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Abstract   A neuro-fuzzy approach is proposed for modeling the malaria transmission in a human 
host. Three dynamic models (i) consistent host preference model (ii) switching behavior model and 
(iii) increasing preference model, are developed to understand the equilibrium and stability. These 
models allow us to estimate biting preference by mosquitoes with respect to infection in their host. 
We have focused on the dynamics of malaria transmission by considering the aspects of non-random 
host choice. In determining the levels of malarial infection, it is shown that mosquitoes are 
preferentially attracted to an infected host even when biting does not occur. Numerical results are 
obtained using both analytical and neruo-fuzzy approach to explore the equilibrium behavior. 
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. انساني ارايه شده است   ) بدن(لسازي انتقال مالاريا در يك ميزبان       عصبي براي مد   - رويكرد فازي يك  چكيده      
مدل افزايش ارجحيت بـراي  ) ٣(مدل تغيير رفتاري و ) ٢( ،مدل ارجحيت ميزبان سازگار ) ١(ويا شامل   پسه مدل   

 تا بتوانيم ارجحيت گزندگي توسـط       دهند  مي زهمدل ها به ما اجا    اين  . درك تعادل و پايداري توسعه داده شده اند       
اب ميزبـان غيـر     ما با در نظر گرفتن جنبه هاي انتخ ـ       . شه ها را با توجه به آلودگي در ميزبان ايشان تخمين بزنيم           پ

حتـي اگـر    شـود    ن سطوح آلودگي مالاريا، نشان داده مـي       يدر تعي . كنيم ايي انتقال مالاريا تمركز مي    تصادفي بر پوي  
نتـايج عـددي از دو   . رونـد  مـی پشه ها با ترجيح زياد و علاقه به طرف ميزبـان آلـوده           باز هم  ندهدگزندگي رخ   

  .گردد عصبي براي كشف رفتار تعادلي ارائه مي - رويكرد تحليلي و فازي

 
 
 

1. INTRODUCTION 
 
The dynamics of malaria transmission incorporates 
non-random feeding behavior of the mosquito. 
Infected proportions of the human host and 
mosquito vector populations are the type of 
dynamic variable. It appears that when the level of 
host infection is low, preference of infected hosts 
is low. It allows a stable infected equilibrium. It is 
considered that there are three types of non-
random host choices: a consistent preference for an 
infected host, an increasing preference for an 
infected host and a switching behavior for 
mosquito vector. A consistent preference does not 

alter the basic properties of the system, relative to 
random host choice at all levels of host infection. 
An increasing preference increases the infection 
level of the host. In a switching behavior the 
mosquito switches preference from uninfected to 
infected host and also increases the infection level 
of the host. The consistent preference is easier to 
maintain a stable infection in the host population 
and increases the equilibrium level of infection in 
the vector population. The state space is divided 
into a lower uninfected region and an upper 
infected region. Various dynamic models have 
been studied to analyze the predator-prey systems 
in which the predator changes its preference or 
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aggregation behavior. This behavior also occurs in 
some other epidemiological models. 
     Previous studies demonstrate that non-random 
host choice by mosquitoes with respect to host 
infection could have important quantitative and 
qualitative effects on the dynamics of malaria 
infection. Aron and May [1] suggested that the 
mosquito do not feed randomly. Non-random 
feeding may be expressed at three different stages: 
attraction and penetration, probing and the location 
of blood intake. Mosquitoes are preferentially 
attracted to infected hosts even when biting does 
not occur. Berding et al. [2] presented the 
population dynamics of acquired immunity, for the 
helminthes infections. Mosquito host choice and 
the epidemiology of malaria was studied by 
Kingsolver [3]. Anderson [4] illustrated the 
epidemiology of malaria infection by considering 
the variable incubation and infectious periods. 
Born and Dierzk [5] examined the dynamics of 
parasite population within a dynamic host 
population. Nasell [6] considered the quasi-
stationary distribution of the Ross malaria model. 
They noted that, mosquitoes need not directly 
assess the prevalence of infection in the host 
population, as required by the increasing-
preference and switching models. Hellriegel [7] 
suggested a model for immune response to malaria 
with an ecological concept, which is short-term 
behavior against long term equilibrium. 
     Gatton et al. [8] developed a model to estimate 
the duration for which malaria antibody levels in 
the blood remain high in a closed population. 
Gravenor et al. [9] estimated the parasite for the 
population dynamics in cerebral malaria. This 
estimate can be used to calculate the transmission 
rate within a region. Herbert and Isham [10] 
discussed stochastic host-parasite interaction 
models. The simple nonlinear stochastic model for 
the evolution of the parasite load of a single host is 
extended to allow three parasite stages (larval, 
mature and offspring), and to allow durations of 
these stages to be non-exponentially distributed. 
Luchsinger [11] considered the long-term behavior 
of a model for parasitic infection. The behavior of 
the deterministic models is analogous to the 
stochastic ones. Mohtashemi and Levins [12] 
illustrated mathematical models of the dynamics of 
infectious diseases and consistently focused on 
understanding the long-term behavior of the 

