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Abstract   Forming Limit Diagrams are useful tools for evaluation of formability in the sheet metals. 
In this paper the effects of yield criteria on predictions of the right and left-hand sides of forming limit 
diagrams (FLDs) are investigated. In prediction of FLD, Hosford 1979, “Karafillis-Boyce” (K-B) and 
BBC2000 anisotropy yield functions have been applied. Whereas the prediction of FLD is based on 
the “Marciniak and Kuczynski” model, thus a numerical approach using the Newton-Raphson method 
has been used. Forming Limit Diagrams have been obtained for Al 6111-T4 and AA5XXX alloys and 
results have been compared with published experimental data. Results indicate that predictions of 
FLD are very sensitive to selection of yield criterion. Also it was found that the FLD of K - B yield 
function has a better agreement than that by other yield criteria. 
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در اين . باشند هاي فلزي مي پذيري ورق دهي ابزاري مفيد براي تخمين شكل هاي حد شكل منحني   چکيده

دهي بررسي  هاي حد شكل  منحنيمقاله تاثير معيارهاي تسليم مختلف روي محاسبه سمت راست و چپ
 ، كارافيليس۱۹۷۹دهي، معيارهاي تسليم ناهمسانگردي چون هاسفورد  هاي حد شكل در محاسبه منحني. شود مي
دهي بر پايه مدل  هاي حد شكل از آنجا كه بدست آوردن منحني.  اعمال شده است۲۰۰۰ سي بي  بويس و بي-

هاي حد  منحني.  رافسون استفاده شده است- وش عددي نيوتنباشد، بنابراين ر  كوزينسكي مي- مارشينياك
هاي تجربي منتشر شده   استخراج گشته و نتايج آن با دادهAl 6111-T4 و AA5XXXدهي براي آلياژهاي  شكل

دهي به انتخاب نوع تابع  هاي حد شكل دهد كه منحني اين نتايج نشان مي. در بقيه مقالات مقايسه شده است
 بويس -دهي منتجه از تابع تسليم كارافيليس  همچنين مشاهده شده كه منحني حد شكل. تندتسليم حساس هس

 .تطابق بهتري با نتايج تجربي نسبت به بقيه توابع تسليم دارد
 
 
 

1. INTRODUCTION 
 
In sheet metal operation, the amount of 
deformation is restricted by the occurrence of 
localized necking. Experimental investigations 
revealed that localized necking of sheet metals 
could be well described by a diagram in principal 
strain plane, namely Forming limit diagram (FLD). 
Thus the FLD is convenient tool to be used as the 
reference in evaluation of the formability in sheet 
metals. 
     Keeler and Backofen [1] and Goodwin [2] 

