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Abstract This paper addresses the common cycle multi-product lot-scheduling problem in
flexible flow lines (FFL) where the product demands are deterministic and constant over a
finite planning horizon. Objective is minimizing the sum of setup costs, work-in-process
and final products inventory holding costs per time unit while satisfying the demands
without backlogging. This problem consists of a combinatorial part (machine assignment
and sequencing sub-problems) and a continuous part (lot sizing and scheduling sub-
problems). To account for these two elements, a new mixed integer nonlinear program
(MINLP) is developed which simultaneously determines machine allocation, sequencing,
lot-sizing and scheduling decisions. In order to reduce computational complexity, instead of
solving this MINLP directly, we propose an efficient enumeration method to determine
optimal solution of the model. Moreover, the performance of the proposed method is
evaluated by some numerical experiments. Two other applicable cases (zero setup costs and
Lot streaming) are studied and required modifications in the model formulation and the
solution method are described. Finally, a case example in a PCB assembly system is
presented to illustrate applicability of the mathematical model and the proposed solution
method.
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L. INTRODUCTION AND PROBLEM
DEFINITION

The production facility considered in this paper, is
a flexible flow line (or hybrid flow shop)
consisting of several work centers (stages), which
are arranged serially as a flow shop. Each stage has
one or more parallel identical machines. There is a
unidirectional flow across production stages and
cach product must be processed by at most one
machine at each stage, but some products may skip
some stages. Such systems are one of the most
usual production systems in manufacturing discrete
parts that can be considered as an extension of two
classical systems, namely the flow line and the
parallel shop.

In this paper, we consider the production
scheduling problem in such systems where all
parameters  (such  as  demand rates) are
deterministic and constant over a given finite
planning horizon. The problem has several sub-
problems. Machine assignment and sequencing
sub-problems (assignment of products to machines
at work centers with parallel identical machines,
and their sequencing on each machine of each
stage) are the combinatorial part of the problem,
and lot sizing and scheduling sub-problems
(determination of lot sizes and production starting
and ending times for each product at each stage)
are the continuous part of the problem. The
objective is minimizing the average of setup and
inventory holding costs per time unit without
backlogging.

To solve the problem, we introduce two
simplifying and practical assumptions. First, we
assume a common cycle for all products. Second, it
is required that the planning horizon is an integer
multiple of the common cycle length. So, a new
mixed zero-one nonlinear program is developed
whose optimal solution simultaneously determines
the optimal assignment of products to machines at
stages with multiple parallel machines, the optimal
sequence for ecach machine at cach stage, the
optimal lot sizes and the optimal beginning times
for cach production run.

It is noteworthy that the problem considered here
(Problem P), is an extension of well-known
economic lot-scheduling problem (ELSP) to
flexible flow line systems in finite horizon case.
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The ELSP deals with lot sizing and scheduling
issues for several products with constant demand
rates on a machine (or continuous production line)
over an infinite horizon, whereas our problem
investigates these issues in flow line systems with
possibly parallel machines at each stage over a
finite horizon. So, we call it the FH-ELSP-FFL
problem. Hsu [8] has proven that ELSP is NP-
hard; therefore it is obvious that our more general
problem is definitely NP-hard.

The problem is common in supply chain
environments, where a supplier produces multiple
products in a flexible flow line for an assembly
facility. In such cases, the product demand rates
are deterministic and fairly constant based on
contract  between supplier and assembler.
Moreover, delivery of each finished product to
assembler is continuous with fixed rate per time
unit. An example for this situation is a large
assembly facility such as an automotive assembly
plant (customer) and its immediate suppliers. Other
applications of concerned problem could be
different industries such as the wire & cable
industry,  food canning, beverage bottling
industries and printed circuit board assembly
systems.

The most of the contributions reported in the
literature dealing with static demand lot sizing and
scheduling problems, have focused on particular
policies, the cyclic schedules, i.e., a schedule that
is repeated periodically. In this paper we have
adopted the common cycle approach in which at
each production cycle; one lot of each product at
each stage is produced. This policy allows
constructing production schedules that are easy to
implement and generally preferred in real-life
situations [10].

