
IJE Transactions B: Applications Vol. 17, No. 2, July 2004 - 171 

RELIABILITY ANALYSIS OF REDUNDANT REPAIRABLE 
SYSTEM WITH DEGRADED FAILURE 

 
 

Madhu Jain, Rakhee and Sandhya Maheshwari 
 

Department of Mathematics, Institute of Basic Science 
Khandari, Agra-282002, India, madhujain@sancharnet.in 

madhuj_2001@yahoo.com - chaya-rakhee@yahoo.com - imsandya2001@yahoo.com 
 

(Received: October 25, 2002 - Accepted in Revised Form: June 10, 2004) 
 

Abstract   This investigation deals with the transient analysis of the machine repair system 
consisting of M-operating units operating under the care of single repairman. To improve the system 
reliability/availability, Y warm standby and S cold standby units are provided to replace the failed 
units. In case when all spares are being used, the failure of units occurs in degraded fashion. In such 
situation there is a facility of one additional repairman to speed up the repair. The lifetime and repair 
time of units are exponentially distributed. We use matrix method to solve the governing Chapman-
Kolmogorov equations. Expressions for the system reliability, availability, mean time to system 
failure, etc. are established in terms of transient probability. Computational scheme is discussed to 
facilitate the numerical results. Sensitivity analysis is also carried out to depict the effect of various 
parameters on the system reliability. 
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 واحد عملياتي تحت نظارت يك تعمير       M   اين مقاله به تحليل گذراي يك سيستم تعمير ماشين شامل              چكيدهچكيدهچكيدهچكيده

 ماشين رزرو غير فعال براي بهبود قابليت دسترسي و پايايي              S ماشين رزرو فعال و       Yتعداد  . كار مي پردازد 
ابي ماشينها در حالت نزولي      در حالتي كه تمامي قطعات يدكي مصرف شده اند، خر          . سيستم فراهم شده است   

. در چنين وضعيتي امكان استفاده از يك تعمير كار اضافي براي تسريع عمليات تعمير وجود دارد                . اتفاق مي افتد 
در اين مقاله از روش ماتريسي براي       . طول عمر و مدت زمان تعمير ماشين ها داراي توزيع نمايي فرض شده اند            

معادلات براي قابليت دسترسي، پايايي، ميانگين      . استفاده شده است   )GK( چپمن   -حل معادلات كالموگورف    
روش محاسباتي و نتايج عددي . مدت زمان تا خرابي سيستم و غيره با استفاده از احتمالات گذرا تعريف شده اند   

ستم همچنين تحليل حساسيت براي نشان دادن تاثير پارامترهاي مختلف بر قابليت اطمينان سي                . ارايه شده اند 
 .صورت گرفته است

 
 

1. INTRODUCTION 
 
The performance of any machining system is 
highly influenced by component failures. The 
machine failure may be balanced either by 
providing spare part support or by facilitating 
better repair facility so as the production may not 
suffer. Several researchers have done work in the 
area of transient analysis of redundant repairable 
system. Kumagai [1] provided reliability analysis 
of an n-spare system with a single repair facility. 
Ka lpakam and  Hameed  [2 ]  ob ta ined  the  
availability and reliability of an n-unit warm 
standby redundant system. Sivazlian and Wang [3] 
studied economic analysis of the M/M/R machine 
repair problem with warm standbys. Shao and 