interacting components. Hoshen et al. [13] 
suggested the mathematical model for the within-
host dynamics of plasmodium falciparum. 
Deterministic extinction effect of parasites on host 
populations has been studied by Hwang and Kuang 
[14]. Lloyd and Jansen [15] discussed the 
dynamics of epidemics in cases of synchrony in 
metapopulation models. The linear stability of 
spatially homogeneous solutions are provided. 
Experimental studies have shown that parasites can 
reduce host density and make host population to 
extinction. 
     The present study on dynamics of malaria 
transmission incorporates biting preferences by 
mosquitoes with respect to infection in their host. 
It also includes the non-random host choice 
depending on the interaction of human hosts and 
mosquito vectors. In order to determine the levels 
of malarial infection, it is considered that 
mosquitoes are preferentially attracted to infected 
hosts. It is noted that the mosquitoes need not 
directly assess the prevalence of infection in the 
host population as required by the increasing 
preference and switching models. 
     We develop mathematical model of the 
outcome of a complex feeding process involving 
habitual choice, attraction behavior of the host, 
probing and blood location, blood intake, and 
parasite transmission. The analytical results for 
transmission dynamics are compared with those 
obtained by the neuro fuzzy systems (NFS) 
approach. The NFS approach is one of the key soft 
computing approaches, which combines artificial 
neural networks (ANNs) and fuzzy systems (FS). 
These systems resemble the nervous systems, 
where the ANNs are analogous to neural cells 
which are low-level perceptives, responsible for 
the signal integration, while FS is equivalent to the 
brain which provides high level reasoning and 
linguistic abilities. In this study, a special class of 
neuro-fuzzy systems, i.e. Adaptive Network-based 
Fuzzy Interface system (ANFIS) is used to identify 
parameters by applying a supervised learning 
method. A survey on fusion technology of fuzzy 
logic and neural networks was done by Takagi 
[16]. Jang and Sun [17] studied the learning 
algorithms of adaptive network-based fuzzy 
inference systems. More detailed descriptions of 
adaptive neuro fuzzy systems can be found in 
Cornelius and Leondes [18] and Tettamanzi and 
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Tomassini [19]. 
     The rest of the paper is organized as follows: 
In Section 2, we give an introduction to adaptive 
network-based fuzzy inference systems (ANFIS) 
and defuzzification related to our study. 
Mathematical formulation and description of the 
problem are discussed in Section 3. In Section 4, 
we illustrate the numerical results which are 
shown in a graph. The conclusion is drawn in 
Section 5. 
 
 
 

2. ADAPTIVE NETWORK-BASED FUZZY 
INFERENCE SYSTEMS (ANFIS) 

 
ANFIS is a network representation of the Tagaki-
Sugeno-Kang (TSK) type fuzzy systems with 
learning capabilities. TSK is a special type of 
fuzzy rule-based systems in which the rules are: 
 
     IF x1 is A1 AND x2 is A2 … AND xn is An then 
y = f ( x1, x2, …, xn ) 
 
where f  is usually a linear combination of the 
input variables, i.e. 
 
f ( x1, x2, …, xn ) = w0 + w1 x1 + w2 x2 +…+ wn xn 

 
 (1) 
 
Here w0, w1, w2, …, wn are real constants which 
are part of the rule specification. The result of 
applying the rules of a TSK system is a crisp 
number, which is computed as the average of the 
outputs of the single rule weighed by the degree of 
truth of their antecedents. This is a particular case 
of that which has been weighed by average method 
of defuzzification. 
 