introduced the concept of the forming limit 
diagram (FLD). Keeler [3] found the material 
properties have great effect on the strain 
distribution in biaxial stretching of sheet metals. 
Most theoretical and numerical studies on FLD 
analysis have been established on the so-called 
M–K approach developed by Marciniak and 
Kuczynski [4]. Marciniak et al. [5] slightly 
modified their original model to study the effects 
of plastic anisotropy. Their analytical results agree 
with experimental evidence for steel and copper, 
but were not accurate for aluminum. 
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Van Minh, et al. [6], Yamaguchi and Mellor [7], 
Tadros and Mellor [8] examined the effects of 
different types of initial non-uniformity on FLD. 
Barata da Rocha et al. [9] used the M–K method to 
predict FLD. They also used Hill’s 1948 yield 
criterion and analyzed the influence of the 
directional r-values. Kuroda and Tvergaard [10] 
investigated the influence of different orthotropic 
yield criteria in the M–K model and showed that 
disorientations of the orthotropic axes inside and 
outside the necking band can lead to significant 
differences in FLD prediction. Cao et al. [11] 
predicted localized thinning of sheet metal alloys 
for linear and nonlinear strain paths in the 
Marciniak-Kuczynski (M-K) model. Kuroda and 
Tvergaard [12] studied the influence of the yield 
criterion on Forming Limit Diagram by using the 
M-K model. Butuc et al. [13] used the M–K model 
and proposed a solution scheme based on a 
Newton–Raphson solver in order to determine the 
unknown parameters in the M–K model. Banabic 
et al. [14] compared different modeling approaches 
to predict the forming limit diagram (a finite 
element based approach, the M–K model, the Hora 
et al., Swift’s diffuse and Hill’s localized necking 
approach) using an orthotropic yield criterion 
BBC2003. They showed that the results of the M–
K model and the finite element based approach are 
very close to each other and agreed very well with 
the experimental necking FLD. 
     A thorough review of the effects of yield 
surface shape on the prediction of FLDs was 
offered by Barlat [22]. In his work, several 
important characteristics of the yield surface are 
identified and a parameter is introduced that 
quantifies some of the differences between various 
yield criteria. This parameter, P, defined as the 
ratio of the yield stress in plane strain to that in 
balanced-biaxial tension has been shown to 
correlate well with predictions of limit strains 
based on the M-K analysis. 
     The purpose of this paper is to investigate the 
effect of three yield surface shape namely Hosford 
1979, “Karafillis - Boyce” (K-B) and BBC2000 on 
prediction of the right and left hand sides of 
Forming Limit Diagrams. Thus a developed 
numerical method on M-K model for prediction of 
the FLD is applied. The numerical approach is 
based on the Newton-Raphson method. For 
calculating FLD, two hardening laws such as 

Power law and Voce hardening laws [15] are 
employed. Also, the predicted FLD is compared 
with the experimental data for Al 6111-T4 and 
AA5XXX metals. 
 
 
 

2. YIELD CRITERIA 
 
While there exists numerous yield criteria that 
incorporate the effects of plastic anisotropy, we 
examine the effects of three specific criteria in 
order to find a general rule for making judgment 
on the effects of plastic anisotropy on forming 
limit. The first of these is Hosford 1979’s yield 
criterion: 
 

a
yσ)1R(a)2σ1σ(Ra

2σ
a
1σ +=−++  (1) 

 
where σ1 and σ2 are the in-plane principal stresses 
and yσ  is the equivalent stress, in this case, equal 

to the yield stress in uniaxial tension. The 
coefficient R is normal anisotropy and is defined 
by: 
 

)90R45R20R(
4
1R ++=  (2) 

 
where R0, R45 and R90 are the ratios of transverse to 
through-thickness strains under uniaxial tension at 
0, 45° and 90° to the rolling direction. This 
criterion is based on upper-bound crystallographic 
calculations. The suggested exponent, a, is 6 for 
BCC materials and 8 for FCC materials. This 
criterion has been plotted for both cases for various 
values of R in Figures 1 and 2, respectively. As 
shown in the figures, the yield surfaces are quite 
flat and the positions of plane strain relative to that 
of balanced-biaxial stretching are quite insensitive 
to the value of R. 
     The second yield surface of the anisotropic 
material with orthotropic symmetry is described by 
a non-quadratic yield criterion developed by 
“Karafillis and Boyce” [15]. The K-B yield 
criterion was constructed by mixing two yield 
functions, Ψ1 and Ψ2. As shown in Equations 3-5, 
Ψ1 represents a yield locus located between the 
Tresca yield locus and the von Mises yield locus 
and Ψ2 varies by the von Mises to a theoretical 
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Figure 1. Hosford's yield criterion with an exponent of 6 for 
various values of R. 
 
 
 

 
Figure 2. Hosford's yield criterion with an exponent of 8 for 
various values of R. 

upper bound as a changes from 2 to ∞. 
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where, 
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a and c are material constants and Si is the 
principal values of the isotropic plasticity 
equivalent stress tensor and yσ  is the average yield 

stress in uniaxial tension obtained experimentally. 
A fourth order tensorial operator, L, introduces the 
material anisotropy, i.e. 
 

