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Abstract   Among various frameworks of intelligence, in general, feed-forward perceptron 
neural networks (FPNN) is a useful and common method, because of the network's ability 
to approximate highly nonlinear functions. Similarly, among various paradigms of learning, 
evolutionary-based algorithms such as genetic algorithms (GA) have gained increasing 
interest in recent years due to their ability to locate globally optimal solutions in nonlinear, 
noisy and uncertain problem domains. Here, we propose a cooperative co-evolutionary 
strategy for finding weights and structure of FPNN simultaneously. The new algorithm 
allows for separate populations of weights and structures of neural networks to coexist and 
cooperatively evolve thru two separate genetic algorithms. The proposed algorithm is 
simulated in RoboSoccer multi-agent environment, and is used for learning the "ball 
interception" skill of robot soccer players. Also, the convergence properties of the new 
algorithm are statistically compared with two other approaches as well as standard back 
propagation (BP) algorithm. Simulation results indicate that the proposed co-evolutionary 
approach is superior in terms of consistently finding improved solutions. 
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يكي از روشهاي بسيار كارا ميباشند كه توانايي بالايي در       , شبكه هاي عصبي از ميان ساختارهاي متنوع هوشمند            هچكيد
روشهاي مبتني  ,  همچنين از ميان قالبهاي متنوع يادگيري و بهينه سازي        . تقريب الگوهاي آموزشي و روابط غير خطي دارند       

 تكاملي مانند الگوريتمهاي ژنتيك به علت توانايي آنان در بهينه سازي مسائل پيچيده و غير خطي كه عموما همراه                    بر اصول 
در ايـن مقالـه روشـي    .  توجه بسياري را در سالهاي اخير به خود جلب كـرده انـد           ,با عدم قطعيتها و نويزهاي بسيار ميباشند      

  ,ه سازي همزمان وزنهـا و سـاختار شـبكه هـاي عـصبي پيـشنهاد ميـشود                 تركيبي مبتني بر همكاري هم تكاملي براي بهين       
. بطوريكه جمعيتهايي مجزا از وزنها و  ساختارهاي  شبكه عصبي بطور همزمان و موازي همكاري نموده و تكامل پيدا ميكنند

پ توسـط بازيكنـان بـا       الگوريتم پيشنهادي بر محيط چند عامله روباتهاي فوتباليست و بمنظور يادگيري مهارت دريافت تـو              
خـصوصيات  . وجود نويزهاي محيطي قابل توجه مانند وزش باد و رفتار تصادفي بازيكنان شبيه سازي و آزمـوده شـده اسـت                    

 مقايسه شـده   )بعنوان معيار( همگرايي اين روش از لحاظ آماري با دو روش  تكاملي ديگر و  همچنين روش پس انتشار خطا      
  .ستو برتري آن نشان داده شده ا

   
  
 

1. INTRODUCTION 
 
Artificial neural networks (ANN), among various 
intelligence paradigms, are considered one of the 
most potent paradigms for learning and classifying 

