted that:

(h(t) | Z(t)) = (ht) | e(t).Z(t:1)) a7
h(ty) | e(t),Z(ti)) ~
N(h(t) + K(6),(Z(6)-C(6)-h(6).P(t) (18)

Where
p(t;) = P_(ti)(l —k(t,)-C(t;))

K(t;): the gain or blending factor that minimizes
the posteriori error covariance (8).

The difference (Z(t;)—C(t;).h™(t,) in (18) is

called the measurement innovation, or residual.
The residual reflects the discrepancy between the
predicted measurement, C(t;).h (t)), and the actual
measurement Z(t;).

4.3. Estimation of the System Parameters
To apply the state space model, values of
parameters are required.

The classical theory of maximum likelihood of
observed events is used for estimation. In this
approach all events are independent and identically
distributed. However, in our case the observations
are not independent and a conditional probability
density function is used to formulate the joint
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density functions as:
n

L= IIp @) |Z(t.) (19)
i=1

Where P(Z(ti)|Z(ti_1)) denotes the pdf of Z(t)
conditional on the information set at time t;.

1<1<n.

Since at time t, the estimate Z (t;) is known, it is
resulted as before

Z(t) | 2(t.1)) = (e(t) | Z(ti1) (20)

Further, it can be shown that

(e(t)]Z(t 1)) ~ NO,F(t;)) @1)
Where:
F(t,) = C2(t,).P™(t) + R(t;) (22)

It follows that the log likelihood function for the
observed covariates based upon the multivariate
normal distribution is given by:

(23)

M=

n
1 10g|F(t-)‘—l > e2(t). F )
2.5 TR i

Maximizing in terms of unknown parameters,
Equation 23 will give the estimated values of
these parameters. It is noted that the likelihood,
Equation 23, is very unstable and produce a large
variance in parameter estimates. Christer, et al [7]
have resolved this problem with introducing just
one actual measure of the state variable.

However, in our case the state variable is the hazard
rate. In this case the problem has been observed to be
resolved by enforcing two limitations and maximizing
Equation 23 subject to these limitations.

Mechanical components have approximately the
same shape parameter as a general characteristic, so
bounds can be determined for this parameter.

Also, the reliability of the component should be
at neighborhood of failure time, so with due
attention to the relationship between the hazard
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rate and the reliability, the area under the obtained
h(t) should reflect reliability.

5.THE DECISION RULE

In this section, the decision rule is developed. The
proposed rule has a preventive approach for
maintenance planning. It is assumed maintenance
has to provide the right Reliability of production
equipment (or system) and give an economic value
to the maintenance result. In most production
processes there are critical components which their
failure may result in substantial costs. In these
cases, the down time cost is much greater than the
costs of maintenance, then the primary objective
will achieve high reliability.

A decision model is developed to aid in
choosing, the best maintenance option and a follow
up time to inspect, at each inspection time so that a
predefined level of reliability is achieved in a cost
effective way. This is a dynamic condition based
maintenance model. It is assumed that failure is
detected instantaneously upon a failure and the
component is renewed and the process of condition
monitoring is restarted.

At each monitoring check, a decision is made
based on the latest condition monitoring obtained,
where permitted actions are:

e To leave the unit as it is (a = 0)

e To carry out preventive maintenance on the
unit with a specific level of efficiency «.
a=g 0<eg<l1

e To replace the unit with an identical new item
immediately, a =r (a is a maintenance action
index)

The next best inspection point is determined by the
action taken.

Assuming that the unit monitored, is still
operative at the i'th monitoring check time t;, based
on the estimated hazard rate h'(t;), an estimate of
cumulative hazard rate from t; to t; + At is given by:

H(t, +At)=

At . B_(B (24)
| (H'_X)B_l xﬁ(ti)dx - wxﬁ(ti)

0 t BXtB_l
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and an expected reliability at time t; + At is
approximately given by

R (t; +AD) ~ exp(~H(t, +Ab) (25)

Since the primary objective is achieving high
reliability, the next inspection time is defined in
such way, that the expected reliability is greater
than or equal to a desired level.