Moreover, according to contract between supplier
and assembler, we assume that planning horizon is
finite and fixed by management. It is noted that in
the most of previous contributions on economic lot
scheduling, planning horizon is assumed to be
infinite. There are several reasons for this
assumption. First, constructing a mathematical
model for infinite case is easier. Further, this
assumption makes feasible solution space larger
and consequently may lead to better solutions.
However, this assumption considerably reduces the
usefulness of the proposed contributions, because
in practice, planning horizons are always finitc and
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rarely longer than 12 months. Further, in most
cases. the schedules obtained by infinite horizon
assumption could not be repeated an integer
number of times during the finite planning horizon
chosen in practice. Thus practitioners usually
adjust such schedules to meet this condition, which
may lead to a non-negligible increase in the total
cost [10].

Literature review in economic lot scheduling
problems reveals that the most of contributions are
related to infinite planning horizon case at the
single stage systems with only one machine [9].
the single stage systems with parallel identical or
non-identical machines [2, 3, 13] and the flow shop
systems [4,5.6,7.11]. Morecover, in the (finite
horizon case there are only four contributions from
Ouenniche et al. [10.12] and Torabi et al. [14,15].
In [10,12], the production scheduling problem in
job shops is studied under constant demand rates
over a finite planning horizon cither using the
common cycle approach [10] or the multiple cycle
approach [12]. to obtain a cyclic schedule. The
authors developed an optimal solution method in
common cycle case and an efficient heuristic
method to obtain a near optimal solution in
multiple cycle case. It is noted that these two
works are extensions for ELSP problem where
demands  (deliveries) are continuous and
optimization issue is focused on a supplier with a
Job shop production system, but not on the supply
network. Torabi et al [14]. extended the common
cycle economic lot scheduling problem (ELSP) to
flexible job shops in finite horizon case and
developed an optimal enumeration method to
obtain optimal solution of this problem. Moreover,
they considered the common cycle economic lot
and delivery scheduling problem (ELDSP) in
flexible flow lines in finite horizon case and
developed an efficient hybrid genetic algorithm to
obtain optimal or near-optimal solutions for this
problem [15]. It is noted that the ELDSP is an
extension of ELSP to supply chain environments
where a supplier produces multiple products on a
single machine, accumulates these products and
delivers them directly to an assembly facility (AF).
However, to the author’s best knowledge, there is
no contribution for economic lot-scheduling
problem in flexible flow lines under constant
demand rates over a finite planning horizon. Thus,
in this paper, a new mathematical model and an
efficient solution method are developed for this
problem.
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The outline of this paper is as follows. In section 2,
problem formulation as well as necessary
conditions to have a feasible solution are
presented. In section 3, an enumeration method to
obtain optimal solution is developed. In order to
validation of the proposed solution method, some
numerical  experiments are done and the
corresponding results are presented in section 4.
Two other applicable cases (zero setup costs and
lot streaming) as well as required modifications in
the model formulation and the solution method are
studied in section 5. A numerical example is
presented in section 6. Finally, section 7 is devoted
to the conclusions and some recommendations for
future researches.

2. PROBLEM FORMULATION

The following notations are used for the problem
formulation:

Parameters
n  :number of products
m  :number of work centers (stages)
i, u :products indices
J  :stage index
m; : number of parallel identical machines

at stage j

M,, : k-th machine at stage /

d, :demand rate of product i

p, :production rate of product 7 at stage /

t, : processing time for a lot of product i at
stage j (1, = d, . T/p,)

s, : sequence-independent setup time of
product / at stage j

A; : total setup costs of product i over all
stages

h, :inventory holding cost per unit of product
i per time unit between stages j and j+/

h; : inventory holding cost per unit of final
product / per time unit

H : planning horizon length

M :alarge real number

Decision variables

o, :production sequence vector at stage j

oy : production sequence vector at machine

M,
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Jy, @ the set of products which are assigned
to machine My,

1y, : the number of products which are
assigned to machine M,

T : common production cycle length (time
interval between setups)

O, : production lot size of product / at
different stages (O, =d,. T)

F : the number of production cycles over
the planning horizon

b,  : process beginning time of product i at

stage j (after setup operations)
1 if product i is assigned
Z, =1 to & positioninc , (j| m, =1)

O otherwise

1 if product i is assigned
={to 1" positioninc, (j|lm, >1)

tlky

0 otherwise

Since after processing each product at each stage,
there would be a value added for the product. thus,
values of /i, parameters will be non-decreasing,
that is:

h”. < hr. h LB N = LBy / =D i

Ff=l = i
It is noted thatz, variables arc sequencing sub-

problem variables at stages with only one machine
and x,, variables are both sequencing and machine

assignment sub-problem variables at stages with
multiple machines.