2.1 Defuzzification   This is a technique for 
recalled outputs. The recall fit–vector output B 
equals a weighted sum of the individual recall 
vectors B’k : 
 

∑
=

=
m

1k
k ' B k  w  B  (2) 

 
where wk is the non negative weight, which 

summarizes the strength of the kth fuzzy 
associative memories (FAM) rule ( Ak, Bk ). 
Generally we choose w1 = w2 = … = wm = 1 as a 
default. 
     The natural alternative is the fuzzy centroid 
defuzzification scheme. We directly compute 
the real-valued output as a normalized convex 
combination of fit values, the fuzzy centroid B’ 
of fit-vector B with respect to output space Y = 
( y1, y2, …, yp ) 
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where )jy(Bm  is a membership function, j = 1, 

2, …, p. The fuzzy centroid is unique and uses all 
the information in the output distribution B. The 
schematic representation of fuzzy associative 
memory rule has been done in Figure 1. 
 
 
 

3. MODEL DESCRIPTION 
 
A more complete model includes a mechanical 
description of each stage of the feeding process. 
There is only a stable equilibrium at any time and a 
single condition governs whether the stable 
equilibrium is zero (uninfected) or non-zero 
(infected). For the purpose of model formulation, let 
us consider the size of the human population and the 
size of the female mosquito population as N and M 
respectively; x and y are the size of the human host 
population and mosquito vector population, 
respectively. Let the number of female mosquito per 
human host be denoted by m = (M/N), k the 
population of infected biting on human hosts that 
produce an infection; r the per capita rate of 
recovery for human hosts, μ the per capita morality 
rate for mosquitoes. The Ross Macdonald (R-M) 
model (cf. Kingsolver, 1987) for the dynamics of 
malaria infection is as follows: 
 

xr
N
M)x(uyk

td
xd

−β=  (4) 
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FAM Rule 2

FAM Rule m

A

( ) ( ) yμy1xiβtd
yd

−−=  (5) 

 
where ( )xiβ  and ( )xuβ  are the functions 

describing the rates of bites per female mosquito 
on the infected hosts and uninfected hosts, 
respectively. Equations 4 and 5 are the pair of 
ordinary differential Equations describing the time 
course of x and y. β is the total rate of biting per 
unit of time, so that 
 

( ) ( )xu βxiββ +=  (6) 
 
Then the biting rate functions for this model are 
given by 
 
( ) xβxiβ =  (7) 

 
( ) ( )x1βx uβ −=  (8) 

 
In this model bites are distributed between infected 
and uninfected hosts. The biting rate functions 

( )xiβ  and ( )xuβ  describe non-random host choice 
by the mosquito with respect to host infections. 
The main conclusion from the R-M model is the 
identification of a parameter (R) that governs the 
model’s behavior, where R = km β 2/μ r > 1, and R 
is the net reproductive rate of the parasites. 
     An infection will persist and lead to a stable 
equilibrium at which an infection is maintained in 

both the host and vector populations. To examine 
the dynamics of malaria infection, we consider 
three types of non-random host choices: 
 
(i) A consistent preference for an infected host 
(ii) A increasing preference for an infected host 
(iii) A switching behavior for mosquito vector 
 
3.1 Consistent Preference Model for 
Infected Host   This model describes the 
infection at all levels of hosts. For this model, P is 
the preference for infected hosts, then from 
Kingsolver (1987) the biting rate functions for 
infected hosts, are as follows: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+

=
x)1P(1

xPβxiβ  (9) 

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
x)1P(1

xP1βxuβ  (10) 

 
Alternative biting functions can be defined as  
 

( )
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ −−=
αxce1βxiβ  (11) 

 

( ) ( )
αxceβxiββxuβ

−=−=  (12) 
 
where α  is the non-linearity parameter 
corresponding to infected host; c is the positive 

                                                       FAM Rule 1 
   (A1, B1)

(A2,, B2)

(Am, Bm)

∑

 
 

Figure 1. Schematic diagram for fuzzy associative memories (FAM) rule. 
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constant that reflects the intensity of the 
preference. When c increases, the biting rate of 
infected the host increases for all values of x. The 
parameter c must be chosen so that ( )xiβ  
approaches β  as x approaches 1. 
     Now, Equations 4 and 5 of the R-M model can 
be modified as 
 

xr
αxceymkβ

td
xd

−−=  (13) 

 

( ) yμy1
αxce1β

td
yd

−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−=  (14) 

 
Here, we consider the y null-cline, along which 

td
yd

= 0, and the x null-cline, along which 
td
xd

= 0. 