highly nonlinear training patterns. This is while 
common ways of determining appropriate ANN, 
and in particular multilayer perceptrons, are still in 
part ad hoc and in part idealized, i.e. assuming 
ideal properties of the optimization landscape for 
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convergence to globally optimal solutions and 
hence ignoring much of the possible complexities 
of the application. Hence, a robust and general 
design methodology which is capable of 
optimizing both weights and structure of ANN, 
while the system under study is allowed to contain 
all of its complexities of both possibilistic and 
probabilistic nature, would provide a desirable 
solution to this problem.  
Among various algorithms that optimize only 
weight parameters of an ANN, back propagation 
(BP) is the most common and popular of 
supervised algorithms for multilayer perceptrons. 
BP is a gradient-descent algorithm, which 
determines the connection weights by back 
propagating the error in layers of the perceptron 
such that a given error function is minimized [1,2]. 
Until today, there have been many successful 
applications of BP in intelligent systems, control 
systems, medicine and various other fields [3,4]. 
Theoretically, BP has been shown to always find 
the optimum point within limited epochs by 
properly adjusting training parameters such as 
learning rate and momentum if the initial weights 
are set correctly. However, the weakness of BP is 
that adjustment of these parameters is not a simple 
task and needs initial information. Additionally, if 
the error curve is sufficiently complex such that 
there are many local minimums, BP may never 
find the global minima.  
Unlike BP, evolution-based algorithms such as 
genetic algorithms (GA) are not easily caught in 
locally optimal solutions because of their 
stochastic and parallel exploitation of the 
optimization landscape [5,6]. Therefore, their 
application to ANN weight optimization was quite 
promising. Similar to natural evolution, GA aims 
to produce progressively better solutions by 
preferential selection and reproduction of “fitter” 
individuals (survival of the fittest) and by 
maintaining diversity through introducing new 
genetic structures into the population by applying 
random mutation. One of the advantages of 
evolutionary algorithms is that they are blind to the 
problem specifications, i.e. they do not require any 
problem specific information to build their initial 
search space. In 1986, Whitley proposed using GA 
to learn the weights of an ANN [5]. As one of the 
earlier applications, he demonstrated that GA 
outperformed the back-propagation algorithm by 

employing an encoding GA with a relatively high 
mutation rate [7]. Later, in 1989, Montana and 
Davis used GA for training a relatively large NN 
and reported their successful applications [8]. 
Since then efforts have been made in different 
ways to improve this technique. Two surveys on 
the topic of using evolution in optimizing weights 
of a ANN can be found in [9,10].  
While various researches have been directed to 
determining optimal weights, the problem of 
optimizing ANN structure remains a challenging 
problem. In fact, traditional perceptron design is 
commonly performed by trial and error. Such ad 
hoc mechanism of finding ANN structure is 
nontrivial and does not always succeed. 
Furthermore, there is never a guarantee that the 
chosen structure is optimal. In recent years several 
researchers have attended to this problem and 
proposed several algorithms for determining the 
structure of multilayer perceptrons. The difficulty 
is that theoretical estimation of an exact number of 
hidden neurons is nontrivial, but numerical 
optimization is available.  For example, Ash 
developed the method of dynamic node creation. A 
new node is created in hidden layer when the 
training error rate is above an arbitrarily chosen 
critical value [11]. In 2000, Peng, et. al. proposed a 
new hybrid algorithm, which was based on the 
relationship between the sample approximation 
error and the number of hidden units. The 
algorithm also searches the weights [12]. The 
drawback in above algorithms is that an acceptable 
sample approximation error is problem specific 
and is therefore difficult to estimate a priori.  
Using evolutionary computing and programming, 
several algorithms have been introduced in order to 
determine the optimized structure for neural 
networks [13,6]. But, leaving many parameters in a 
bundle for an evolutionary algorithm to organize 
and optimize presents several problems. Even 
though, these algorithms are evolutionary, they 
may still fall prey into premature convergence and 
problem of competing conventions. The problem 
of competing conventions is particularly prevalent 
here because of large number of interdependent 
parameters when optimizing structure and weights 
of an ANN using standard evolutionary technique.     
Co-evolutionary optimization, in comparison, 
attempts to divide a difficult problem into simpler 
sub-problems while remaining a population based 
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evolutionary search engine. In this fashion, it 
attempts to avoid the problem of competing 
conventions. Hence as will be shown in this paper, 
it demonstrates a great potential to solve complex 
problems.  Co-evolution refers to the simultaneous 
evolution of two or more species with strongly 
coupled fitness. In terms of solving engineering 
problems, if a problem’s complex parameter space 
can be separated, co-evolution allows for searching 
the reduced parameter spaces in parallel. Such 
parallel exploration and exploitation of the 
parameter space can be expected to reduce the 
problem of competing conventions, and hence 
yield increased performance and favor the 
discovery of optimal solutions. In cooperative co-
evolutionary algorithms,   a number of 
independently evolving species cooperate to find 
fitter coupled solutions. The fitness of an 
individual depends on its ability to collaborate with 
individuals from other species [14, 15, 16].  
Co-evolutionary algorithms have attracted many 
researchers in recent years. Potter first proposed 
cooperative co-evolution in 1994 as a general 
function optimization approach [17]. Later in 1995, 
Potter presented a co-evolutionary architecture for 
solving decomposable problems and applied it to 
the evolution of weights of artificial neural 
networks [18]. The co-evolutionary approach 
utilized a divide-and-conquer technique in which 
species representing simpler subtasks are evolved 
in separate instances of a genetic algorithm 
executing in parallel. Collaborations among the 
species are formed representing complete 
solutions. In 2001, Reyes and Sipper proposed 
their co-evolutionary algorithm ‘Fuzzy Co-Co’ for 
simultaneously determining the membership 
functions and rule sets in a fuzzy system [15]. In 
2000, Potter and Dejong developed a model in 
which a number of populations explored different 
decompositions of the problem. They concluded 
that their approach adequately addresses issues like 
problem decomposition and interdependencies 
between subcomponents [20]. Paredis [14] applied 
cooperative co-evolution to problems which 
involved simultaneous search for values and order 
of pieces of a solution. In the current literature, 
several other co-evolutionary algorithms can be 
mentioned for simultaneously finding the unknown 
quantities in a problem [21, 22]. A general 
characteristic of above co-co algorithms is that 