Moreover. in constructing a mathematical model
for the problem. the main following assumptions
have been considered:

*The production system is a flexible flow line.
This system consists of several stages in series,
where each stage has one or more parallel
machines that are identical in all parameters such
as production rates and setup times (costs);

*Machines of different stages are continuously
available and each machine can only process one
product at a time;

=The common cycle approach is used as
production policy i.e. at each production cycle, one
lot of cach product at each stage is produced:
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=The lots of each product have equal sizes at
different stages;

*External demands occur only for end products
and their delivery is continuous;

=Backlogging is not allowed:

*Setup times and costs are both sequence and lot
size independent;

*Inventory holding costs are directly proportional
to inventory levels and to holding time:

=Production sequence for each machine at each
stage is unique and is determined by mathematical
model:

*Preemption is not allowed; that is, at a given
stage, once the processing of a lot starts, it must be
completed without interruption:

=[.ot streaming is not allowed: that is, sub-
batches of each product are not transferred to the
next stage until the entire lot is processed at the
current stage;

*There are unlimited buffers between successive
stages. hence in process inventories are allowed,
i.e., products may wait for their next operations;

*Total capacity of different stages are sufficient
to meet the demands; thus there exists at least one
feasible lot and delivery schedule;

*[nteger number of cycles (F) are repeated until
the planning horizon is covered:

»Zero switch rule is used. This means that
production of each product at each cycle begins
when its inventory level reaches zero.

The problem of simultaneous determination of
machine assignment, sequencing, lot sizing and
scheduling of n products (n>1) manufactured
through m stages (m>1) in a flexible tlow line to
minimize average costs per unit time (Problem P).
can be formulated as a mixed zero-one nonlinear
program. As mentioned earlier, to formulate this
problem. we assume a common cycle for all
products and choose a cycle time such that the
finite horizon // is an integer multiple of T.

The objective of Problem P is to minimize the sum
of setup cost, work-in-process and end product
inventory holding costs per time unit. The first cost
product, the setup costs per time unit iszj A, JT

Two types of inventory are considered: work-in-
process inventory and finished product inventory.
From Fig. 1(a), which describes the evolution of
work-in-process inventory of product i between
two successive stages j-1 and j, we can see that its
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Figure 1. Inventory evolution curves

average work-in-process inventory is:
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Therefore, the total work-in-process inventory

holding cost for all products per time unit is:

( dr dT
| b, 4~ b, - e
zpu "pa_,r—l

(2)
Also, Fig. 1(b), shows the inventory evolution of
finished product /. and we can sec that its average
inventory per time unit is:

(
_d_f_{ J7 - 9’__5]
1 2 pim Pm:

i = ir d! \\‘ 2
1[}, dr ‘[ [
2 pHJr } ;)HJI

L m

=¥ N .
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(3)

)
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Thus, the total inventory holding cost for all
finished products per time unit is:

: d
C Zh [I_p__J-T

Therefore, the average costs per time unit (or
objective function of Problem p) can be written as
follows:

4

"

t4.
C; {1———] Lo, _](——-I—\J iT

pm: j=2 \ pr; pr i=l

TC=

"
h, .
i=l
n I

+ Zhul (, ‘b;,H)

f=]  j=3

(&)

It is noted that since delivery of products is
continuous and one delivery of them occurs at each
time unit, thus, there will be a fixed delivery cost
per time unit that can be deleted from the objective
function.

