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Abstract   Oxygen is an essential part of the living organism. It is transported from blood to the 
body tissue by the systematic circulation and large part of it is stored in the blood flowing in 
capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The 
governing equations are established assuming that the blood is flowing along a co-axial cylindrical 
capillary inside the tissue and has a constant partial pressure of oxygen. We solve the governing 
partial differential equations using finite element techniques. The main object of the present work is 
to investigate the effects of various assumptions such as neglecting axial diffusion and neglecting the 
effect of facilitated myoglobin diffusion. 
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اين ماده از طريق چرخش سيستماتيک خـون        . اکسيژن بخشی ضروری در ارگانيزم موجود زنده است       چکيده      
موجود  و به بافت های     ه ذخيره شد   ها دار بزرگی از اکسيژن در خون جاری در مويرگ        مق. در بدن انتقال می يابد    

معـادلات  . در اين مقاله يک مدل رياضی برای انتقال اکسيژن به بافت هـا بحـث مـی شـود                  . دياب انتقال می    زنده
يژن در  حاکم با فرض اينکه خون در استوانه های مويين هم محور در داخل بافـت بـا فـشار جزئـي ثابـت اکـس                        

هـدف  . معادلات ديفرانسيل پاره ای حاصل به روش المان محدود حل می شـود            . حرکت است، نوشته می شوند    
نقش فرض های گوناگون مانند نديده گرفتن نفوذ محوری و تاثير تـسهيل نفـوذ توسـط    تحقيق تعيين  اين  اصلی  

 .ميوگلوبين بر انتقال اکسيژن است
 
 
 

1. INTRODUCTION 
 
Blood consists of many components such as (i) the 
red blood cells, which contain the protein molecule 
that acts as the carrier of oxygen and carbon 
dioxide in the human system, (ii) the white blood 
cells which ingest and destroy harmful bacteria’s 
and dead cells and behave as the defense forces of 
the body against infection and injury, (iii) platelets 
that help in the clotting of blood and (iv) plasma 
which is the liquid part of the blood and contains 
several salts, glucose, amino acids, proteins, 
hormones etc. Here we are considering our study 
only on transport of oxygen in the blood. Oxygen 
is transported to the tissues by the systemic 
circulation. During its transport in capillary region 

a small fraction of oxygen is dissolved in plasma. 
While in tissue region it is driven by pressure 
gradient. Oxygen stored in tissue may be dissolved 
or chemically bound to myoglobin. A large amount 
of oxygen stored in the blood flowing into the 
capillaries is chemically bound to hemoglobin. As 
the oxygen is transported from blood to tissue, 
therefore it involves convection, diffusion and 
reaction processes. 
     Schubert and Zhang [7] reported about the 
importance of axial diffusion in the experimental 
data through a model consisting of cylindrical 
capillary with blood flowing through it, and 
surrounded by a co-axial cylindrical tissue 
compartment, despite the common assumption of 
neglecting diffusion in the direction of blood flow,  
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     Sharan et al [4] considered a single capillary 
surrounded by a co-axial cylindrical tissue 
compartment. In this capillary, diffusion is in both 
axial and radial directions. Many researchers have 
investigated the solution of the governing 
equations using various simplifications. Murray 
[2] considered the one-dimensional transport 
of oxygen through a solution containing either 
hemoglobin or myoglobin. Reaction terms, 
between oxygen and myoglobin in the tissue and 
between oxygen and hemoglobin in the blood, are 
taken of non-linear nature. This model considers 
diffusion in one dimension and reaction between 
oxygen and either hemoglobin or myoglobin 
molecule. 
 
 
 

2. MODELING 
 
The geometry of the present mathematical model is 
explained by Figure 1. Here blood flowing into the 
capillary from the artery is named as arterial blood. 
The equations governing oxygen transport in the 
capillary are: 
 

cp
2

pp A
z
paνpDa −
∂
∂

=∇  (1) 

 

ch
2

hh A
z
HCνHDC +
∂
∂

=∇  (2) 

 
Here Ac is the reaction term of hemoglobin with 
oxygen. As in Kapur [3] 
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Using the dissociation curve given by Kelman [1], 
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The constants used in equation (4) are given by 
 

3
1 105322289.8a ×=  

3
2 101214010.2a ×=  

2
3 107073989.6a ×−=  

5
4 103596087.9a ×=  

4
5 101346258.3a ×−=  

3
6 103961674.2a ×=  

3
7 107104406.6a ×−=  

 
     When oxygen pressure and hemoglobin 
saturation are in equilibrium then reaction term (3) 
in the governing equations will vanishes. 
Governing equations in tissue region are: 
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Here ‘At’ is reaction term between oxygen and 
myoglobin and is given by 
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and in equilibrium, the dissociation curve for 
myoglobin saturation is 
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At the reaction term, (after combining both the 
equations (7) and (8)), can be written as 
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Figure 1. Geometry of mathematical model used. 
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Boundary conditions for both the set of equations 
are given below: 
 