Lamberson [4] discussed reliability of series 
system with spares. Goel and Srivastava [5] 
investigated a transient behavior of an n-unit cold 
standby system with a single repair facility. They 
developed the Chapman-Kolmogorov equations 
and solved by using matrix approach. Jain [6] 
employed the diffusion approximation technique to 
study the (m, M) machine repair problem with 
spares and state dependent rates. Jain and Dhyani 
[7] developed transient analysis of M/M/C 
machine repair problem with spares. Jain and 
Singh [8] considered reliability of repairable multi-
component redundant system. Jain and Singh [9] 
studied optimal N-policy for single server 
markovian queue with breakdown, repair and state 
dependent arrival rate. 
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     One can improve the system reliability either 
by providing sufficient spare parts or by 
facilitating the additional repairman to speed up 
the repair. Many mathematicians have contributed 
significantly towards machine repair problem with 
spares and additional repairmen. Chandre 
and Shanti Kumar [10] discussed a machine 
interference problem with several types of 
machines attended by a single repairman. Jain 
[11] analyzed reliability analysis for M/M/C 
repairable system with spares and additional 
repairmen. Jain [12] studied M/M/R machine 
repair problem with spares and additional 
repairman. Jain et al. [8] discussed M/M/C/K/N 
machine repair problem with balking, reneging, 
spares and additional repairman. Jain et al. [13] 
analyzed machine repair problem with spares, 
reneging, additional repairman and two modes of 
failure was by. Jain and Maheshwari [14] gave a 
transient analysis of redundant repairable system 
with additional repairmen. 
     When all spares are being used, the failure 
of units may occur in degraded fashion. Significant 
works have been done on the machine repair 
problem with degraded failure rate. Goyal 
and Tantawi [15] discussed evaluation of 
performability for degradable computer systems. 
Meyer [16] provided the performance measures for 
degradable computer systems. Najjar and Gaudiot 
[17] gave scalability analysis in gracefully 
degradable large systems. Pham et al. [18] 
considered availabili ty and mean lifetime 
prediction of multistage degraded system with 
partial repairs. Jain et al. [19,20] studied reliability 
analysis of gracefully degradable multiprocessor 
system. However much work has not been done for 
the improvement in availability of such a system. 
The issue of improvement in reliability/availability 
of a repairable degraded multi-component system 
can be tackled to some extents by employing cold 
and warm spares and additional repairman. 
     In this paper we extend the work of Goel and 
Srivastava [5] on machining system with cold 
standbys by incorporating the degraded failure and 
additional repairman. We have also considered 
mixed standbys by including warm spares along 
with cold standbys, which was not taken into 
consideration by Goel and Srivastva [5]. The main 
contents of this paper are organized as follows: In 
Section 2, the structure of the problem and related 

notations to describe the model are given. The 
governing differential difference equations are 
constructed for state probabilities using suitable 
transition rates. By taking the Laplace transform 
of state transition equations, the queue size 
distribution is given in Section 3.  The 
rearrangement of the set of steady state equations 
in matrix form and the analysis are done in Section 
4. In Section 5, some performance measures are 
established. For illustration purpose, the numerical 
results are provided in Section 6. Finally 
conclusion is given in Section 7. 
 
 
 

2. MODEL DESCRIPTION 
 

We consider a machining system consisting of N = 
M + Y + S mixed units where M are the operating 
units, Y are the warm standby units and S are the 
cold standby units. To develop the mathematical 
model for the system, the following assumptions 
are made: 
 
• The lifetime and the repair time 

distributions of the units are 
exponentially distributed. 

• The repair facility consists of one 
permanent and one additional 
removable repairman. Whereas the 
additional repairman turns on when all 
standby units are exhausted and is 
renewed as soon as standby unit 
repaired. 

• There is a provision of cold standby 
units and warm standby units to 
replace the failed units. 

• Once standby (cold or warm) unit 
replaces the failed operating unit, its 
characteristics are the same as that of 
operating unit. 

• The system will fail when there 
are less than m units in the system. 
The failure rates of operating and 
warm standby units are λ  and α  

)( λ≤α≤0 , 
• respectively, while cold standby units 

have the failure rate zero. 
• When all  standbys are used then 
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the failure rate of operating units 
is assumed to be state dependent 
a n d  i s  d e n o t e d  b y :  '

SYi +−λ  

( )mSYMi −++<≤0 . 
• When all standbys (warm and cold) 

are being used and a unit fails, the 
system operates in degraded manner 
being in short mode. To cope up with 
this situation, additional repairman is 
called to reduce the backlog of failed 
units. 

• The permanent repairman repairs the 
failed units with rate µ  while the 
additional repairman repairs the failed 
units with rate 1µ . 

• The repairmen can repair only one 
failed unit at a time and performs 
service in the FIFO discipline. 

• After the completion of repair, the 
failed units join the operating units if 
system is short otherwise become part 
of the standby group to which it  
belongs. 

• The switchover times from standby to 
operating state and from repair to 
standby state are negligible. 