Given the objective function and logical
relationships between variables of Problem P (that
some of them are extractable from inventory
evolution curves), a new mixed nonlinear model is
developed to obtain optimal solution of the
problem that is presented in Fig. 2

Problem P has several constraints. Constraints (6)
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state that, no product can be processed before it is
completed at previous stage. Constraints (7) show
that, at each stage with one machine (m,=1), no
product can be processed before the completion of
its predecessor in the related production sequence.
In other words, if i and u are two successive
products in the sequence vector of stage j (o), then
product # must be processed after completion of
processing product i at this stage. Constraints (8)
are similar to Constraints (7), but they are used for
stages with multiple parallel machines (m>1).
Constraints (9) and (10) are assignment Constraints
at stages with only one machine, and state that
each product has a unique position in the sequence
of these stages. Also, Constraints (11) to (13) are
applied to stages with multiple parallel machines.
Constraints (11) state that each product has a
unique position in the sequence of one of the
machines at these stages and Constraints (12) show
that at each position of each machine at these
stages, there is at most one product. because at
each machine such as M, it may be assigned less
than » products to this machine. Constraints (13)
stipulate that, one product can be positioned at one
position of machine M,,; if another product is to be
positioned at previous position of this machine.
Constraints (14) imply that at each stage with only
one machine, processing the first product in the
related sequence cannot start before setting up the
corresponding machine. Also, Constraints (15)
show that if product / is the first product in the
sequence related to one of the machines in stage j
(mj>1), its processing cannot start before setting
up the corresponding machine. Constraints (16)
assure that the obtained schedule is cyclic and state
that the processing completion time of each
product at its final stage is less than or equal to
cycle time, and the required time for setting up and
processing of all products at each stage is less than
or equal to 7. Constraint (17) imply that the
common cycle is such that the planning horizon H
is an integer multiple of T and Constraint (18)
shows that F' is an integer greater than or equal to
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one. Finally, Constraints (19) are the non-
negativity and the type of other decision variables
Constraints.

Problem P ( A common cycle model for Problem P):

for
Min Z =———
1

2 d( d,) e 1 L )] L
Y PIE P X, T S S B

Z_I: if . N p”“)+ 2 ; - ’1\[)*4 Pi )|

* iihu—l 'dl (b!\l _hr.f—l) (5)
i=| j=2

Subject to :

1.7
By +f—’-— b5 1= kel =200 (6)
JU.I_..l |
d .1
bASE by b EMI—F, ~Z ik
pi_.l (?)
Jlm, =1, i=l.,n,uzi l<n
a8
b,.! it —bw <M (2 ~ Mg = Hpayg ) :
P, (8)

Vi, jlm,>1,i=1..nu%i, L<n

szzl; jlm}zl._ PE Lo (9)
=]

n

szf.j =1: j|mv, =] I W (10)

{=]

szﬂhzl; j|m},>1, i=1,....n (1)

k=1 =1

Zx,_m_h ?Zx”_.h s Jlm, > k=1..m, t<n

! 1
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b, 28;-Zy,5 ]lm =1y I=kaun (14)
b, zs, ,Zx”h: Jlm >1.i=1..n (15)
A=l
d..T

b, —<T;i=l.,n (16)

Fi =0 (17)

F =1 andinteger (18)

TE0.b, ZOME T, 2 % € 0IEVILE, ],
(19)

Moreover, since some time must be left for setups
at cach stage. the necessary conditions to have
feasible solutions for the problem can be written as
follows:

Jf-—. (j, "\.u »
Z‘ R = = m, ; V,’ = 1,....,.’?? (20)
=1 p._r,l

But the value of variable 7" is not determined so
far. thus we can redefine necessary conditions as
follows:

At each stage j (j=1,.... m), the products are sorted
in a non-increasing order of dJ/p” values. The
term d, / p, represents the fraction of one machine

at stage j required by product i. Then according to
this order. each product is assigned to the first
available machine. At the end, if the following
conditions are satisfied, then there would be at
least one feasible schedule.

!
Min | 1= 501505 Vj=1,..m Q1)

red, pu

This procedure attempts to minimize the makespan
for independent jobs on m, parallel identical
machines at each stage [1].

3. SOLUTION PROCEDURE

Problem P is a mixed zero-one nonlinear program.
Nonlinearity of this model is due to nonlinear

term Z, A, /T in objective function (with respect

to 7) and also nonlinear constraint (17) in
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constraints sets. Since it will be difficult to solve
this mixed nonlinear model directly, we propose an
enumeration method with an iterative process for
solving it to optimality.

