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Abstract Oxygen is an essential part of the living organism. It is transported from blood to the
body tissue by the systematic circulation and large part of it is stored in the blood flowing in
capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The
governing equations are established assuming that the blood is flowing along a co-axial cylindrical
capillary inside the tissue and has a constant partial pressure of oxygen. We solve the governing
partial differential equations using finite element techniques. The main object of the present work is
to investigate the effects of various assumptions such as neglecting axial diffusion and neglecting the
effect of facilitated myoglobin diffusion.
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1. INTRODUCTION

Blood consists of many components such as (i) the
red blood cells, which contain the protein molecule
that acts as the carrier of oxygen and carbon
dioxide in the human system, (ii) the white blood
cells which ingest and destroy harmful bacteria’s
and dead cells and behave as the defense forces of
the body against infection and injury, (iii) platelets
that help in the clotting of blood and (iv) plasma
which is the liquid part of the blood and contains
several salts, glucose, amino acids, proteins,
hormones etc. Here we are considering our study
only on transport of oxygen in the blood. Oxygen
is transported to the tissues by the systemic
circulation. During its transport in capillary region
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a small fraction of oxygen is dissolved in plasma.
While in tissue region it is driven by pressure
gradient. Oxygen stored in tissue may be dissolved
or chemically bound to myoglobin. A large amount
of oxygen stored in the blood flowing into the
capillaries is chemically bound to hemoglobin. As
the oxygen is transported from blood to tissue,
therefore it involves convection, diffusion and
reaction processes.

Schubert and Zhang [7] reported about the
importance of axial diffusion in the experimental
data through a model consisting of cylindrical
capillary with blood flowing through it, and
surrounded by a co-axial cylindrical tissue
compartment, despite the common assumption of
neglecting diffusion in the direction of blood flow,
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Sharan et al [4] considered a single capillary
surrounded by a co-axial cylindrical tissue
compartment. In this capillary, diffusion is in both
axial and radial directions. Many researchers have
investigated the solution of the governing
equations using various simplifications. Murray
[2] considered the one-dimensional transport
of oxygen through a solution containing either
hemoglobin or myoglobin. Reaction terms,
between oxygen and myoglobin in the tissue and
between oxygen and hemoglobin in the blood, are
taken of non-linear nature. This model considers
diffusion in one dimension and reaction between
oxygen and either hemoglobin or myoglobin
molecule.

2. MODELING

The geometry of the present mathematical model is
explained by Figure 1. Here blood flowing into the
capillary from the artery is named as arterial blood.
The equations governing oxygen transport in the
capillary are:

op

a,D V’p=va, ——A, 1

p—p p P 82 ( )

C,D,V*H=v(, Z—H +A, (2)
Z

Here A. is the reaction term of hemoglobin with
oxygen. As in Kapur [3]
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Figure 1. Geometry of mathematical model used.
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Using the dissociation curve given by Kelman [1],

ap+a,p’ +a,p’ +p’
f(p)=1a,+asp+asp’ +a;p’ +p*
.003683p +.000584p>

p<12

>12¥

The constants used in equation (4) are given by

a, =8.5322289x10°

a, =2.1214010x10°

a;, =-6.7073989x10°
a, =9.3596087x10°

as =-3.1346258x10*
a, =2.3961674x10°

a;, =-6.7104406x10

When oxygen pressure and hemoglobin
saturation are in equilibrium then reaction term (3)
in the governing equations will vanishes.
Governing equations in tissue region are:

atDtVZp =-A+Q &)
CmDmsz = _At (6)

Here ‘A, is reaction term between oxygen and
myoglobin and is given by

Ay =uuCouM —au,Cp (1-M)p (7

and in equilibrium, the dissociation curve for
myoglobin saturation is

_ Unadp (8)

A the reaction term, (after combining both the
equations (7) and (8)), can be written as

M —
A = 9(p)

— ¥m¥m (9)
1-9(p)
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Boundary conditions for both the set of equations
are given below:

(1) No diffusion flux of Myoglobin outside the
tissue

a—M:O, r=r,T, 0<z<b
or
a_M:()’ z=0,b I, <r<r,
0z

(il)) No diffusion flux of hemoglobin outside
capillary across any other boundary

a—H:O, r=r, 0<z<b
or
a_Hz(), z=a, 0<r<r,
0z

(ii1) p and the flux of oxygen are continuous across
the capillary tissue interface, therefore the
condition are:

Pl o = Pl 0<z<b
apr@ _,:atDt@ . 0<z<b
or z=t, or z=1,

(iv) Hemoglobin saturation is in equilibrium with
partial pressure of oxygen in blood entering the
capillary

H=1f(p,) ;z=0 0

IA
-
IA
-

o

(v) The flux-dissolved oxygen per unit area is
given by DV, and is zero across closed
boundaries. In addition to that we assume a non-
diffusion flux condition where blood flows out of
the capillary and so