 
     Let X(t) be the number of operable units at time 
t. Then the state dependent failure and repair rates 
are given by: 
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where: L = M+Y+S-m 
 
     Let pj(t) be the probability that the system is in 
state j ( Nj1m ≤≤− ) at time t, it is to be noted 
that state (m-1) is an absorbing state. Again 
assume that qj(t) be the probability that the system 
is in state j ( Njm ≤≤ ) in case when it will not 
ever reach the failed state. The state transition flow 
diagram is depicted in Figure 1. The state ‘N’ 
indicates that all the (M+Y+S) units are in working 
state. The state (N-i), (1≤ i ≤ Y-1) represents that 
(N-i) units are in working state due to failure of i 
units which belong to either operating group or 
warm standby group. In these states, if failure of 
operating units occurs then this failure unit is 
replaced by warm standby so that there are M 
operating units along with (Y-i) warm standby 
units and S cold standby units in the system. The 
state (N-i), (Y≤ i < Y+S) denotes that all warm 
standby units are exhausted either due to failure or 
in replacing the failed operating units, so that there 
are only M operating units and (Y+S-i) cold 
standby units in the system. In this state whenever 
an operating unit fails, it is replaced by cold 
standby unit. The state (N-i), (Y+S ≤ i ≤ M+Y+S-
m) represents the situation when all cold and warm 
standby units are being used and system is 
operating in degraded mode with i-(Y+S) 
operating units. The system fails when mth 

operating unit fails and the state changes from m to 
(m-1)th as shown in the Figure 1. 
The Chapman-Kolmogorov equations governing 
the model are as follows: 
 

)()(1 tptp
dt
d

mmm λ=−  (3) 

 

)()()( 1 tptp
dt
d

mmmm ++−= µλ  
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)()( 111 tptP mmmm ++− ++ λµ  
 (4) 
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3. THE QUEUE SIZE DISTRIBUTION 
 

The stationary distribution jπ  (j = m-1, m, …,N) 
of the stochastic process { X (t), t ≥  0} can be 
obtained by setting the derivatives equal to zero in 
Equations 3 to 11. Letting )t(plim jtj →∞

=π  and 

substituting the values of iN −λ  and iN −µ  
( )Li ≤≤0 , we obtain 
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Figure 1. The state transition diagram. 
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Equations 20 to 28 can be solved by using product 
type solution given as 
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4. THE TRANSIENT ANALYSIS 
 

Taking Laplace transform of Equations 3 to 11 and 
denoting the Laplace transform of function f(t) by 
f(s), the governing equations reduce to 
 
A(s) P = IN-m+2 (30) 
 
where A(s) is a (N-m+2) ×  (N-m+2) real 
symmetric tridigonal matrix, denoted by: 
 

A(s)= 











































+−

−




 ++
−

−




 ++
−

−




 ++
−

−




 ++
−

−

−
−

−−
−−

−
−

+
+

+
+

)(0..000..000..000

..000..000..000

..............................

000....000..000

..............................

000..000....000

..............................

000..000..000..

000..000..000..0

1
1

1
1

1
1

1
1

NN

N
N

N
N

YN
YN

YN
YN

M
M

M
M

m
m

m
m

m

s

s

s

s

s
s

λµ

λ
µ

λ
µ

λ
µ

λ
µ

λ
µ

λ
µ

λ
µ

λ
µ

λ

 

 
P = [pm-1(s),pm(s), ..., pN-i(s), ..., pM(s), ..., 
 
pN-i(s), ..., pN-Y(s), ..., pN-i(s), ..., pN-1(s), pN(s)]T (31) 
 
and 
 
IN-m+2 = (0, 0, 0, …., 0, 1)T (32) 
 
Similarly the Laplace transform of Equations 12 to 19 gives 
 
B(s) Q = IN-m+1 (33) 
 
where B(s) is the (N-m+1)× (N-m+1) tridigonal matrix obtained by suppressing the first row and first 
column of A, 
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Q = [qm(s), ..., qN-i(s), ..., qM(s), ..., qN-i(s), ..., qN-