Assuming that o denotes the desired level of
reliability, then we have:

A =inf(R(t, +At)>a) (26)

Where At is an optimal period from the current
time, at the end of which, the next inspection should
be done. Because of the dynamic updating nature of
condition monitoring only the expected cost per unit
time within a period from current time t; to

t;+ At is considered. Let new definitions for cost:

Ci:  The average cost per monitoring

Cg The average cost of a failure replacement

Cr: The average cost of a preventive replacement

Cpe: The average cost of a preventive maintenance
with efficiency of €.

Denote that C and Cp) << C¢

The expected cost per unit time, given no
preventive maintenance at time t; and the next
inspection at t; + At, is determined by:

ECTO(At)=
ci.R(ti+At)+cf.(1—R(ti+At))+cp.p
At 9(1-R(t;

Ao S0RE )

rep- Rt +40

dx + R(t it At)At

0 )¢
27)
Where
P., = P(h(t; + At) > h'(t; + At))
“InR*.B.(t; + ApP T
b oy = — G 28)

t, +At+tp)B ~ (¢, + ApP

If a preventive maintenance is undertaken at t
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(Immediately after monitoring check), the
estimated hazard rate which should be used in
Equation 24 is:

h* (t;) = h(t,)(1-2) (29)

¢ is the influence of preventive maintenance and if
¢ = 0 maintenance is ineffective and if € = 1 the
maintenance is perfect and the hazard rate will
reduced to zero.

In this case the expected cost is determined by:

ECTS(At)z
°p, +Ci.R(ti +At)+cf.(1—R(ti +At)}rcp.prep.R(ti +At)
At 9(1-R(t. +x))
[ dxR(t; +ADAL
0
(30)

The optimal next inspection time is computed by
maximizing the efficiency value {E((AD,E, (AD)}

describing in the following equations, subject to
Equation 26.

E (A _R(ti+At)
0o t)_ECTO(At)

and

E (At)_m (31)
& ECT,(AY)

The component will be replaced if Af* to be
smaller than or equal to the time needed for
preventive replacement preparation.

*
At” < tp (32)

In other words, preventive replacement is taken
when Equation 26 is cancelled by Equation 32.

6. NUMERICAL RESULTS

In this section a numerical result is presented to
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predict the hazard rate based on a proposed model.
The data used here is from three gearboxes run to
failure on the Mechanical Diagnostic Test Bed
(MDTB) at Penn State University Applied
Research Laboratory (ARL). This source was
selected after some negotiation with two car
producing research centers in Iran. ARL is one of
the reference laboratories for mechanical systems
data in the world.

The gearboxes were run at 540 in Ib torque for
the first 96 hours of each test and overloaded
during the tests to accelerate the onset of failure.
The gearboxes consist of a gear and a pinion with
gear ratio 1:1.533.

Figure 1 shows the kurtosis of the residual
signal measured at operation hours for test run 7. A
residual signal is obtained from the signal average
by filtering out gear meshing harmonics. It
represents random transmission errors for healthy
gears. For faulty gears, the transmission errors will
include a sudden change, which becomes non-
Gaussian. Kurtosis is a good measure of non-
Gaussian (e.g. spikiness) in a signal. Vibration
acceleration readings were taken at 8-h intervals
during the 96 run in period and at 30 minutes
intervals during the high load operational phase.

The failure mode examined here is “Gear tooth
fracture” [21,22].

Previous researches [1,18,19] have revealed that
the kurtosis of the residual signal has a good
relation with crack of the test gear.

Four options for the format of the parameters
have been tested:

amplitude

100 105 110 15 120 125
t{operating haurs)

Figure 1. The kurtosis of the residual signal for test run 7.
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. Q(t) and R(t)are time-invariant

. Q(t) takes a time-invariant, and R(t) has the
form of Q(t) = ct’

e Q(t)=ct®and R(t) =1t"

. Q(t) is time-invariant and R(t) = rt"

A(t) is undertaken the form of (t/t.)""' as
mentioned before. It has been shown that C(t) is
taken the form of C(t) = ct’ for gearboxes [1].

The largest log-likelihood value using Equation
23 is model option (2) (see Table 1).

The parameter values obtained for test run 7
based upon option (2) is shown in Table 2.