σ:LS =  (6) 
 
Where s is isotropic plasticity stress tensor, σ is the 
Cauchy stress in the anisotropic material: 
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and L is a fully symmetric and traceless fourth 
order tensor: 
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Where c1, c2, …, c6 are material constants. The last 
criterion is BBC2000 yield criterion. This yield 
function is a new yield criterion for orthotropic 
sheet metals under plane stress conditions. It is 
derived for the one proposed by Barlat and Lian in 
1989 [22]. Two additional coefficients, namely b  
and c , have been introduced in order to allow a 
better representation of the orthotropic sheet metals 
plastic behavior. The equivalent stress is defined 
by the following relationship: 
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Where c,b,a  and K are material parameters, 
while Γ and Ψ are the functions of the second and 
third invariants of a fictitious deviatoric stress 
tensor σ:LS = , where L is a fourth order tensor 
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described in Equation 8. Hence, in the reference 
system associated to the directions of plastic 
orthotropy, the tensor L has six non-zero 
components for 3D conditions and four 
components for a plane stress state. Let (x, y, z) be 
the reference frame associated to the directions of 
plastic orthotropy. For a rolled sheet, x, y, and z 
represent the rolling direction, the transverse 
direction, and the perpendicular to the plane of 
the sheet metal, respectively. The components of 
the s tensor can be expressed as follows in this 
frame: 
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Where d, e, f and g, the four independent 
components of the tensor L, are anisotropy 
coefficients of material. The second and third 
invariants of the deviatoric tensor s have the 
following expressions: 
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where the Greek indices take the values 1 and 2. 
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The quantities are not affected by the rotations that 
leave unchanged the third axis (ND). Thus, in the 
case of the plane stress of sheet metals, we can use 
I2 and I3 instead of J2 and J3 in order to define the 
functions Γ and Ψ. We have adopted the following 
expressions for these functions: 
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By using Equations 11-13, we can express Γ  and 
Ψ as explicit dependences of the actual stress 
components; 

2112
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where, 
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The K value is set in accordance with the 
crystallographic structure of the material: K = 3 for 
BCC alloys, and K = 3 for FCC alloys. 
     These criteria have been plotted for AA5XXX 
in Figure 3. Material constants of this metal for 
these yield criteria are listed in Tables 1 and 3. 
     As shown in Figure 3, at the position balanced - 
biaxial stretching, the Hosford’s yield surface is 
coincided to the BBC2000’s yield surface. At other 
positions, the differences between these two yield 
function is negligible. But the differences between 
Karafillis - Boyce yield surface and other two yield 
surfaces are sensible. 
 
 
 

3. REVIEW OF MARCINIAK AND 
KUCZYNSKI MODEL 

 
In this paper, to obtain the limit strains, the 
“Marciniak and Kuczynski” (M-K) model [4] has 
been used. In this model, it has been assumed that 
there is a narrow groove in the sheet surface. Thus 
the sheet is composed of safe area and a groove 
area which are denoted by ‘a’ and ‘b’, respectively. 
Figure 4 shows these areas. This groove leads to 
localized necking in the sheet. For modeling the 
groove, an imperfection factor is introduced which 
represents the thickness ratio f = tb / ta, where “t” 
denotes the thickness. Stress components are 
imposed at rolling and transverse directions in the 
safe area and cause the progress of strain 
increments in both the safe and the groove areas. 
Necking occurs when the effective strain in the 
groove area is 10 times of that in the safe area. 
     During the entire process, the force equilibrium 
equations at groove direction must be satisfied as 
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Figure 3. Comparison of different yield surfaces. 
 
