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Abstract   This paper presents a new time-frequency based EEG seizure detection method. This 
method uses the distribution of interspike intervals as a criterion for discriminating between seizure 
and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency 
domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency 
domain. Histogram of successive spikes intervals is then used as a feature for seizure detection. In the 
presented technique the EEG data are segmented into 4-second epochs. A k-nearest neighbor 
algorithm is employed to classify the EEG epochs into seizure and nonseizure groups. The 
performance of the presented technique is evaluated using the EEG data of five neonates. The results 
indicate that the proposed technique is superior to the other existing methods with 92.4 % good 
detection rate and 4.9 % false detection rate. 
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 فرکانس برای تشخيص صرع به کمک الکتروانسفالوگرام ارائه -اين مقاله يک روش جديد مبتنی بر زمان چكيده       

 در اين روش از توزيع فواصل بين تغييرات سوزنی شکل در الکتروانسفالوگرام برای تمييز دادن فعاليت. کند می
 ، سيگنال ت سوزنی شکل در الکتروانسفالوگرامبرای تشخيص تغييرا. شود های صرعی و غير صرعی استفاده می

علت داشتن انرژی لحظه ای زياد، ه تغييرات سوزنی شکل ب. شود  فرکانس انتقال داده می- زمانمورد نظر به حوزه 
در اين مقاله هيستگرام فواصل بين . دهند  فرکانس انرژی متمرکز شده ای از خود نشان می- در حوزه زمان

در روش پيشنهادی، سيگنال . شود  بعنوان يک ويژگی برای تشخيص صرع استفاده میتغييرات سوزنی شکل
خوشه بندي داده ها برای دسته بندی اين از روش . طول چهار ثانيه تقسيم می شوده  به قطعاتی بالکتروانسفالوگرام

نهادی با استفاده از عملکرد روش پيش. شود  به گروه های صرع و غير صرع استفاده میالکتروانسفالوگرامقطعات 
% ٤/٩٢دهد که روش پيشنهادی با ارائه  نتايج نشان می. شود  پنج نوزاد ارزيابی میالکتروانسفالوگرامسيگنال 

 .تشخيص خطا در مقايسه با روشهای موجود عملکرد بهتری دارد% ٩/٤تشخيص درست و 
 
 

1. INTRODUCTION 
 
Brain abnormalities in newborns are usually first 
revealed by seizures, which are characterized by a 
synchronous discharge of a large number of 
neurons. It has been shown that there is a 
correlation between the duration of the seizure and 
the severity of brain damage [1]. Therefore, failure 

to control seizures may lead to brain damage. 
     Monitoring brain activity through the 
electroencephalogram (EEG) is an important tool 
in the diagnosis of neurological disorders in 
newborns. The onset of an EEG seizure is 
identified by transient sharp waves and repetitive 
rhythmic patterns [2,3]. The detection of these 
waveforms is complicated due to the fact that the 
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brain of a normal neonate may produce spurious 
waveforms and sharp spikes which are the result of 
extra electrical activities associated with the 
maturing brain [4]. The problem is then to 
differentiate between the waveforms related to 
seizure and those related to the normal brain 
activities. 
     Currently, there are a number of published 
methods for detection of seizures in neonates 
which, for the most part, are based on the 
assumption that the EEG signals are stationary or 
at least locally stationary [21,20]. It has been 
shown that neonate EEG signals are significantly 
nonstationary and multi-component [17,22]. Since 
time-frequency (TF) based methods are best suited 
to analyze these types of signals, the current 
research used the TF analysis techniques to 
characterize neonatal EEG seizures. 
     Frequency domain analysis of EEG data 
recorded by digital systems with a high sampling 
rate, for example 256 Hz, can show that EEG 
activity ranges from almost DC to over 100 Hz 
[22]. Since seizure signatures may exist in different 
frequency ranges, from as low as 0.5 Hz [6,13] to 
higher than 70 Hz [14], some researchers have 
tried to detect seizure activity using low frequency 
signatures [20,21,24], while others used high 
frequency signatures [2,14]. This paper 
concentrates on the high frequency signatures of 
the seizure resulting from spiky activities. 
     Spikes are nonstationary short-time broadband 
events with high instantaneous energy. To detect 
spikes from the EEG signals, the signal is mapped 
into the TF domain. The high instantaneous energy 
of spikes is reflected as a localized energy in the 
TF domain (see Figure 1). The width of the 
localized energy becomes narrower in higher 
frequency areas. Consequently, a spike can be seen 
as a line or ridge at high frequencies in the TF 
domain. Depending on the signal to noise ratio 
(SNR), existence of noise in the signal may 
prevent recognition of true spikes from the noise. 
     To characterize seizures using spike events in 
EEG signals, a two-stage seizure detection 
technique has been developed. In the first stage, 
the EEG signal is preprocessed to detect spike 
events. In the second stage, the histogram of 
successive spike intervals is extracted and used to 
discriminate between seizure and nonseizure 
activities. The analysis of histograms of successive 