The potential number of time-variant model
options is unlimited. However, the model option
(2) has produced a good fit to the data. The form of
Q(t), ct® are reasonable, since hazard rate increase
rapidly near and after crack initiation, the
magnitude of Q(t) is increased in order to account
for both uncertainty about hazard’s increments and
uncertainty in the model. Figure 2 shows the
estimated hazard rate using the estimated
parameter values from Table 2 based on the data
obtained over test run 7.

In order to show the applied estimated hazard
rate in the proposed decision model, the following

data were used:

(O 15 Unit Cost;

Cr 100 Unit Cost;

Cs 1000 Unit Cost;

t, 0.5 Hour

R’ 0.95

In this case, since there is no preventive

maintenance data available, ECT.(At) is excluded
and therefore the decision variable at each decision
epoch is whether or not to replace the gearbox; and
if not, when the next measurement should be taken.
If the current time is set at 122.5 which is the time
near the crack initiation point [21] using Equation
26, it is resulted that At™ < 1.14.

Since it is smaller than t, = (0.5), The next step
is calculating Eg(At) to identify the best next
inspection point.

Figure 3 shows the efficiency value graphically,
which has a maximum at t = 123.6. It is noted that
in this case, since the measurements has been taken
only at 30 minutes intervals, At" is restricted to be
approximated to 123.5. Similarly at time t = 123.5
it is At < 1.06 and subsequently the efficiency
value will be as in Figure 4, which is maximized at

TABLE 1. Log-Likelihood Values of Parameter Options.

Option )

) 3 “

Log-likelihood 98.25

185.72 148.45 100.43

TABLE 2. Fitted Results for Option (1).

Parameter A B r B C D
Value 8.16(10%) -3.51 0.5 4.65 4(107) 2.55
Standard error 0.4 0.7 0.004 0.04 1(10°) 0.03
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Estimated hazard rate
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Figure 4. The efficiency value calculated at t = 123.5.
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time t = 124.5.

At this time point At" is smaller than tp(At* <0.4),
so the optimal policy is preventively replacing the
gearbox. As expected and also as time increases,
the optimal inspection time decreases to satisfy the
desired level of reliability. Furthermore, it is also
observed that preventive replacement is made
before failure, without an unnecessary removal of
the un-failed gearbox.

7. CONCLUSION

A preventive maintenance policy based on indirect
condition monitoring information was proposed. A
stochastic model using Kalman filter was presented
to estimate and predict the hazard rate based on
monitoring up dated data. The optimal policy at
each inspection point advices what maintenance
action to take and also determine the optimal next
inspection time. It was shown that the proposed
policy is a good one when cost of loosing
production is much greater than the maintenance
costs and the primary objective is achieving high
reliability. The proposed decision model can also
be applied to other maintenance models; in which
hazard rate is estimated from the indirect condition
monitoring. Some simplifying restrictions in this
paper can be lifted in future researches to yield a
better filter. For example, a nonlinear state space
model could be developed, which of course,
increases computational problems.

8. REFERENCES

1. Christer, A. H. and Wang, W., “A Simple Condition
Monitoring Model for a Direct Monitoring Process”,
European Journal of Operational Research, Vol. 82,
(1995), 258-2609.

2. Chelbi, A. and Ati-Kadi, D., “An Optimal Inspection
Strategy for Randomly Failing Equipment”, Reliability
Engineering and System Safety, Vol. 63, (1999), 127-
131.

3. Barbera, F., Schneider, H. and Watson, E. D., “A
Condition Based Maintenance Model for a Two-Unit
Series System”, European Journal of Operational
Research, Vol. 116, (1999), 281-290.

4, Grall, A., Berenguer, C. and Dieulle, L., “A Condition-
Based Maintenance Policy for Stochastically

1JE Transactions A: Basics

10.

11.

12.

13.

14.

15.

16.

17.

18.

Deteriorating Systems”, Reliability Engineering and
System Safety, Vol. 85, (2002), 167-180.

Chen, D. and Trivedi, K. S., “Optimization for
Condition-Based Maintenance with Semi-Markov
Decision Process”, Reliability Engineering and System
Safety, Vol. 89, (2005), 1-5.