Let 7° and Z" denote the optimal common cycle
and the corresponding total cost per time unit,
respectively. Moreover, let Z, denotes the
objective function value of Problem P for a given
value of F. Then this Problem can be solved using
the following iterative procedure:

Initialization step. Let I'=1, and solve the resulting
mixed zero-one linear program. Set: Z* =Z,, " =H
Iterative step. Increase F' by / and solve the
corresponding mixed zero-one linear program for
this new value of F. If this model has no feasible
solution, stop; else, if Z < Z' then set 7" = Z;-and
1" =H/F and go to the next iteration.

Basically, this procedure enumerates all feasible
values of F' and for each value of F, it solves a
mixed linear model to optimality. Thus, this
procedure produces the optimal solution of
Problem P.

To solve these mixed linear models, we can use
one of the large-scale mixed integer optimization
tools such as CPLEX and LINGO. However, within
our computational study, we used the LINGO 6.0
solver from LINDO systems, Inc.

4. NUMERICAL EXPERIMENTS

In this section. in order to evaluate the
performance of the proposed solution method, we
indicate how the computational time increases as
the size of the test problems increase. The test
problems are randomly generated so that all
parameters are drawn from discrete uniform
distributions that are presented in Table 1.
Moreover, for each problem instance, the
necessary conditions are checked in order to make
sure that these test problems are suitable for our
experiments.

Four sets of test problems with different sizes have
been considered (see Table 2), and five problems
for each set are randomly generated.
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Table 1. Uniform distributions used for the parameters

Parameter d, i

8y Iy A,

Corresponding
Uniform
Distribution

Ulon, 1000)

U (1000, 10000)

U.01,0.25) Url, 20) U (100, 4000)

Table 2. Structure of the test problems

Number of Problem size
Problem set  Number of ~ Numberof  machines Number of  Number of Number of
number products stages at each stage integer var,  continuous var.  constraints
! 5 2 1.2 76 11 295
2 5 3 1,2,1,21 176 26 688
3 3j 10 L2 1202202 376 51 1467
4 8 5 1.2,1.21 449 41 2950

For each set of test problems, a LINGO model has
been generated using LINGO 6.0 modeling
language, and all of the test problems are solved on
a personal computer with an Intel Pentium 4
processor running at 3.2 GHz.

Table 3 represents the average CPU time required
to obtain an optimal solution for each set of test
problems. It is noted that for 8 X5 problems, it was
not possible to find an optimal solution within a
reasonable CPU time.

Table 3. Average CPU times (in minutes) for the test
problems

Problem set Number of Average CPU

number test problems time
1 5 72

2 5 146
3 5 238
4 3 N. A

N. A.: Not available.

280- Vol. 18, No. 3, August 2005

Computational results indicate that the proposed
solution method can obtain an optimal solution for
small-sized and  moderately  medium-sized
problems within a reasonable time. But it can not
obtain an optimal solution for medium and large
size problems within a reasonable time because
solution time grows exponentially with the size of
the problem.

Therefore, a more efficient heuristic method
should be developed to obtain a near-optimal
schedule for medium and large size problems
within a reasonable CPU time.

5. PRACTICAL CASES OF PROBLEM P
In this section, we consider two practical cases of
our problem (zero setup costs and Lot streaming),
and present required modifications in the basic
model and the solution procedure.

5.1. Zero setup costs

This case (4, = 0. for all i) is a special case of the

International Journal of Engineering



problem and may occur in the following situations:
When machine operators perform setup operations
as a part of their normal working time and thus the
sctup costs are negligible.

In such cases that the main emphasis is on
mventories reduction and the management’s goal is
imventory holding cost reduction (that always is the
main part of the total cost).

Morcover. the introduction of setup costs leads to
longer cycle durations, and consequently more idle
time in the schedule. This is the main reason why
we ignore setup costs. Also. such an assumption is
reasonable in a JI'T environment [4].