they tend to decompose a problem into many 
smaller sub-problems, hence replacing the 
complexity of the original problem by the 
complexity of handling the interactions among 
many simpler sub-problems. 
In 1997 and later in 2003, Akbarzadeh, et. al. [19, 
20] proposed a co-evolutionary mechanism for 
optimizing fuzzy systems in which two 
subpopulations (parameters of membership 
functions and rule structures) were co-evolved by 
two different evolutionary paradigms, GA and GP. 
There, GA was advocated as a good paradigm for 
optimizing numeric strings, while GP was a good 
paradigm for optimizing rule-based structures. This 
strategy provided for a reasonable balance between 
problem decomposition and complexity of 
interaction. In this paper, we continue this strategy 
of simple cooperation by proposing a general 
cooperative co-evolutionary strategy for finding 
weights and structure of FPNN simultaneously as 
shown in Figure 1. The new algorithm allows for 
separate populations of weights and structures of 
neural networks to coexist and to cooperatively 
evolve in parallel by two genetic algorithms [21]. 
The first GA is real-valued in order to optimize 
weights of FPNN, while the second GA is binary 
valued in order to optimize discrete number of 
neurons in each of layers. The proposed algorithm 
can be expected to help avoid premature 
convergence and competing conventions. The 
proposed algorithm is simulated in RoboSoccer 
multi-agent system environment, and is used for 
learning the "ball interception" skill of robot soccer 
players. Statistical analysis of simulation results 
and comparisons with two other algorithms 
indicate that the proposed co-evolutionary 
approach is superior in terms of consistently 
finding improved solutions. 
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Figure 1.  Co. Co. GA for optimization of 
Neural Networks models
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Figure 1.  Co. Co. GA for optimization of 
Neural Networks models  

This paper is organized as follows. Section II discusses 
the evolutionary process in species 1, which searches 
for optimized weights. Section III discusses the 
evolutionary process in species 2, which searches for 
optimized structure of perceptron. Section IV illustrates 
the co-evolutionary strategies executed for     
calculating  
 bonding matrix of fitness. In Section V, the 
algorithm is simulated and used for learning the 
“ball interception” skill in soccer playing robots. 
Statistical analysis of results is then provided in 
section VI. 

