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Abstract   In the present paper, the problem of externally excited exponential transmission 
line has been solved analytically in frequency domains using a simple approach. Then 
steplines approximation as a first order approximation for the problem of externally excited 
nonuniform transmission lines in general and exponentially tapered transmission line (ETL) 
as a special case has been presented. Finally the two approaches are compared and some 
useful results are obtained to show when the two methods are equivalent. 
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در اين مقاله ابتدا مسئله خطوط انتقال نمايی توسط تابش خارجی با يک روش ساده به طور دقيق     چکيده
در نهايت نتايج اين دو . سپس با استفاده از تقريب پله ای، همين مسئله مورد بررسی قرار می گيرد. حل می شود

 تحت چه شرايطی، روش تقريب پله ای، نتايج نشان دهنده اين هستند که . روش با يکديگر مقايسه می شوند
 .می تواند به نتايج مشابهی، با روش دقيق منجر شود

 
 
 
 

1. INTRODUCTION 
 
The effect of the external electromagnetic field to 
the two wire transmission lines was considered for 
the first time by Taylor and his group in 1965 [l]. 
Since that time several research papers have been 
published in the same field and the method used in 
[1] has been generalized to several structures 
including a multiconductor structure [2], and 
nonuniform two wire structure [3]. The ETL’s 
which are the subject of the present paper are used 
for some applications such as antenna design [4]. 
In this paper the coupling of external EM plane 
waves to nonuniform exponential transmission 
lines with linear terminations have been considered 
using two different methods. The first method is 
analytic and the second method is based on 
steplines approximations of nonuniform line. 
Stepline approximations are used to model the 

nonuniform line by a large number of uniform 
small steps. Finally, time- and frequency-domain 
analysis together with the φ  pattern of the induced 
terminal voltages presented are compared to show 
whether and when steplines approximation is a 
good approximation for coupling problems in 
nonuniform transmission lines. 
 
 
 

2. FIELD COUPLING TO ETL’S EXACT 
ANALYSIS 

 
Consider an ETL externally excited by a plane 
wave. It is assumed that the line carries TEM mode 
as its principal mode of propagation. The differential 
equations describing this line is given by 
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0L  and 0C  are constant parameters called per unit 

length inductance and capacitance at the input 
terminal of the line. Also q is the taper constant and 

VF  and IF  are the distributed voltage and current, 
sources represent the effect of external EM wave. VF  
and IF  are given in several references [2-3] as 
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The superscript t represents the total exciting wave. 
The total field is given by 
 

rit EEE +=  (7) 
 
in which the superscripts i and r represent the 
external incident wave and reflected wave from the 
lower surface (e.g. ground plane) respectively. 
Now consider two plane waves of parallel (θ ) 
polarization (or TM wave) and of perpendicular 
(φ ) polarization (or TE wave). Here, the φ  angle, 
is measured from the negative x axis and the θ  
angle is measured from the positive y axis. For 
plane wave excitation it is simple to show 
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for TM case, and 

 
( ) ( ) ( )( )zhk sinsinxjkexpE2j  xF yx0V φ−=  (10) 

 
( ) 0xFI =  (11) 

 
for TE case. We now define the new variables 
called incident ( )xV + , and reflected ( )xV −  
traveling waves along the line as 
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By differentiating 12 one gets to 
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The above differential equation can be solved 
directly to get to the following solution. 
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Thus for the case of perfect ground plane in lower 
surface of the structure one has 
 

( ) ( ) ( )xj expysineE2j  0,y,xE xyox0
t
x β−β=  (15) 

 
( ) ( ) ( )xjyeEyxE xyoy

t
y ββ −=  expcos2  0,, 0  (16) 

 
where 0E  is the amplitude of the electric field of 
the incident plane wave, and 
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θφβ=β  sin cos  0x  (17) 
θβ=β  cos  0y  (18) 

0β  is the phase constant of the incident wave. For 
TM wave incident oxe  and oye  are defined as 

θ=θφ=  sin e,  cos cos e oyox  (19) 
 
and for the TE case they are defined as 
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Setting 24 in 23 gets to 
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Where 
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For ETL’s one has 
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where a is the radius of the wire and 
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Finally ( )xF  can be calculated from 15 using 
numerical integration. 
 
 
 

3. STEPLINE APPROXIMATIONS 
 
The steplines approximation methodcan be applied 
for all kinds of nonuniform transmission lines 
(NTL’s). Here the main idea is presented for a 
general case and then used for the case of 
exponential transmission line. Consider an 
externally excited lossless NTL as shown in Figure 
1. 
     To find the induced current and voltage over the 
line, the total length of the line d is subdivided into 
N equal (without loss of generality) intervals x∆ . 
The inductance and capacitance matrices of NTL 
over each subinterval are taken to be independent 
of x. The partial differential equations which 
describe the system in the: k-th step are given by 
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In which V(x) and I(x) are the voltage and current 
along the line, the subscript n. indicates the n-th 
step (n=1,2,...,N), and 
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nL  And nC  represent per unit length inductance, and 
capacitance in the n-th step respectively. Using the 
starting point of the n-th step ( )( )xn  x  x1n ∆<<∆−  
as the reference point for it, 31 has a solution as 
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This solution is valid for x  x  0 ∆<< . In 30 we 
used the following notations 
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( )xFV  and ( )xFI , the induced voltage and current 

sources, are defined in 8 and 11 for both TM and 
TE cases. Setting xx ∆=  in 32 and applying the 
boundary conditions 
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and terminal conditions 
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Figure 1. Externally exited lossless nonuniform transmission line (steplines approximation). 
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and LZ  and gZ  are the right- and left-hand loads 

respectively. From 40 LV  and gV  (voltages at the 
right and left hand terminals) can be obtained 
simply for both TM and TE incident. 
 