 
 

 
Figure 4. Assumption of a narrow groove in the sheet surface 
for prediction of FLD in the M - K model. 

follows: 
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where Fnn and Fnt are forces in the normal and 
tangential directions in the groove. By introducing 
the stress state in these areas, Equation 17 could be 

rewritten as follows: 
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where nnσ  and ntσ  are stress components in the 

“n” and “t” directions, a
0t  and b

0t  are initial 
thicknesses in the safe and groove regions, 
respectively. Non-uniformity factor, f, can be 
expressed as a function of the initial defect: 
 

)a
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Herein f0 is the initial non-uniformity factor and 
denotes by a

0t/b
0t , and 3ε  is the strain in thickness 

direction calculated by incompressibility condition: 
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Thus, force equilibrium conditions are summarized 
as: 
 

a
ntσb

ntσf

b
nnσb

nnσf

=

=
 (21) 

 
It is assumed that the strain increments parallel to 
the groove are the same in both regions 
(compatibility condition): 
 

a
ttεdb

ttεd =  (22) 
 
By using the force equilibrium and compatibility 
conditions, the unknown parameters are obtained. 
The unknown parameters are including stress and 
strain components, whereas, using flow rule, the 
strain components are related to effective strain 
and stress state: 
 

ij

yεdijεd
σ∂

σ∂
=  (23) 

 
Thus the unknown parameters are reduced to stress 
components and effective strain. 
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TABLE 1. Material Constants Describing the K - B Yield 
Function [18]. 
 

c6 c3 c2 c1 c a Metal 
0.480.961.08 1.03 0.63 26 Al 6111-T4 
0.991.070.80 1.05 0.63 26 AA5XXX 

 
 
 
TABLE 2. Material Constants Describing the Hardening 
Laws. 
 

Power law [19] 
n ε0 K Metal 

0.233 0.0127 489.37 Al 6111-T4 
Voce hardening law [20] 

C B A Metal 
8.301 273.068 416.067 AA5XXX 

 
 
 
TABLE 3. Mechanical Constants Describing BBC2000 and 
Hosford Yield Functions for AA5XXX. 
 

R K Q P N M c  b  a  

0.634 -0.725 0.726 0.504 0.507 0.730 0.982 0.663 
 

4. COMPUTATION PROCESS 
 
To calculate the limit strains, the safe region is 
loaded, i.e. it is assumed the safe region is 
stretched with constant stress relation α. For this 
purpose, a value for α, between 0 and 1 is selected 
and note that this value must remain constant at 
entire time during the process. At starting, a small 
value for effective strain increment aεd  (for 
example 0.0001) is assumed. Substituting aε  in the 
hardening law, the effective stress Yσ  is obtained. 
Since the effective stresses by hardening law and 
yield function are equal, thus a

xσ  and a
yσ  can be 

obtained. A relationship between effective strain 

and effective stress can be represented by the so - 
called Power law: 
 

n)0(KY ε+ε=σ  (24) 
 
where, K  is the strength coefficient, 0ε  is the pre-
strain and n is the hardening law exponent. Also 
Voce [15] hardening law has been used to describe 
behavior of aluminum alloys that are insensitive to 
the strain-rate sensitively: 
 

)C(pxeBAY ε−−=σ  (25) 
 
Where A, B and C are material constants. Using the 
assumed ad ε , stress components and flow rule, 

strain components a
xd ε  and a

yd ε  are calculated. 

Since the groove has an angle with respect to 
transverse direction, it is required to find stress and 
strain states in the groove direction. This work is 
needed for satisfying the compatibility and force 
equilibrium conditions. Using the rotation matrix, 
the vectors for strain and stress tensors are changed 
to the groove system of coordinates: 
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where T is the rotation matrix and TT is transpose 
of rotation matrix. In this paper, for calculating 
the unknown parameters at groove region, the 
Newton-Raphson method is applied. Consider N 
functional Fi relations to be zeroed involving 
variables .N,...,2,1i,1x =  as follows: 
 

.N,...,2,1i
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=

=
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Using Taylor series, functions Fi can be expanded 
as follows: 
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In matrix notation, Equation 29 is reduced to: 
 