  
  
 

2. FIRST SPECIES: EVOLUTIONARY 
SEARCH FOR DETERMINING THE 

WEIGHTS 
 
Conventionally, binary-valued GA is applied to 
parameter optimization for problems even if the 
parameter space is real itself. However, such 
approach lacks adequate precision when it is used 
for determining weights of ANNs [23], while 
increasing the number of significant bits causes 
delayed convergence. Therefore, a real-valued 
genetic algorithm is proposed here for optimizing 
the first species (weights) in this co-evolutionary 
algorithm. In the following, chromosome 
representation and standard GA operators are 
discussed. Since fitness is a function of both 

weight parameters and network structure, fitness 
evaluation is discussed later in section IV. 
 
2.1. Chromosome representation 
The connection weights among neurons in each 
layer of a FPNN are considered as parameters of 
the real-valued GA. The structure of the ANN, i.e. 
the number of hidden layers and the number of 
neurons in each layer, is assumed to be either 
known a priori or determined by some other 
mechanism as discussed in next section. For the 
purposes of simulations in this paper, the transfer 
function of neurons in the hidden layer is 
sigmoidal and the output neuron is linear. 
However, the methodologies are general and can 
be utilized with an array of possible alternatives. 
Each chromosome consists of elements of the 
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Figure 2. The chromosome representation in first GA algorithm(species 1) 
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weight matrices and biases. Figure 2 shows how 
one chromosome is represented. In this figure each 
weight is expressed as k

ijW  in which i and j 
indicate the    connected neurons and k indicates 
the layer number. Generally speaking, having a 
multilayer perceptron with n hidden layers, one 
input and output layer, the length L of each 
individual in the search space is calculated as, 
 

( )∑
−

=
++=

1

0
11

n

k
kk nnL                                                    (1) 

 
where kn  is the number of nodes at kth layer, 

nk ,...,0=  with k=0 being input layer. The initial 
population is generated randomly between 
parametric bounds of connection weights and 
biases.  
 
2.2. Genetic operators 
Reproduction, crossover and mutation are the three 
main operators in a real-valued genetic search as 
defined below. 
Reproduction: Individuals duplicate themselves 
into an intermediate generation. Thus, higher fit 
individuals stand a better chance of reproducing 
while lower fit individuals are more likely to 
disappear. For reproduction, here, roulette wheel is 
used in which selection probability is assigned  
to each individual according to its fitness based on 
the following probability,  
[ ]

∑
−

=
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)(selected being individualth 
 

Where f(i) is fitness of ith individual and pop-size is 
the population size. Roulette wheel reproduction 
has a disadvantage, i.e. highly fit individuals may 
not be selected for reproduction and may be lost in 
this process. To improve this weakness, the 
roulette wheel algorithm is combined with 
“elitism,” such that a certain percentage %P , 
usually between 3% to 5%, of the best individuals 
in each generation are allowed to be directly 
transferred to its future generation, bypassing 
selection and other genetic operators. 
Crossover: Two or more individuals combine to 
generate new individuals. Crossover enables the 

evolutionary process to exploit promising regions 
of the search space, and converge. In this paper, a 
one-point crossover is used, in which one section 
of the parent’s chromosomes are exchanged at 
randomly selected points.   
Mutation: Mutation is introduced to prevent 
premature convergence to locally optimal solutions 
by exploring new points in the search space. By 
mutation, each real-coded allele in a chromosome 
may be modified by a random value within its 
predefined parametric bounds. 
 

3. SECOND SPECIES: EVOLUTIONARY 
SEARCH FOR DETERMINING THE 

STRUCTURE 
 
While the Real GA in Section II seems to be an 
adequate framework for optimizing weights, it 
does not provide an adequate mechanism for 
optimizing the structure. Since the number of rules 
is discrete, binary GA is advocated as a more 
efficient evolutionary approach for species 2 
(FPNN structure). This algorithm is general and 
can be used for all other structural optimization 
purposes of neural networks. It also can be 
combined with any weight optimization method 
such as BP in order to optimize both weights and 
structure of an ANN [25]. Chromosome 
representation and genetic operators in species 2 of 
the co-evolutionary algorithm are discussed below. 
Similar to previous section, fitness evaluation is 
discussed separately in section IV. 
 