Then we get x null-cline and y null-cline as 
follows: 
 

αxceβmk

xr)x(xf
−

=  (15) 
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⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ −−+

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛ −−

=
αxce1βμ

αxce1β

xyf  (16) 

 
From Equations 15 and 16, we note that ( )xfx  and 

( )xyf  both are non-negative and increasing 

functions of x. This can be verified from Figures 

2-5. ( )xf x  is convex as >2x d/)x f(2d 0, 

whereas ( )xf y  is concave as 02x d/ )yf (2d < . 

The point (x = 0, y = 0) is always an equilibrium 
point. The condition for a second, nonzero 
equilibrium is given by R1 = ckmβ 2/μ r > 1. The 
uninfected equilibrium (0,0) is stable if R1 < 1. 
This can firms the results of Kingsolver [3]. Thus 
the uninfected equilibrium is stable when it is the 

only equilibrium point and unstable when a 
second, nonzero equilibrium exists. 
 
3.2 Switching Behavior Model for Mosquito 
Vector   The following biting rate functions for 
this model are taken from Kingsolver [3] which are 
stated below: 
 

( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
+−

−+
=

x12P1

x2P
x1

1)1(P1

x1P
βxiβ  

 

 (17) 
 

( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
+−

−+
−=

x12P1

x2P
x1

)11P(1

x1P
1βxiβ

 (18) 
 
Alternative biting functions that exhibit switching 
behavior are: 
 

( )
αxcea1

αxce1β

xiβ
−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

=  (19) 

 
and 
 

( ) ( ) ( )
αxcea1

αxceβ 1axiββxu β −+

−+
=−=  (20) 

 
Here a, c, and β  are all positive constants. The 
biting functions given by Equations 19 and 20 are 
called switching biting functions, and have the 
same effect as Equations 11 and 12. Here ( )1iβ  = 
β  only when c = ∞ . 
     Equation 17 has the desirable property that 

( )1iβ  = β , for any realistic values of P1 and P2. 
For this case of switching behavior, we observe 
that  
 

( ) xrαxcea1

αx ceyβmk 1a
td
xd

−
−+

−+
=  (21) 
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( )
yμ α xcea1

y 1
αxce1β

td
yd

−
−+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

=  (22) 

 
In the case of biting functions given in 21 and 22, 

we can find the x null-cline ( ) ⎥⎦
⎤

⎢⎣
⎡  x x f  and y 

null-cline [ )x(yf ] as follows: 

 

( )
( )

αxce1amkβ

αx cea1xr

x xf
−+

⎟
⎟
⎠

⎞

⎜
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=  (23) 
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⎞

⎜
⎜

⎝

⎛ −−

=
αx ce1β
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For this switching model, we note from Equations 
23 and 24 that both ( )xxf  and ( )xyf  are non 

negative, increasing functions of x; ( )xxf  is 

convex as 02xd/)xf(2d > ; ( )xyf  is sigmoid 

when ( )xiβ  approaches 1 as x approaches 1 and c 
+ 2 β  < 2 a μ , the point (x = 0, y = 0) is always an 
equilibrium point, called the zero or uninfected 
equilibrium. These conditions are verified from the 
Figures 6-10. The conditions for the existence of 
nonzero (infected) equilibrium point is R2 = c 
kmβ 2/ μ  r (a+1) > 1. The uninfected equilibrium 
is stable if R2 < 1, i.e. it is stable either when it is 
the only equilibrium point or when there are two 
nonzero equilibria. 
 