spike intervals associated with a number of EEG 
epochs indicates that histograms of seizure 
activities can be classified into six different groups 
dissimilar to the histograms extracted from 
nonseizure activities. 
 
 
 

2. SEIZURE DETECTION 
 
In this paper the EEG signals are preprocessed to 
detect spike events by using a two-stage spike 
detection technique presented in [10]. The detected 
spikes are then used in another technique to 
discriminate between seizure and nonseizure 
activities. In the spike detection technique, the first 
stage is an enhancing stage whose goal is to reduce 
the effect of the noise in the TF domain by using 
singular value decomposition (SVD)-based method 
[7]. The second stage is the detection stage. The 
detection process uses the above-mentioned 
characteristics of spikes in the TF domain along 
with the accentuating capacity of the nonlinear 
energy operator (NEO) [8]. 
     In [14] the authors have shown that during 
seizure activity there is regularity between the 
successive spike intervals (SSI). To detect a 
seizure, histogram of the SSI (HSSI) related to the 
signal of interest is compared to the reference 
histogram. In this study, it is shown that the HSSIs 
of seizures are classified into different groups. A k-
nearest neighbor algorithm is used to classify the 
HSSIs of the EEG epochs into different groups of 
seizure and nonseizure activities [9]. 
 
2.1. Data Acquisition   EEG data acquisition was 
performed on newborns, whose ages range between 
two days and two weeks, at the Royal Women’s 
Hospital, Brisbane, Australia. The electrodes were 
placed on the scalp according to the 10-20 
International System of Electrode Placement. The 
data were recorded on 20 channels using Medelec 
(Oxford Instruments, UK) software/hardware 
environment. The signals were low-pass filtered 
with a cut-off frequency of 70 Hz and then were 
sampled with the sampling rate of 256 Hz. A 50 Hz 
notch filter was applied on the signals. The seizure 
activities on the recordings were visually labeled by 
a neurologist from the Neurosciences Department at 
the Royal Children’s Hospital, Brisbane, Australia. 
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Artefact free EEG of the five newborns, selected by 
the neurologist, have been used in this research. 
 
2.2. Preprocessing   The aim of the preprocessing 
stage is to detect spikes in the EEG signal. 
Nonstationary behavior of spikes makes the TF 
distribution (TFD) a preferable tool for spike 
detection [10]. Hence, the TFD-based technique 
presented in [15] is used for detecting spikes. In this 
technique, the signal is first mapped into the TF 
domain. The multicomponent behavior of the EEG 
signal creates cross-terms in the TFD. To reduce the 
cross-terms, a TFD with a reduced interference 
distribution (RID) capability is needed [11]. 
     A number of RIDs exist in the literature. In this 
study, the Choi-Williams distribution (CWD) has 
been adopted. This distribution outperforms other 

distributions in representing spiky signals [10]. 
     To attenuate the effects of noise on the time-
frequency representation (TFR) of the signal, the 
SVD-based technique proposed in [7] is used. This 
technique is based on low-pass filtering the singular 
vectors associated with the matrix representing the 
TFD of the signal under analysis. In [7] the authors 
have shown that reconstructing the TFD of the 
signal using filtered singular vectors significantly 
reduces the noise effect without altering the basic 
structure of the TF patterns of the signal. 
     At higher frequencies in the TF domain, spikes 
are represented with more localized energy than at 
lower frequencies and, hence have less interference 
from the background. Consequently, using high 
frequencies of the TFD is more suitable for spike 
detection (see Figure 2). 
     To localize the spike events, two frequency 
slices of the enhanced TFR are used [2]. If both of 
the frequency slices, at the same position, have a 
spike signature, the related time domain signal is 
judged to contain a spike at that position. 
     The nonlinear energy operator (NEO) can be 
applied to the frequency slices to amplify the spike 
signatures. For a discrete signal x(n), the NEO is 
defined as 
 