3.1. Chromosome representation 
An elitist binary GA determines the number of 
neurons in each of the (two, in this simulation) 
hidden layers, while also allowing for possible 
representation of solutions with only one hidden 
layer. Considering the fact that perceptrons can 
learn nonlinear continuous training patterns with 
only one hidden layer [1], two hidden layers 
should provide for a sufficiently diverse 
optimization landscape. Hereafter, by the term 
“layer” we simply mean the number of hidden 
layers. Obviously, the network has one input and 
one output    layer, and number of neurons in these 
two layers is determined by the specific learning 
problem. Figure 3 shows the process of making 
search population. The maximum number of 

(2) 
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neurons iM  in each layer i is determined by 
considering the features of the problem such as the 
number of training data or the desired minimum 
error. The transfer function of each neuron is 
defined a priori.   
 
3.2. Genetic operators 
Standard genetic operators, crossover, mutation 
and reproduction, are used here, as in real GA 
algorithm. These processes were also briefly 
discussed in section II. 

4. COOPERATION IN EVOLUTION 
 

Even though the algorithms in section II and III 
take advantage of GA search, either of search 
routines only provide partial solutions for ANN 
and need to cooperate with the other search routine 
for their fitness evaluation and composing 
complete solutions. Here, we focus on how the two 
algorithms cooperate in forming a whole individual 
and in evaluating their own individual fitness as 
shown in Figure 4.  
 
4.1. Fitness evaluation 
Cooperation among the individuals of the two 
genetic algorithms is necessary in order to 
determine each individual’s fitness level from their 
joint fitness functions. In the proposed cooperative 
genetic algorithm, ith individual in one population 
(of potential weight solutions) bonds with jth 
individual of the other population (of potential 
ANN structures) to compute their  
joint fitness, ijf . The resulting joint fitness 
comprises elements of a bonding fitness matrix F, 
with number of rows and columns equal to the 
number of individuals in the two populations. As 
shown in Figure 4, fitness of each weight 
individual is determined by the average of its 
bonding with individuals of the other 
subpopulation, similarly the mean fitness value in 
each row represents fitness of each structure 
individual. The population size of species 1 and 2, 
in this example, are set at 30 and 100 respectively. 
Since there are different numbers of neurons in 
different structures, the length of the weight 
individuals is also variable. 

  
  
 

 
 
 
 
 
 
 
 
 
 
  
 

To solve this problem, a maximum length is 
determined for the weight population. For instance, 
assuming 10=iM , the maximum length L will be 
161 from Equation 1 (In this example we have 
assumed 3 inputs at the input later, 1 output at the 
output later, and two hidden layers  
with variable length). Individuals, usually, do not 
fully utilize this allowed space. For example, the 
weight individuals use 73 parameters of the 
maximum length when coevolving with the 
structure (8,4) and with the structure (4,0)  use 21  
parameters of the maximum length. Figure 5 shows 
the flowchart of the hybrid GA/BP algorithm. 

  
  
  

5. LEARNING SOCCER PLAYING 
SKILLS IN A MULTI AGENT 

ENVIRONMENT 
 

The test bench in this research is a robotic soccer 
simulation environment, provided by “Soccer 
Server” simulator version 7.9. RoboSoccer 
simulation is a popular multi-agent environment 
for testing various paradigms of intelligence and 
particularly addressing various issues of multi-
agent systems. The simulator is based on a client-
server model in which the server models the real 
world and reports the state of the world while the 
clients control the individual agents. The simulator 
describes the current state of the world to the 
clients (agents). The clients periodically send their 
commands to the simulator indicating how the 
agents should play.  
The goal of using the proposed algorithms here in 
RoboSoccer environment is learning “ball 
interception skill”. The “ball interception skill” is a 
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Figure 4.  Bonding Matrix in Co.Co. GA 
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basic individual behavior which all players should 
possess. This is while receiving moving balls in 
soccer server simulator is not trivial because of 
different noise sources in  
the environment such as wind velocity, 
uncertainties regarding the ball and noise in 