(i) No diffusion flux of Myoglobin outside the 
tissue 
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(ii) No diffusion flux of hemoglobin outside 
capillary across any other boundary 
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(iii) p and the flux of oxygen are continuous across 
the capillary tissue interface, therefore the 
condition are: 
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(iv) Hemoglobin saturation is in equilibrium with 
partial pressure of oxygen in blood entering the 
capillary 
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(v) The flux-dissolved oxygen per unit area is 
given by D ,∇  and is zero across closed 
boundaries. In addition to that we assume a non-
diffusion flux condition where blood flows out of 
the capillary and so 
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(vi) Radial symmetry: 
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(vii) P is initially in equilibrium with arterial 
blood: 
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(viii) For a unique solution of fractional myoglobin 
saturation M, we have: 
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In the next step we non-dimensionalize the model 
equations, where we choose scaling such that the 
non-dimensional variables range from 0 to 1. Here 
L is the length scale to be chosen appropriately. 
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then equation (1) and (2) turn to the equations 
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Neglecting the terms of )10(0
2− the size of the 

largest terms, 
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With the help of (13) and (14) we have 
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3. TISSUE REGION 
 

Using the parameters 
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equation (5) and (6) turn to 
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On neglecting terms of size )10(O 2− , the 
magnitude from equation (18) is given by 
 

0
)p(g1

)p(gD1 =
+

 (19) 

 
from which we deduce that we can assume an 
instantaneous reaction and g(p) = 0.  
 
 
 

4. RESULTS AND DISCUSSION 
 
For the purpose of our numerical calculation we 
used the following values different terms used in 
above model 
 

rc = 3.3 × 10-4 cm   rt = 3.3 × 10-3cm 

b = 1.6 × 102 cm   v = 0.02unit 
Dp = 1.0 × 10-5 unit Dt = 1.6x10-5unit 
Dh = 1.4x10-7 unit ap = 1.53 × 10-9 unit 
Dm = 5.0 × 10-7 unit Ch = 8.9 × 10-6unit 
Cm = 2.7 × 10-7 unit Uh = 60 unit 
Uh’ = 2 × 1010unit Q = 4.5 × 10-8unit 
at = 1.3 × 10-9 unit 
 
     Based on these results, we came to know that 
the axial diffusion term should not be neglected as 
many workers have neglected it in their solution of 
the governing equations. In tissue region, axial 
diffusion is nearly 15 times smaller than the redial 
diffusion and so should be avoided by equation 
(17) and (18). This is an indication for the 
importance of axial diffusion. As the 
ratio ]1,0[)Lz/Lr( ∈  increases axial diffusion term 
becomes large. Salathe et al [5] have also 
investigated the boundary layers in the region of 
the inflow boundary using matched asymptotic 
expansion. 
     On the basis of our results, we also observed 
that on increasing consumption of oxygen, p is 
lowered; therefore we cannot neglect myoglobin 
because myoglobin plays an emergency storehouse 
of oxygen in case of deficiency of oxygen (Figures 
2 to 5). 
     Finally, we came to know that the transport is a 
sort ef convection dominated in the axial direction 
inside the capillary. This will be a small order 
diffusive flux of oxygen along the inflow tube and 
so the assumption p – pa for blood inflow with 
geometric basis is valid. Also in case of ant flew 
geometry we can assume that the diffusion is of 
neglecting order. 
 
 
 

5. SYMBOLS USED IN MODEL 
 
R – Radial co-ordinate   

−∆ p Diffusion coefficient of oxygen in plasma 
p – Oxygen partial pressure  
H – Fractional hemoglobin saturation  
Qp–Oxygen solubility in plasma  

−∆ t Diffusion coefficient of oxygen in tissue 
Dp –Diffusion coefficient of hemoglobin 
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Dm – Diffusion coefficient of myoglobin 
Ch – Oxygen carrying capacity of hemoglobin 
rc – Capillary radius 
Cm – Oxygen carrying capacity of myoglobin 
b – Length of capillary 
Uh – Backward reaction rate for oxy-hemoglobin 
reaction.  
rt- Tissue radius 
Um - Backward reaction rate for oxy-myoglobin 
reaction  

Qt- oxygen solubility in tissue 
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Figure 2. The oxyhaemoglobin dissociation curve. 
 

 
Figure 3. The oxyhaemoglobin dissociation curve. 

Figure 4. The derivative of the myoglobin dissociation curve.
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Figure 5. The solution of the governing equations, Equations 1-6 and 9 with Pa = 600 mmHg. 