)1n(x)1n(x)n(x](n)x[ 2 −+−=ψ , 
 
where ψ tracks the energy of the signal. The 
instantaneous nature of the NEO makes it a 
suitable tool for the detection of transients. 
     The existence of local peaks higher than a 
threshold value at the output of the NEO represents 
the spike events in the related time series signal 
[10]. In [8] the authors have shown that the Barlett 
window can be used to smooth the output of the 
NEO to better localize the local maxima. 
     The preprocessing stage encodes the EEG 
signals into zeros and ones, where ones represent 
the position of the detected spikes in the original 
signal. For a given signal, x(n), the preprocessing 
stage is expressed as: 
 

⎩
⎨
⎧ =

=

                                                            otherwise,0
N,...,1nfor(n)xinnatdetectedwasspikeaif,1
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where N and xe(n) represent the length of the 
signal and the encoded signal, respectively. 
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Figure 1. Four seconds of a newborn EEG signal containing 
spike events: (a) time domain, (b) TF domain. The arrows 
depict the position of spikes. As can be seen time domain 
spikes are represented as lines or ridges in the TF domain. 



140 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics 

2.3. Seizure Signatures   A number of neurons 
firing synchronously create a signal with sharp 
waves [1]. Monitoring of the EEG reveals many 
spikes together with low frequency activity. There 
are however, some differences between the spike 
patterns related to the background and those which 
occur during the seizure activity. Analyzing 
intervals between successive spikes in the TF 
domain allows one to distinguish the nature of the 
spike firing patterns [14]. One way to characterize 
the variation of the SSI is by constructing a 
histogram of those intervals. The distribution of the 
intervals between successive values of ones in xe, 
the encoded EEG signal, is computed and assigned 
to xd. Then, the histogram of xd is constructed: 
 

)b,x(H dη= , 
 
where η is the histogram function that places the 
elements of xd into bins of width b indicating the 

number of sample spaces between successive 
spikes. Figure 3 represents two different EEG 
epochs containing seizure and nonseizure 
activities. The data have been sampled at 256 Hz. 
The positions of spikes in the signals detected by 
the TF-based spike detection technique are shown 
on subsequent figures by the pointing pins. 
     Figure 4 shows the HSSIs (H) related to the 
epochs shown in Figure 3 with b = 5. Note that the 
resolution setting of the TF analysis affects the 
value of b. Resolution of the TFD used to analyze 
Figure 3 was set to 5, hence, the b was set to 5. The 
first ten bins of the histograms are represented in 
the figure. It can be seen that there is a significant 
difference between the HSSI of seizure and 
nonseizure activities. During seizure activity, as 
the bin number increases the HSSI increases to a 
maximum value and then decreases gradually to 
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Figure 2. Frequency Slices extracted from the TFD in Figure 
1 (a) at 70 Hz, (b) at 15 Hz. 
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Figure 3. Newborn EEG signals. The pointing pins at the 
bottom of the signals represent the position of spikes detected 
by the TF-based spike detection technique. (a) Seizure 
activity, (b) Nonseizure activity. 
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zero. In addition, the total value of the bins for the 
HSSI related to seizure activity is higher than the 
one related to nonseizure activity. 
 
2.3. Segmentation of EEG Signals   In the 
detection process of the TF technique, individual 
channels of EEG data are segmented into 4-second 
epochs. The duration of seizures varies widely [12]. 
In addition, there is no consistency between 
neurologists about the minimum duration of seizure. 
Some require that a seizure last for at least 10 
seconds; others require a minimum duration of 20 
seconds and still others do not specify time limits 
for EEG seizure [16]. However, the results of this 
research show that the HSSIs for any duration of 
seizures are mostly similar. Figure 5 shows the 
HSSIs of the first four and two seconds of the 
seizure activity represented in Figure 3(a). As it can 
be seen these HSSIs are similar to the HSSI 

represented in Figure 4(a). 
     The results also show that by increasing the 
length of epochs the good detection rate as well as 
the false detection rate is increased. However, by 
choosing 4-second EEG epochs the best detection 
rates are achieved. 
 