@zo z=0, r,<r<r
0z
@zO r=r, 0<z<b
or
@=0 z=Dh, 0<r<r,
0z
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(vi) Radial symmetry:
@:a—H:O atr:O’ OSZSb
or or

(vii) P is initially in equilibrium with arterial
blood:

0<r<rg,

(viii) For a unique solution of fractional myoglobin
saturation M, we have:

M(b,r,) =g(p(b,1,))

In the next step we non-dimensionalize the model
equations, where we choose scaling such that the
non-dimensional variables range from 0 to 1. Here
L is the length scale to be chosen appropriately.

p—>po +(P1 —Po)P
H—>H,+(H,-H,H

(10)
r—rr
z—>L,z
then equation (1) and (2) turn to the equations
10( op o’p _0p f(p)
A2 |+ A, S E =24 A
1r6r(r6rj 2022 0z (1-H,)/(HH,)+1f(p)
(11
2
g lof0H| g FH 0H o 0
ror{ or 07> 0z~ (1-Hy)/(HHy)+{(p)
(12)

Neglecting the terms of 0(10_2)the size of the
largest terms,

2
Alli[ra_P}Az@_g:@_PM}&
r or\ oOr 0z 0z 1+ f(p)
(13)
0= _p _f® (14)

0z 1+ f(p)
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With the help of (13) and (14) we have

2
Alli[r a—pj+A2 P (11 A5 ¢y | 2R
0 0z

ror\ or 2 B,
(15)
3. TISSUE REGION
Using the parameters
P = Po + (P1 = Po)P;
M — M, +(m; —m;)M
r->Lr z—>L z (16)
equation (5) and (6) turn to
2 a2
%%(rg—fj + 11:2: 271; =-C, ﬁ+ C,
M, - M,
(17)
2 2
L S
’ mﬂ%@)
(18)

On neglecting terms of sizeO(107%), the
magnitude from equation (18) is given by

p, 20 __j (19)
I+g(p)

from which we deduce that we can assume an
instantaneous reaction and g(p) = 0.

4. RESULTS AND DISCUSSION
For the purpose of our numerical calculation we

used the following values different terms used in
above model

r.=3.3x10%cm r=23.3x10"%cm
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b=1.6 x 10*cm
D,=1.0 x 107 unit
Dy = 1.4x107 unit
Dy=5.0 x 107 unit
Cpn=2.7 x 107 unit
Uy’ =2 x 10" unit

a,= 1.3 x 10” unit

v = 0.02unit
D,= 1.6x10”unit
a,=1.53 x 10™ unit
Ch= 8.9 x 10 unit
U= 60 unit
Q =4.5 x 10unit

Based on these results, we came to know that
the axial diffusion term should not be neglected as
many workers have neglected it in their solution of
the governing equations. In tissue region, axial
diffusion is nearly 15 times smaller than the redial
diffusion and so should be avoided by equation
(17) and (18). This is an indication for the
importance  of axial diffusion. As the
ratio (Lr/Lz) €[0,1] increases axial diffusion term

becomes large. Salathe et al [5] have also
investigated the boundary layers in the region of
the inflow boundary using matched asymptotic
expansion.

On the basis of our results, we also observed
that on increasing consumption of oxygen, p is
lowered; therefore we cannot neglect myoglobin
because myoglobin plays an emergency storehouse
of oxygen in case of deficiency of oxygen (Figures
2 to 5).

Finally, we came to know that the transport is a
sort ef convection dominated in the axial direction
inside the capillary. This will be a small order
diffusive flux of oxygen along the inflow tube and
so the assumption p — p, for blood inflow with
geometric basis is valid. Also in case of ant flew
geometry we can assume that the diffusion is of
neglecting order.

5. SYMBOLS USED IN MODEL

R — Radial co-ordinate

A, —Diffusion coefficient of oxygen in plasma

p — Oxygen partial pressure
H — Fractional hemoglobin saturation
Qp—Oxygen solubility in plasma

A, — Diffusion coefficient of oxygen in tissue
D, —Diffusion coefficient of hemoglobin
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Figure 2. The oxyhaemoglobin dissociation curve.
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Figure 3. The oxyhaemoglobin dissociation curve.

D — Diffusion coefficient of myoglobin

Ch— Oxygen carrying capacity of hemoglobin
r.— Capillary radius

Cm — Oxygen carrying capacity of myoglobin
b — Length of capillary

U, — Backward reaction rate for oxy-hemoglobin

reaction.
ri- Tissue radius

Un, - Backward reaction rate for oxy-myoglobin

reaction
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Figure 4. The derivative of the myoglobin dissociation curve.

Q¢ oxygen solubility in tissue
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Figure 5. The solution of the governing equations, Equations 1-6 and 9 with Pa = 600 mmHg.
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