 
 

4. EXAMPLES AND RESULTS 
 
Consider an exponential nonuniform transmission 
line with the following design parameters. 
 
( ) Ω= 71.700Z ;  
( ) Ω= 6.316dZ ; m 5.0d =  

 
This design parameters yields to taper' constant 

5.1q2 =  and wire diameter mm 3a2 = . Also here 
we made the following assumptions: 
 

Ω= 50ZL ; Ω= 150Zg . 
To see the effect of the number (and length) of the 
steps the total length of the line has been divided 
into N = 5, 10, 25, 50, 100 steps. Table 1 shows the 
maximum height step or step in y-direction 
( maxh∆ ), length step or step in x-direction ( x∆ ), 
the maximum difference of characteristic impedance 
of two adjacent steps ( omzxZ∆ ), the length and 
characteristic: impedance of the final step ( ( )Nh , 

( )NZo ), and the maximum percent error ( maxe ) in 
frequency domain for pulse excitation. 
 
i) Time-Domain Analysis   The incident electric 

field is given by a triangular pulse with ns 
3

35
 rise- 

and fall-time and ns 35  duration. 
The induced terminal voltage for constant 0  =θ  

and
3
  π

=φ , calculated using exact and stepline 

approximations for N=50, and N=10 are compared 
in Figures 2-3 respectively. 
 
ii) Frequency-Domain Analysis   The error for 
induced voltages in frequency domain at all 
terminals, computed using exact and stepline 

approximation methods, for 0=φ  and 
3
π

=θ , are 

shown in Figures 4-5. 
 
iii) φ  Pattern   Figures 6-7 show the comparison 
of the exact φ  pattern and the stepline 
approximation of the induced terminal voltages for 

constant 
4
π

=θ  and f = 100MHz. 

TABLE l. Some Parameters and the Error for Steplines Approximations with Different N. 
 

N ( )mmh max∆  ( )Ω∆ maxoZ  ( )%emax  ( ) ( )mm  Nh  ( ) ( )Ω  NZo  
100 7.2 4.64 3 102 312.185 
50 12.6 9.09 5 95 307.53 
25 19.7 17.38 7 82.1 298.44 
10 24.7 37.99 17 54.8 272.76 
5 18.6 60.8475 20 32 234.76 
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Figure 8 shows the φ  pattern of the error for N = 
100. 
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Figure 2. Comparison of time domain induced voltages for exact model and steplines approximations N=50. 
 
 
 
 
 
 
 

 
 

Figure 3. Comparison of time domain induced voltages for exact, model and steplines approximations. 



24 - Vol. 17, No. 1, January 2005 IJE Transactions A: Basics 

 

 
 

 
 
 

Figure 4. Error for left,-hand terminal induced voltages (in frequency domain) for several numbers of steps. 
 
 
 
 
 
 
 

 
 

Figure 5. Error for right-hand terminal induced voltages (in frequency domain) for several numbers of steps. 
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Figure 6. Comparison of magnitude of the exact φ  pattern and steplines approximation in constant 
4
π

=θ  for f = 100MHz and N = 100.

 
 
 
 
 

 
 

Figure 7. Comparison of magnitude of the exact φ  pattern and steplines approximation in constant 
4
π

=θ  for f = 100MHz and N = 100.
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5. CONCLUSION 
 
Stepline approximation has been compared with 
the exact method for field coupling to ETL's both  
in time- and frequency-domain. In the stepline 
approximation method, choosing constant x∆  leads 
to different z∆ and oZ∆ , for each step. Also 
choosing constant h∆  or oZ∆  leads to different 
steps in the other two parameters. The natural 
question that arises here is that, which choice is 
better (leads to less error) in stepline 
approximation method? As it is appears the error 
for each choice depends on the nature of the 
problem under consideration, but generally the 
error is less for the case of constant x∆  for the 
same N. For example choosing N = 50 for constant 
steps in y-axis leads to, constant mm  015.2  h=∆ , 

49.35Z maxo =∆  and mm  89xmax =∆ . Also choosing 
N = 50 for constant steps in oZ  leads 
to mm  4.8h max =∆ , constant 92.4Zo =∆  and 

mm  4.22x max =∆  (compare with the second row 
of Table 1). The maximum error, in frequency 
domain, for both two cases is obtained a little more 
than the case of constant x∆  considered in the 
paper. It may be because of the nature of the 

induced distributed voltage and current sources 
( )xFV  and ( )xFI  which are functions of height 

and characteristic: impedance of the steps. It seems 
that the results obtained in the paper can be 
generalized for all other cases of nonuniform 
transmission lines. 
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Figure 8. φ  pattern of the error in constant 
4
π

=θ  for f = 100MHz and N = 100. 