In this case, the nonlinear term Zr A /T in

objective function is omitted and only the
nonlinear constraint (17) remains. Therefore, in
this case Problem P again can be solved with the
enumeration method discussed in section 3.

5.2. Lot streaming

In this section, we consider lot streaming case that
is a generalization of Problem P. Lot streaming is
the process of splitting a lot into a number of
portions, often called transfer sublots (or batches)
so that successive operations can be overlapped in
a multi-stage production system. A major benefit
of lot streaming is the reduction in the
manufacturing lead time (MLT) and thereby
provides an opportunity to the considerably
reduction in work-in-process inventories (WIP)
and corresponding holding costs. The required
modifications in this case, can be examined in the
following two sub- cases:

3.2.L pij.i 2 py

In this sub-case, the production rate for product i at
stage /-1 is greater than at stage j. Therefore, the
processing start time of this product at stage j must
be at the time that the first batch is transferred from
stage j-/ to stage j. Then Constraints (6) must be
substituted with the following constraints:

a, =)
by 2b 4t g

3= L,
: is P =kaun f=2....m
pr,.l--l

L

(22)
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Where

a,, ;= transfer batch size of product i from stage j-
I to stage j (determined based on existing unit
load)

7, = transfer time for one batch of product / from
stage j-1 to stage /.

The evolution of inventory of product i between
two successive stages j-/ and j in this sub-case is
shown in Fig. 3(a). Therefore, we will have:

5.2.2. py2 pij.;

In this sub-case, the production rate of product i at
stage j is greater than at stage j-/. Therefore, the
processing start time on last batch of this product
at stage j must be at the time that the processing of
entire lot of product / at stage j-/ is completed and
last batch of this product is transferred from stage
J-1 to stage j. Then, instead of Constraints (6) we
will have the following constraints:

d.Tl a d.T
b, +——=——2—=2b  +——+1,

Jr)u 10.1,1 Jur‘l.n—l (24}
Vi f=2:m

The inventory evolution of product i between two
successive stages j-/ and j in this sub-case is
shown in Fig. 3(b). In this sub-case, /,,; will be
similar to (23) and thus, the sum of work-in-
process inventory holding cost per unit time when
lot streaming is allowed, will be:

TCyyp =

iihf..--l d,

i=l y=2

7
(b,,—,b,_,_I T i-ldr(-l—— Ly
Poaa) 2 \py Pa

(25)
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Figure2. WIP inventory curves for the Lot streaming case

Therefore, the objective function in this case can
be written as follows:

| af a4 dF e ( 1)
| hf et ol i S et h, | i
;I_ 2‘ ! Jr}ml J 2 2: . \ p.',' pr,;—l J_

N

6. Numerical example

In this section, a numerical example is presented to
illustrate applicability of mathematical model and
its solution method for scheduling a Printed Circuit
Board (PCB) assembly system that is a typical
flexible flow line. Five different types of boards
are assembled at two stages of the system. In the
first stage there is an axial insertion machine
(m;=1) that inserts axial elements such as resistors
or transistors on each board. and the second stage

33k d b, b, {2- -"}LW (26)

A

4 has two parallel identical radial machines (m.=2)
that insert radial elements such as capacitors on
cach board. Also, the time unit is assumed one
week and planning horizon length is equal to one
year or 52 weeks (f/=52). Table 4 presents other
required data for this example.

In this case, we again deal with a mixed nonlinear
model and we can apply the enumeration method
for solving this model to optimality.

Table 4. Required data for the example

i j d; Pii Sij A; hy;
S s A A
s v 7
P ] ™ e e ] [
O e A s - Ml
S % T ] % [
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The corresponding mathematical model of this
example (at no allowing lot streaming case) is
solved using enumeration method and optimal
solution is computed as follows:

Z=1443743, F=37, T =141,
&, =(3,4,1,2,5), & =(3,1,5), 5u=4.2)

Therefore, the above optimal schedule should be
repeated 37 times over the planning horizon.