3.3 Increasing Preference Model for 
Infected Host   Biting rate functions for this 
model are taken as follows: 
 

( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
+−=

x1P1

2xPx1xβxiβ  (25) 

( ) ( ) ( ) ⎥
⎥

⎦
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⎢
⎢

⎣

⎡

−+
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x1P1

2xPx1 x1βxuβ  (26) 

 
Alternative biting functions that exhibit increasing 
preference behavior are 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−=
αxce2x2xβxiβ  (27) 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −++−=
αxcex2xx21βxuβ  (28) 

 
The above Equations 27 and 28 demonstrate the 
same affect as Equations 11 and 12. Here ( )1iβ  = β  
only when c = ∞ . For P = 1, the model is identical 
to the R-M model. For this case, we observe that 
the Equations 4 and 5 of R-M model can be 
expressed as 
 

xr )
αx  ce2x  x21(ymkβ

td
xd

−−++−=  (29) 

 

( ) yμ y1
αxce2x2xβ

td
yd

−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−−=  (30) 

 
Here, we get x null-cline and y null-cline as 
follows: 
 

)
αxce2xx21(βmk

xr)x( xf
−++−

=  (31) 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−−

=
αxce2x2xβμ

αxce2x2xβ

xy f  (32) 

 
From this model, we note that, ( )xf x  and ( )xf y  
both are non negative, increasing functions of x; 
the point (x = 0, y = 0) always exists and is an 
equilibrium point. The condition for being locally 
stable is given by R = kmβ 2/μ r < 1. The 
uninfected equilibrium (0,0) is stable if R < 1. 
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(a)                                                                                     (b) 
 

Figure 2. Phase-plan plot of the infected population of the vector population vs. 
infected host for consistent host preference model at (a) c = 3.0, (b) c = 5.0. 

Thus the uninfected equilibrium is stable when it is 
the only equilibrium point and unstable when a 
second, nonzero equilibrium exists. 
     Here we have considered the host choice 
behavior in which preference depends on the 
relative configuration of the population of infected 
and uninfected hosts. Uninfected hosts are 
preferred at relatively low levels of infected hosts 
whereas infected hosts are preferred at relatively 
high levels. The biting rate functions chosen 
examine the consequences of switching behavior 
for the dynamics of infection and also for the 
dynamics of non-random host choice by the 
mosquito with respect to host infection. There are 
several important differences between the 
consistent preference and switching models. The 
conditions for instability of the uninfected 
equilibrium for the switching model are different 
from those for the preference model, under the 
equivalent situations R2 = R1 (a+1). The most 
important result is that of multiple stable 
equilibrium that can occur for both the increasing 
preference and the switching–behavior models. 

4. NUMERICAL RESULTS 
 
In order to validate the analytical results, a 
numerical experiment is performed. To explore the 
effect of various parameters, the numerical results 
are exhibited graphically. A numerical program is 
developed through MATLAB 6.0 software and run 
on Pentium III. We display the Phase-plane of the 
infection proportion of the vector population as y-
axis (vertical), and the host population as x-axis 
(horizontal) for the consistent preference model. 
The solid line presents x null-cline and y null-
cline. 
     For the validity of the analytical results, we 
employed the adaptive network-based fuzzy 
inference systems (ANFIS). The outputs of the 
analytical method are the data for the fuzzy 
system. For the analytical method, secondary data 
has been taken into consideration from Kingsolver 
[3]. 
     The neuro-fuzzy approach is employed for 
computing numerical results for all models. The 
ANFIS networks (for approximating the nonzero 
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(a)                                                                                                             (b) 
 

Figure 3. Phase-plan plot of the infected population of the vector population vs. 
infected host for consistent host preference model at (a) μ  = 10, (b) μ  = 50. 

equilibrium point), are denoted by a dashed line for 
x-null cline and y-null cline. The different 
parameters are treated as the linguistic variables in 
the context of fuzzy systems. When we build the 
respective ANFIS networks, these parameters are 
taken as input values. The Gaussian function is 
used for describing the membership functions for 
various input parameters. The numerical results 
obtained for various parameters are also compared 
with neuro-fuzzy results. 
     Figures 2-5 depict the phase plane plot between 
the host and vector populations for consistent host 
preference model acceding to various parameters. 
Figure 2(a-b) illustrates the x null-cline and y null-
cline (obtained analytically) (ANFIS) by solid lines 
(dashed line) for different values of preference (c). 
For fixed parameter values β  = 10, μ  = 3.0, α  = 
0.9, and Km/r = 1, we note that, as preferences 
increase, a stable nonzero (infected) equilibrium 
point appears. In Figure 3(a-b), we examine 
equilibrium points for different values of μ  and 
fixed parameter values β  = 10, c = 3.0, α  = 0.9, 
and Km/r = 1. In this case, as preferences increase, 
the equilibrium level of infection in the host 