2.4. Decision Making   It is shown that from a 
signal processing point of view there are different 
patterns of seizure activities [12,17]. An EEG 
epoch is considered to have a seizure activity if the 
related HSSI is similar to the HSSI of a class of 
seizure activity. To find the similarity, a one 
dimensional Jensen function is used to measure the 
similarity of two histograms [18]. 
     Given two vectors S and R, representing the 
HSSIs of the EEG epoch under analysis and that of 
the reference respectively, the Jensen function, ζ, is 
defined as: 
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Figure 4. Histogram of the SSI for the signal represented in 
Figure 3: (a) seizure activity, (b) nonseizure activity. 
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Figure 5. Histogram of successive spike intervals of seizure 
activity represented in Figure 3(a): (a) the first four seconds 
(b) the first two seconds. 
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The values of the Jensen function are constrained 
between 0 and 1. If vectors S and R are exactly the 
same, the value of the Jensen function will be 
equal to zero. Therefore, the smaller the value of 
the Jensen function, the more likely the epoch 
associated with the histogram S is extracted from 
an EEG which exhibits a seizure. In the present 
work, an EEG epoch is considered as a seizure if 
the corresponding Jensen function is smaller than 
0.1. The selected threshold value was the best 
trade-off between the good detection and false 
detection rates in EEG epochs of the database. 
 
2.5. Forming Seizures Class Set   To classify a 
set of HSSIs, H = {H1, H2, …, Hn}, into different 
classes, C = {C1,C2,…,Cm} the k-nearest neighbor 
algorithm is used as follows: 
 
C1 = H1   ,   C = {C1} 
 

n:2i|)C,iH(R =ϕ=  

 
where φ is a function that compares Hi with 
different classes in C using the Jensen function to 
find the nearest one, and Ci is a vector holding the 
average values of Hi related to the class 
represented by Ci. The output of the function is a 
vector including the distance and the class number, 
the winner class or the class with the shortest 
distance. Hence, R = [gd] is a vector of two 
elements where g and d represent the class number 
and the distance, respectively. 
     For a given Hi, in the classification process, if d 
is less than a predefined threshold value, Hi is 

considered to be in the winner class. Otherwise Hi 
makes a new class by itself. This process is 
continued to classify all the members in the 
database. 
     To validate the class set, the classification 
process is repeated. In the next trial of 
classification, the class set from the last trial is 
used as the initial state. In the new trial of the 
classification, the number of classes may change. 
If Hi is not close enough to any of the existing 
classes, it creates a new class. If a class could not 
obtain any member, it would be removed from the 
class set. The validation process is continued until 
the class set has no more changes. 
     To form the seizure class set, the EEG data of 
11 newborns who were admitted at the Royal 
Children's Hospital in Brisbane, Australia were 
used. Firstly, a database was made of 4-second 
epochs associated with seizure activity. The 
database includes 5000 seizures. The HSSIs 
extracted from the database have been classified 
into six different classes, without supervision, 
using the k-nearest neighbor technique. Figure 6 
shows the HSSI of the class set. The majority of 
seizures from the database join either Class 1 or 
Class 2. Rates of different classes in classifying 
seizures from the database are shown in Table 1. 
These investigations show that HSSIs extracted 
from the EEG seizures of a baby may be similar to 
any of the six HSSI class sets. However, the rate of 
HSSI patterns may not bet the same in different 
babies. 
 