behavior of the players affecting the ball and 
changing its direction. The RoboSoccer simulator 
therefore adds a certain amount of noise to the 
movement of each mobile component, i.e. both the 
ball and the soccer players, the amount of which is 
determined by different parameters in soccer server  

 
simulator. Here, the SoccerServer’s default values 
as used in the RoboCup competition are used, as 

follows:  
Player-rand (the noise coefficient which affects 
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Figure 5. Shows the flowchart of Co.Co. GA algorithm .
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the player’s motions) = 0.1 
Ball-rand (the noise coefficient which effects the 
ball motion) = 0.05 
Kickable-margin (the area in which the ball is 
caught by player) = 1. 
With the above randomness, environmental noise 
is so extreme that if a player moves directly 
towards the ball in order to intercept it, he will be 
able to intercept it only 30% of the times [26,27]. 
Hence, in order to catch the ball successfully, 
players must learn to predict the path of   the   ball   
using proper decision parameters and turn to the 
predicted direction, as shown in Figure 6. 
In order to train the co-evolutionary FPNN as 
proposed in this paper, Stone’s algorithm [27] is 
used to create a training set of successful instances 
of ball interception. In Stone’s algorithm, ANN has 
three inputs as follows, 
1. The ball’s distance at time k )(kdB=  
2. The ball’s distance at time k-1 )1( −= kdB  
3. The ball’s relative angle at time k )(kBPθ=  
The parameter k is the time the agent should 

decide, turn and move towards the 
ball. And the ANN output )(ˆ kTθ is 

the angle by which the robot should turn at time k 
in order to intercept the ball successfully. In this 
algorithm there is a shooter agent who shoots the 
ball, a defender agent who tries to catch the ball 
and a trainer who saves the results and sends 
commands. Using Stone’s proposed algorithm and 
running the algorithm in virtual situation, 1000 
successful interceptions are collected for training 
purposes. Each successful interception try consists 
of 3 inputs for neural network (as discussed above) 
and the suitable angle by which the agent has 
turned to intercept the ball successfully as the 
network output. The training set is gathered by 
trainer and saved in a file in order to be used for 
training our network. This number of training data 
was quite sufficient for proper training. As will be 
shown in the simulation results, using too many 

data points can lead to over-training and impede 
performance.  
Simulations in the following section will test 
learning performance under various training 
patterns.  
 

6. SIMULATION AND RESULTS 
 
Once training is completed, in order to test the 
proposed NN training algorithm, the success of the 
trained agents in intercepting the ball are evaluated 
for 3000 trials in the RoboSoccer virtual 
environment. Here the receiver predicts its proper 
turn angle using the output of ANN. Table 1 shows 
the results of the cooperative GA simulation. The 
second row displays the proposed structure and the 
third row represents the success rate. In this 
simulation different sizes of training sets are used 
and the results are presented in Table 1. As this 
table illustrates, the highest success rate is obtained 
by 700 training patterns. In cases of using less than 
300 training patterns, results are not as good 
because there are still many unseen situations for 
the network whereas employing more than 700 
training patterns reduces the success rate because 
of “overtraining.” Figure 7 shows the average and 
maximum fitness functions of populations in the 
proposed algorithm. 
Table 2 illustrates a comparison of the proposed 
algorithm with three other algorithms, by 
enumerating the percentage of success of their best 
solution. Column 2 shows the results of Hybrid 
GA/BP simulation that searches for optimal 
structures using evolution and determines the 
weights using BP algorithm [24]. Column 3 shows 
the result of an elitist real GA which optimizes 
ANN weights using evolution considering a fixed 
structure [25]. Column 4 displays the result of 
training the network with BP as reported by Stone 
using a static ANN with 4 neurons in hidden layer 
[27]. Column 5 displays the behavior of receiving 
agent when he has not been trained and simply 

  
  

 Table 1. Percentage of Successful Interceptions (with 700 training data pairs & different solutions)  
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Input 