population decreases. For fixed parameter values 
μ  = 10, c = 3.0, α  = 0.9, and Km/r = 1, the 
equilibrium points for different values of β  are 
displayed in Figure 4(a-b). It is noted that, as the 
biting rate increases, the equilibrium levels of 
infection in the host and vector population 
increase. Figure 5(a-b) exhibits the equilibrium 
points for different values of α  for fixed 
parameters μ  = 10, c = 3.0, β  = 10, and Km/r = 1. 
     In Figures 6-10, we demonstrate the effect of 
parameters c, μ , β , α , a, respectively by fixing 
Km/r = 1 for the phase plane plot in case of the 
switching behavior model. Figure 6(a-b) illustrates 
the x null-cline (obtained analytically) (ANFIS) 
through a solid line (dashed line) for different 
values of preference (c). For β  = 10, μ  = 100, α  = 
0.9, a = 10 and Km/r = 1, we note that as 
preferences increase, a stable nonzero (infected) 
equilibrium point appears. 
     In Figure 7(a-b), for different values of μ  and β  
= 10, c = 15, α  = 0.9, a = 10 and Km/r = 1, we 
exhibit the equilibrium points. In this case, as 
preferences increase, the equilibrium level of 
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(a)                                                                                       (b) 
 

Figure 4. Phase-plan plot of the infected population of the vector population vs. 
infected host for consistent host preference model at (a) β  = 10, (b) β  = 30. 

 
 
 

            
 

(a)                                                                                         (b) 
 

Figure 5. Phase-plan plot of the infected population of the vector population vs. 
infected host for consistent host preference model at (a) α  = 0.5, (b) α  = 0.7. 

infection in the host population decreases. Figure 
8(a-b) shows equilibrium points for different 

values of β  values of β  and μ  = 100, c = 15, α  = 
0.9, a = 10 and Km/r = 1. It is noted that, as the 
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(a)                                                                                        (b) 
 

Figure 6. Phase-plan plot of the infected population of the vector population vs. 
infected host for switching behavior model at (a) c = 9.0, (b) c = 11.0. 

biting rate increases, the equilibrium levels of 
infection in the host and vector population 
increase. Figure 9(a-b) exhibits the equilibrium 
points for different values of α , and β  = 10, c = 
15, a = 10, μ  = 100 and Km/r = 1. It is seen that 
when α  increases, the switch point of preference 
increases. The equilibrium points for different 
values of a, and fixed parameters β  = 10, c = 15, 
α  = 0.9, μ  = 100 and Km/r = 1 are indicated in 
Figure 10(a-b). It is seen that, as constant a 
increases, the switch point of preference increases, 
too. 
     In conclusion, the numerical results using 
ANFIS are quit close to the results, which are 
obtained analytically. We observe from the phase 
plane plot that the biting rate functions are a 
phenomenological description of the outcome of 
the feeding process which involves the attraction, 
defensive behavior of the host, probing and blood 
location, blood intake, and parasite transmission. 
The consistent preference model or the switching 
behavior model is a result of nonrandom host 
distribution and mosquito vector aggregation. But 
the basic property of the system does not change in 

the consistent preference model. Both models can 
maintain the stable infection in certain 
circumstances.  These models are the mechanistic 
description of each stage of the vector-host-
parasite interaction. 
 
 
 

5. SENSITIVITY ANALYSIS 
 
In this section, we present the sensitivity analysis 
between the host and vector populations for both 
the consistent preference and switching behavior 
models. Figures 2-5 are for phase plan plot 
between the infected vector population and 
infected host population for consistent the 
preference model whereas Figures 6-10 are for the 
phase plan plot between the infected vector 
population and infected host population of the 
switching behavior model. The phase plane plot 
between the infected population of the vector 
population and infected host population for the 
consistent preference model is presented in Figure 
2(a) at c = 3.0 and 2(b) at c = 5.0. It is noted that 
the equilibrium point increases as we increase the 
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(a)                                                                                                               (b) 
 

Figure 7. Phase-plan plot of the infected population of the vector population vs. 
infected host for switching behaviour model at (a) μ  = 100, (b) μ  = 120. 