Vlok, P. J., Coetzee, J. L., Banjevic, D., Jardine, A. K. S.
and Makis, V., “Optimal Component Replacement
Decisions Using Vibration Monitoring and the
Proportional-Hazards ~ Model”, Journal of the
Operational Research Society, Vol. 53, (2002), 193-202.
Christer, A. H., Wang, W. and Sharp, J. M., “A State
Space Condition Monitoring Model for Furnace Erosion
Prediction and Replacement”, European Journal of
Operational Research, Vol. 101, (1997), 1-14.

Kumar, D. and Westburg, U., “Maintenance Scheduling
Under Age Replacement Policy Using Proportional
Hazard Modeling and Total Time on Test Plotting”,
European Journal of Operational Research, Vol. 99,
(1997), 507-515.

Banjevic, D., Jardine, A. K. S. Malis, V. and Ennis, M.,
“A Control Limit Policy and Software for Condition-
Based Maintenance”, INFOR, Vol. 39, (2001), 32-50.
Wang, W. and Christer, A. H., “Towards General
Condition Based Maintenance Model for a Stochastic
Dynamic System”, Journal of the Operational
Research Society, Vol. 51, (2000), 145-155.

Wang, W., Scarf, P. A. and Smith, M. A. J., “On the
Application of a Model of Condition-Based
Maintenance”, Journal of the Operational Research
Society, Vol. 51, (2000), 1218-1227.

Sun, Y., Ma, L., Mathew, J., Wang, W. and Zhang, S.,
“Mechanical Systems Hazard Estimation Using
Condition Monitoring”, Mechanical Systems and
Signal processing, Vol. 20, No. 5, (2006), 1189-1201.
Jardin, A. K. S, Lin, D. and Banjevic, D., “A Review on
Machinery Diagnostics and Prognostics Implementing
Condition Based Maintenance”, Mechanical Systems
and Signal Processing, Vol. 20, No. 7, (2006), 1483-
1510.

Zhan, Y. and Mechefske, C. K., “Robust Detection of
Gearbox Determination Using Compromised
Autoregressive Modeling and Kolmogrov-Smirnov
Test”, Mechanical Systems and Signal Processing,
Vol. 21, No. 5, (2007), 1983-2011.

Zhou, X., Xi, L. and Lee, J., “Reliability-Centered
Predictive Maintenance Scheduling for a Continuously
Monitored System Subject to Degradation”, Reliability
Engineering and System Safety, Vol. 92, No. 4, (2007),
530-534.

Bartholomew, D. J., Lindley, D. V., Glassborow, P. W.,
Barton, D. E., Howard, S., Benjamin, B., Gart, J. J.,
Meshalkin, L. D., Kagan, A. R., Zelen, M., Barlow, R.
E., Kalbfleisch, J., Prentice, R. L. and Breslow, N.,
“Regression Models and Life-Tables”, Journal Roy.
Statistics Society B, Vol. 34, (1972), 187-220.

Moore, D. S. and McCabe, G. P., “Introduction to the
Practice of Statistics”, W. H. Freemen, New York,
U.S.A., (2003), 142-145.

Wang, W., “An Evaluation of Some Emerging
Techniques for Gear Fault Detection”, The International

Vol. 21, No. 1, February 2008 - 55



19.

20.

Journal of Structural Health Monitoring, Vol. 2, No. 3
(2003), 225-242.

Wang, W. and Wong, A. K., “Autoregressive Model-
Based Gear Fault Diagnosis”, Journal of Vibration and
Acoustics, ASME, Vol. 124, No. 2, (2002), 172-179.
Welch, G. and Bishop, G., “An Introduction to the
Kalman Filter”, Department of Computer Science
University of North Carolina, U.S.A., Updated: Monday,
(April 2004).

56 - Vol. 21, No. 1, February 2008

21.

22.

Miller, A. J, “A New Wavelet Basis for the
Decomposition of Gear Motion Error Signals and its
Application to Gearbox Diagnostics”, M.Sc. Thesis, The
Pennsylvania State University, U.S.A., (1999).

Lin, D., Wiseman, M., Banjevic, D. and Jardine, A. K.
S., “An Approach to Signal Processing and Condition-
Based Maintenance for Gearboxes Subject to Tooth
Failure”, Mechanical Systems and Signal Processing,
Vol. 18, (2004), 993-1007.

IJE Transactions A: Basics