Data 

Proposed Structure 

layer1  layer2 

Percentage of 

Success(%) 

   

100 5        3 82.5 

300 6        3 85.5 

500 6        4 87 

700 6       4 89.5 

800  8        3 86.4 

 
 

Table 2. Percentage of Successful Interceptions (with 700 training data pairs) during testing 
 

 
Proposed 

Cooperative 
GA 

Hybrid 
GA/BP 

Elitist Real 
GA Backpropagation Without 

training 

Percentage of 
Success(%) 89.5 88 86.2 86 32 

 
 
 

0 50 100 150 200 250 300
40

45

50

55

60

65

70

75

80

85

90

Maximum F itness 

Average F itness 

 
Figure 7. Co.Co.GA Fitness Performance 

Pop-Size=100, Generation=250 
 
moves towards the ball. In order to compare 
consistency, computational intensity and final 
performance of the three evolutionary algorithms 

during training, simulations are repeated ten times.  
Table 3 displays the final fitness of best individuals 
in the ten trials of the     algorithms (to show final 

GA parameter: 
Pop1-Size=40 ,  Num_Generation1=30   ,  Pc1=0.8 , Pm1=0.08 

Pop2-Size=100 ,  Num_Generation2=250 ,  Pc2=0.4 ,  Pm2=0.08 
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performance), standard deviation of the best 
individuals (to show consistency), and number of 
floating point operations (FLOPS) performed 
during the ten algorithms (to show their 
computational intensiveness). FLOPS are a 
reasonable measure of comparing computational 
intensiveness as it is independent of the processor, 
hence it will make future comparisons easier.  As 
indicated in Table 3, Cooperative GA finds better 
optimal solutions more consistently   among   the 
three algorithms, i.e. it determines the best solution 
(comprising of both structure and weights) more 
consistently. Because of random nature of 

evolution, it is guaranteed that globally optimal 
solutions will ultimately be found, given enough 
generations and sufficiently inclusive search space. 
However, as Table 3 also indicates, the only 
disadvantage with the proposed Cooperative GA is 
that the algorithm is computationally intensive, as 
simultaneous execution of two GAs is considerably 
time consuming. Figure 8 shows the performance 
of Cooperative GA in comparison with three other 
algorithms. In this figure the MSE error is shown 
with respect to generation. Cooperative GA has 
reached the least MSE. 

 
 

 
Table 3. Fitness Comparison During Training (obtained by 10 independent runs) 
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Figure 8.  Performance comparison versus generation 

 Best Worst Average Standard 
Deviation FLOPS 

Co.Co. GA 88 79 84.05 2.99 1790025750 
Hybrid GA/BP 68 48 53.8 3.1 150262895 
Elitist Real GA 52.4 40 50.3 3.64 13152123 
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7. CONCLUSION 
 
In this paper, a novel cooperative GA is proposed 
for optimizing ANNs, both parametrically and 
structurally. For testing purposes, the algorithm is 
applied to learning ball interception skill in a 
simulated multi-agent RoboSoccer environment. 
The algorithm is compared with three other 
algorithms used for optimizing the ANN and also 
with an untrained agent. Simulation results indicate 
that there is a trade off between finding globally 
optimal solutions and computational intensity. The 
ten simulation runs that are performed showed that 
the proposed Cooperative GA consistently finds 
better solutions (with a lower standard deviation), 
but is significantly more time consuming. If a 
problem, such as the one solved in this paper, can 
be optimized offline, and small amount of 
improvement in performance and accuracy is 
significant, then Cooperative GA is a method of 
choice. 
 
 
 

8. NOMENCLATURE 
 
f(i)            Fitness of ith individual 
P(i)           Probability selection of ith individual 

iM      Maximum number of neurons in ith layer 

ijf             Joint fitness of individuals i and j 

Pc1           crossover probability of species1 
Pc2           crossover probability of species2 
Pm1          mutation probability of species1 
Pm2          mutation probability of  species2 
Pop1-Size  population size of species1 
Pop2-Size  population size of species2 
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