 
 

            
 

(a)                                                                                                               (b) 
 

Figure 8. Phase-plan plot of the infected population of the vector population vs. 
infected host for switching behaviour model at (a) β  = 20, (b) β  = 40. 

value of c. Figure 3(a) at μ  = 10 and 3(b) at μ  = 
50 stands for the phase plan plot of the infected 

individuals between the vector population and host 
population. From these figures, it is clear that the 
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(a)                                                                                        (b) 
 

Figure 9. Phase-plan plot of the infected population of the vector population vs. 
infected host for switching behaviour model at (a) α  = 0.5, (b) α  = 0.7. 

 
 
 
 
 

            
 

(a)                                                                                         (b) 
 

Figure 10. Phase-plan plot of the infected population of the vector population vs. 
infected host for switching behaviour model at (a) a = 10, (b) a = 30. 
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equilibrium level of infection increases as the 
equilibrium level of infection increases as the 
value of μ  is increased. Figure 4(a) at β  = 10 and 
4(b) at β  = 30 depicts that the labels of equilibrium 
increase as we increase the value of β . Figure 5(a) 
at α  = 0.5 and 5(b) at α  = 0.7 shows the 
equilibrium point for the infected population 
between the host and vector populations. It is noted 
that the label of the equilibrium point decreases 
slightly when we increase the value of α . 
     Figure 6 is for the phase plan plot between the 
infected vector population and infected host 
population at c = 9.0 and c = 11.0, respectively. 
From this figure, it is noted that the equilibrium 
label increases as we increase the value of c. 
Figure 7(a) at μ  = 100 and 7(b) at μ  = 120 
shows that as we increase the value of μ , the 
equilibrium label decreases. Figure 8 is for the 
phase plan plot between infected vector 
population and infected host population for β  = 
20 and β  = 40 respectively. It is noted that the 
point of equilibrium increases when we increase 
the value of β . Form Figure 9(a) at α  = 0.5 and 
9(b) at α  = 0.7, it is observed that the equilibrium 
point does not change when we increase the value 
of α . The effect of a is shown in Figure 10(a) at a 
= 10 and 10(b) at a = 30 for phase plan plot 
between the infected population of vector and 
host populations. It noted that the equilibrium 
point decreases when we increase the value of a, 
in all figures. It is seen that the ANFIS results are 
quite close to the results which are obtained by 
the analytical method. So, we can say that our 
results are more accurate in comparison to other 
existing results. 
 
 
 

6. CONCLUSION 
 
An increasing preference biting function could 
result from a preferential attraction to infected 
hosts coupled with a “giving-up time” whereby the 
mosquito would bite the next host encountered. 
The qualitative and quantitative features of 
equilibrium and stability for the consistent host 
preference and the switching model have been 
studied. 

     The purpose of the present investigation is to 
introduce biting rate functions, ( )xiβ  and ( )xuβ  in 
terms of host infection. These models are useful in 
describing the important aspects of the 
transmission dynamics of malaria by taking the 
concepts of non-random host choice, which affect 
qualitative aspects of the interaction of human 
hosts and mosquito vectors in determining the 
levels of malaria infection. Both the random choice 
and consistent-preference models predict either a 
stable uninfected state or a stable persistence of the 
infection. 
     The important observation that can be made 
from our study is that the increasing-preference 
and switching models lead to qualitatively identical 
results. These results demonstrate that nonrandom 
host choice by mosquitoes with respect to host 
infection which could have important quantitative 
effects on the dynamics of malaria infection. Both 
the random choice and consistence-preference 
models predict either a stable uninfected state or a 
stable persistence of the infection for these models. 
The increasing consistent host preference makes it 
easier to maintain a stable infection, relative to the 
random choice model. However, increasing 
consistent host preference can either increase or 
decrease the equilibrium level of infection in the 
host population. Therefore increment in the 
strength of the consistent performance increases 
the equilibrium level of infection of the host 
population when the equilibrium value is small, but 
decreases the equilibrium level when the 
equilibrium value is greater. 
     The results obtained by the neuro-fuzzy 
techniques are at par with the numerical results 
obtained by analytical formulae. We conclude that 
artificial neuro-fuzzy controllers can be easily 
developed to provide an easy and fast solution 
technique for the concerned study. 
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