7. CONCLUSION REMARKS

In this paper, we have considered the common
cycle approach to solve the economic lot sizing
and scheduling problem in deterministic flexible
flow lines. First, we developed a new mixed zero-
one nonlinear model to solve the problem to
optimality. Then, to avoid solving this complex
mixed nonlinear program directly, we have
suggested an efficient enumeration method to
determine an optimal solution. Two other
applicable cases of Problem P (zcro setup costs
and lot streaming) are also presented and required
modifications in the model formulation and the
solution procedure are described. Moreover,
through a numerical example, applicability of this
formulation and its solution method is shown.
IHowever, based on our experimental results,
applying the proposed  solution method to
determine optimal solution in medium and large
size problems requires solving several large-scale
mixed zero-one programs that need high
computational efforts. Therefore, further research
to develop more efficient heuristic methods is on
our research line.

Morcover, there are other different directions for

future studies. Among them, the following topics

are recommended:

* Modeling Problem P using the basic period
(multi-cyclic) or time varying lot sizc
approaches,

= Considering non-identical parallel machines at
cach stage,

*  Allowing the backlogging.

International Journal of Engineering

8. REFERENCES

I. Baker, K.R., 1974, Introduction to sequencing
and scheduling, Wiley, New York.

2. Bollapragada, R., Rao, U., 1999, Single-stage
resource  allocation and economic  lot

multiple,
production lines, Management Science, 45(6).
889-904.

3. Carreno, J.J., 1990. Economic lot scheduling
for multiple products on parallel identical
processors. Management Science 36 (3), 348-
358.

4. Dobson, G., Yano, C.A. 1994, Cyclic
scheduling to minimize inventory in a batch

scheduling  on nonidentical

flow line, European Journal of Operational
Research, 75, 441-461.

5. El-Najdawi, M.. Kleindorfer, P.R.. 1993,
Common cycle lot-size scheduling for multi-
product, multi-stage production. Management
Science 39, 872-885.

6. Fatemi Ghomi, S.M.T., Torabi, S.A., 2002.
Extension of common cycle lot-size scheduling
for multi-product, multi-stage arborescent
flow-shop environment. Iranian Journal of
Science & Technology, Transaction B. 26
(Bl), 55- 68.

7. Hsu, JLLS., El-Najdawi, M., 1990, Common
cycle scheduling in a multi stage production
process, Engineering Costs and Production
Economics, 20, 73-80.

8. Hsu, W., 1983. On the general feasibility test
of scheduling lot sizes for several products on
one machine. Management Science 29 (1), 93-
105.

9. Moon, L, Silver, E. A., Choi, S., 2002. Hybrid
genetic  algorithm  for the economic lot-
scheduling problem. International Journal of
Production Research 40 (4). 809-824.

10.Ouenniche, J., Boctor, F.F., 1998. Sequencing,
lot sizing and scheduling of several products in
job shops: the common cycle approach.
International Journal of Production Research
36 (4), 1125-1140.

['1.Ouenniche. ., Boctor, F.F., 1999. The impact
of sequencing decisions on multi-item lot

Vol. 18, No. 3, August 2005 -283



sizing and scheduling in flow shops.
International Journal of Production Rescarch
37(10), 2253-2270.

12.0uenniche. J., Bertrand, JW.M., 2001. The
finite horizon economic lot sizing problem in
job shops: the multiple cycle approach.
International Journal of Production Economics
74, 49-61.

13.Pesenti, R., Ukovich, W., 2003. Economic lot
scheduling on multiple production lines with
resource constraints. International Journal of

284- Vol. 18, No. 3, August 2005

Production Economics 81-82, 469-481.

14. Torabi, S.A., Karimi, B.. Fatemi Ghomi
S.M.T., 2005. The common cycle economic lot
scheduling in flexible job shops: The finite
horizon ~ case. International Journal of
Production Economics, In press.

15. Torabi. S.A., Fatemi Ghomi S.M.T., Karimi,
B.. 2005. A hybrid genetic algorithm for the
finite horizon economic lot and delivery
scheduling in supply chains. European Journal
of Operational Research, In press.

[nternational Journal of Engineering



	Picture.jpg
	Picture 001.jpg
	Picture 002.jpg
	Picture 003.jpg
	Picture 004.jpg
	Picture 005.jpg
	Picture 006.jpg
	Picture 007.jpg
	Picture 008.jpg
	Picture 009.jpg
	Picture 010.jpg
	Picture 011.jpg