 
 

3. PERFORMANCE ASSESSMENT 
 
In order to assess the performance of the above 
technique in detecting EEG seizure, the EEG data 
collected from another five newborn babies whose 
ages range between two days to two weeks were 
used. The seizure and nonseizure areas on the EEG 
data were labeled by a neurologist at the Royal 
Children's Hospital in Brisbane, Australia. 
     The performance of the proposed seizure 
detection method is then compared with three other 
published methods, namely: Autocorrelation [19], 
Spectrum [20] and Singular Spectrum Analysis 
[21] (SSA). The Autocorrelation method performs 
analysis in the time domain and is based on the 
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autocorrelation function of short epochs of EEG 
data. The Spectrum technique is based on spectral 
analysis and is used to detect periodic discharges. 
The SSA technique employs singular spectrum 
analysis and information theoretic-based selection 
of the signal subspace. 
     The performance assessment of the proposed 
method was accomplished by applying its 
algorithm to all the EEG channels of each 

newborn. The EEG epoch is considered to contain 
a seizure in a given time interval if the algorithm 
detects a seizure in one or more channels on that 
specific interval. The performance results are 
summarized in Table 2. In this table, the good 
detection rate (GDR) and false detection rate 
(FDR) are defined as: 
 

%
FDGD

FD100FDR,%
R

GD100GDR
+

×=×=  

 
where GD and FD are the total number of good 
and false detections, respectively, and R represents 
the total number of seizures recognized by the 
neurologist. A good detection occurs if the 
detected EEG epoch matches the epoch labeled as 
a seizure by the neurologist. 
 
 
 

4. DISCUSSION 
 
The performance results represented in Table 2 
show that except for Baby 3, the TF-based 
technique has better GDR than the other methods. 
The reason for the low GDR associated with Baby 
3 using the TF-based technique has been 
recognized. One epoch of the data that was labeled 
as a seizure by the neurologist and detected by the 
different techniques, except the TF-based 
technique, is shown in Figure 7. The figure shows 
the existence of a low frequency activity as well as 
high frequency activity (spikes) in the signal. As 
mentioned before, the repetitiveness in the low 
frequency activity of the signal is a signature of the 
seizure. Since the Autocorrelation, Spectrum and 
SSA techniques are low frequency-based methods, 
they have succeeded in detecting the seizures. 
     To analyze the behavior of spikes in the signal 
using the TF-based method, positions of the 
detected spikes are shown by the pointed pins at the 
bottom of the figure. Detection of a few spikes in 
the signal shows that most of the spike-like patterns 
are due to noise. The histogram of interspike 
intervals is shown in Figure 8. The first ten bins are 
shown in the histogram. It is clear that the histogram 
is not similar to any histogram related to the 
different classes of seizure activity (see Figure 6). 
     The failure in detecting the seizure signal 
represented in Figure 7 is due to the fact that the 
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Figure 6. Histogram of the SSI related to different classes of 
the EEG signal. 
 
 
 
TABLE 1. Prevalence of Six Classes of Seizure in Newborn 
EEGs. 
 

Class set Rate 

Class 1 49 % 

Class 2 21 % 

Class 3 13 % 

Class 4 12 % 

Class 5 3 % 

Class 6 2 % 
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seizure appeared to have a low frequency 
signature. In other words, the high frequency 
signature of the seizure is absent. 
     For the first baby in Table 2 the TF technique has 
a remarkably better GDR than the other techniques 
with the lowest FDR. This could be due to the 
existence of seizures with a mostly high frequency 
signature or to the nonstationary behavior of the 
seizure. It can be conclude from Table 2 that the TF-
based method has better performance than the three 
other techniques in terms of both GDR and FDR. 
     It should be noted that the superior performance 
of the proposed technique over the existing 
methods is based on a sample of five newborn 
EEGs. The data sample needs to be increased to 
improve the confidence of the results for automatic 
EEG seizure detection. 
 
 
 

5. CONCLUSION 
 
This paper presents a new approach for automatic 
seizure detection in newborn EEG signals, based 
on the distribution of interspike intervals. The 
technique is composed of two stages. In the first 
stage, the EEG signal is preprocessed to detect 
spike events. In the next stage, the histogram of 
successive spike intervals is extracted to 

discriminate between seizure and nonseizure 
activities. Results obtained with five newborn EEG 
data show that the time-frequency based technique 
outperforms the three other existing methods. 
However, more data set is needed to convince of 
the superiority of the proposed technique in 
detecting newborn EEG seizures. 
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Figure 7. Four seconds of the third baby's EEG signal  in 
Table 2. 
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