)2xδ(Oxδ.J)x(F)xδx(F ++=+  (30) 
 
Where J is the matrix of partial derivatives and is 
called the Jacobian matrix. 
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By neglecting terms of order δx2 and higher and by 
setting 0)xδx(F =+ , we obtain a set of nonlinear 
equations: 
 

0Fx.J =+δ  (32) 
 
or, 
 

F.Jx 1−−=δ  (33) 
 
Then, the variable δx is added to the solution 
vector: 
 

xoldxnewx δλ+=  (34) 
 
where λ is the Newton step length. Using a 
backtracking algorithm, an acceptable λ can be 
found. The following steps must be considered as 
the simplest backtracking line search to find λ: 
 
Step 1. Set λ = 1. 
 
Step 2. While: 
 

410

)oldxnewx(.)x(g
)oldx(g)newx(g

−∇
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set λ =λs. 
 
Step 3. Set λK = λ. 
    Equation 35 is suggested by Armijo [19] as the 
condition for finding the optimum λ. In this 
equation g(x) is defined as; 
 

F.F)x(g =  (36) 
 
Typically, s = 0.8 or 0.5, meaning that based on the 

linear extrapolation, a small decrease in g(x) is 
accepted. To exit the Newton’s calculation loops, it 
is required to define a criterion. In the present 
formulations, there exists a vector of function 
which has four components. All components of 
this vector have the same important rank. Thus, the 
maximum value among these components has been 
selected to be compared with the tolerance in the 
Newton’s loop. i.e.: 
 

iF
4
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This is called ∞ - norm. Since the unknown 
parameters in this region are including, 

b
ntσ,b

ttσ,b
nnσ  and bd ε , the vector of values x is 

defined as: 
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Using the compatibility and force equilibrium 
conditions, three equations for the vector of 
functions are obtaining. In this paper, the energy 
relation is used as the 4th equation: 
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Thus, vector of functions, F  is introduced as 
follows: 
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01b
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and the Jacobian matrix is written as: 
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Calculating of limiting strains is repeated for 
different value of θ between 0 and 90°. It is 
important to note that considering of groove 
orientation is necessary for calculating the limit 
strain especially for the left hand side of FLD. 
Changing in the groove orientation is obtained 
using definition of the natural strain as follow: 
 

0l
1llnεd =  (46) 

 
where l0 and l1 are initial and deformed lengths, 
respectively. Using Equation 46 and considering 
Figure 5, strain increments in the rolling and 
transverse directions are obtained as follows: 
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Using Equations 47 and 48 and definition of 
tangent of an angle, we have: 
 

)2εd1εd(exp)0θ(tg)2εd1εd(exp)θ(tg −=−=
′
′

=
b
a

b
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 (49) 
 
Minimum value of major localization strain is 
selected among the calculation loops by variation 

of θ. The selected minimum strain for any value of 
α is used in plotting of the FLD. This progression 
is shown in appendix I as a flowchart. 
 
 
 

5. RESULTS AND DISCUSSIONS 
 
In this paper, the effects of the preceding yield 
functions on prediction of the FLD have been 
studied in Al 6111-T4 and AA5XXX metals. 
Mechanical properties of these metals are listed in 
Table 1. 
     To calculate the limit strains, Power law 
relationship is selected for Al 6111-T4 and Voce 
hardening law is chosen for AA5XXX. Table 2 
shows material constants related to these hardening 
laws. 
     Figure 6 compares the calculated FLD in 
AA5XXX with experimental data. To calculate the 
limit strains (Forming Limit Diagram) of 
AA5XXX f0 is selected 0.9960. As shown in 
Figure 6, the predicted FLD has good agreement 
with the experimental data. To validate the FLD of 
K-B yield function, the predicted FLD is compared 
with BBC2000 [22] and Hosford [23] yield 
functions. The mechanical constants related to 
these two yield functions for AA5XXX alloy are 
listed in Table 1. 
     In Figure 7, the predicted FLD by applying the 
K-B yield function is compared with the FLD of 
Hosford and BBC2000 yield functions. The FLD 
of BBC2000 and Hosford yield criteria has been 
also calculated by similar method in this paper. It 
is observed from Figure 7 that the FLD by K - B 
yield function is safer than the FLD by BBC2000 
and Hosford yield functions with the exponent a = 
8. To calculate the FLD of Al 6111-T4, the non-
uniformity factor, f0, is selected 0.9970. For this 
metal, the Power law is selected to describe the 
relation between effective strain and effective 
stress. R is necessary property for describing 
Hosford yield function in Al 6111-T4 which is 
0.63. The exponent in the Hosford relationship, a, 
is selected 8. Figure 8 shows comparison of 
predicted FLD using “Karafillis - Boyce” and 
“Hosford” yield functions. The predicted FLD by 
K-B yield function has better agreement than that 
by Hosford yield criterion. 
     The calculated FLD has also been compared 
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Figure 5. Groove orientation in the M - K model. 
 
 
 

 
Figure 6. Comparison of Predicted FLD using K - B yield 
criterion and experimental data [20]. 

 
 
 

 
Figure 7. Comparison of FLD of different yield criteria with 
the experimental results [20]. 
 
 
 

 
Figure 8. Comparison of Predicted FLD using K - B and 
Hosford yield functions and experimental data [19]. 

with other experimental data. Figure 9 and Figure 
10 reveal the result of this comparison. As shown 
in all above figures, the left hand side (LHS) of 
FLD is linear and it is not dependent to the 
selection of yield function. 
 
 
 

6. CONCLUSION 
 
In this paper, to calculate the limit strains, the 
“Marciniak and Kuczynski” (M-K) model has been 

used. The numerical method for this analysis is 
based on the Newton-Raphson method. Limiting 
strains have been calculated for Al 6111-T4 and 
AA5XXX alloys and compared with the 
experimental data. To obtain the FLD, “Karafillis 
and Boyce” yield function has been used. In this 
process, to investigate the precision of FLD by K-
B yield function, its predicted FLD has been 
compared with the BBC2000 and Hosford yield 
functions in AA5XXX alloy. This study shows the 
FLD of K - B yield criterion is very safe and has a 
good agreement with the experimental results. 
Also, it was found that the left hand side of FLD is 
not dependent to the selection of yield function and 
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Figure 9. Comparison of FLD by K - B and Hosford yield 
criteria and experimental results [24]. 
 
 
 

 
Figure 10. Comparison the right - hand side of FLD by K – B 
and Hosford yield criteria and experimental results [21]. 

has linear variation from FLD0. 
 
 
 

7. NOMENCLATURE 
 
σ1, σ2 Principal stress components. 
σnn, σtt, σnt Stress components in the 

groove coordinate. 
Yσ  Effective stress obtained by 

hardening law. 

yσ  Effective stress obtained by 
yield function. 

ε0, K, n, m, A, B, C Material constants describing 
hardening laws. 

a, c, c1, …, c6 Material constants describing 
K - B yield function. 

c,b,a , M,N,P,Q,R Material constants describing 
BBC2000 yield function. 

R Normal anisotropy. 
ε  Effective plastic strain. 
ε&  Rate of effective plastic strain. 
εd  Effective plastic strain 

increment. 
ntdε,ttdε,nndε  Strain increments in the 

groove coordinate. 
3dε,2dε,1dε  Strain increments in the 

material coordinate. 
a Ratio of stresses along the 

strain path. 
T Rotation matrix. 
dλ Plastic multiplier. 
Fnn, Fnt Force equations in the groove 

directions. 
f Non-uniformity factor. 
δx Newton’s step. 
J Jacobian matrix. 
θ Angle between the groove 

coordinates and the material 
coordinates. 

λ Newton step length. 
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