Y(s), ..., qN-i(s), ..., qN-1(s), qN(t) ]T 
 (34) 
 
and IN-m+1 is a unit column vector with unity in the 
last place. Using Cramer’s rule, Equations 30 and 
33 yield 
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where Aj(s) and Bj(s) are obtained from the 
matrices A(s) and B(s) by replacing the jth column 
by the unit vector in the RHS of Equations 34 and 
37. 
     Now we proceed to show that the 
polynomials |A(s)| and |B(s)| have real and 
distinct zeros and hence the expressions for 
pj(s) and qj(s) can be broken into partial 
fractions. After applying some elementary row 
and column transformations on |A(s)| and 
|B(s)|, we have: 
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From Equation 29, we note that the eigen values of 
α (0) and β (0) are real, distinct and positive 
which is denoted by α k and β k. Then we have 
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Figure 2. Effect of λ  on availability.                                                       Figure 3. Effect of µ  on availability. 
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Figure 4. Effect of M on availability.                                                      Figure 5. Effect of λ  on reliability. 
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Taking the partial fractions of Equations 37 to 38, 
we get 
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5. SOME PERFORMANCE MEASURES 
 
Now we obtain some operating characteristics of 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45t

 R ( t

µ=1
µ=1.2
µ=1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45t

  R (

M=3

M=5

M=7

 
 

Figure 6. Effect of µ  on reliability.                                                       Figure 7. Effect of M on reliability. 
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the system as follows: 
 
The system availability is given by: 
 

∑
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The reliability of the system is given by: 
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The mean time to system failure is obtained as: 
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Next, the probability that the repairman is busy is 
 
B(t) = 1 - pn(t) (47) 
 
     Taking the inverse Laplace transform of (39) 
and (40), we find 
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6. NUMERICAL RESULTS 
 
In this section, numerical results for reliability 
and availability are calculated using MATLAB 
software and are summarized in Tables 1 and 2. 
The graphical presentation has also been shown in 
Figures 2-7. 
     In Table 1, we display reliability and 
availability for different values of failure rate 
(α )   of warm standbys. We notice that the 
reliability and availability decrease as α  
increases but for larger values of time t remain 
constant for the increasing values of α . In 
Table 2, we depict the results for reliability and 
availability for the various repair rates of 
additional repairman. We observe that there is 
an increment in reliability and availability with 
the repair rate 1µ  of additional repairman but 
both availability and reliability decrease as time 
t increases. 
     In Figure 2, we illustrate the effect of failure 
rate λ  of the operating units on the availability 
by varying t. We see from the graph that 
availability decreases sharply when λ  increases 
for lower value of t, but as time t increases the 
availability remains constant. Figure 3 depicts 
the effect of repair rate µ  of permanent 
repairman on availability. We note that the 
availability increases when µ  increases for 
small value of t but as time t increases, the 
availability becomes almost constant. Figure 4 
displays the effect of the number of operable 
units (M) on the availability. It is easily 
observed from the graph that the availability 
decreases for smaller time t when the number of 
operable units increases but for larger time t it 
remains almost constant. 
     In Figure 5, the effect of failure rate λ  of 
operating units on reliability is shown. It is 
noted that the reliability decreases with the 
increase in λ . The effect of repair rate µ  of 
permanent repairman on the reliability by 
varying t is displayed in Figure 6. We observe 
that the reliability increases with µ  but 
decreases as t increases. Figure 7 illustrates the 
effect of number of the operable units (M) on 
the reliability. The decreasing trend in reliability 
with the increase in M is found. 
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7. CONCLUSION 
 
In this paper, we have considered repairable 
system having warm as well as cold standby units. 
A permanent repairman together with additional 
repairman is facilitated so that the reliability 
of the system can be improved up to a desired 
grade in particular when there is constraint of 
limited spare support. The numerical results 

provided demonstrate the computational 
tractability of the analytical results as well as give 
insight how the system reliability/availability can 
be modified by the appropriate choice of standbys 
and repair facility. From the tables and graphs, we 
conclude that 
 
• The reliability and availability decrease as 

the failure rate ( λ )  of operable units and 

TABLE 1. Reliability and Availability for different values of α. 
 

a = 0.01 a = 0.02 a = 0.03 
t 

A(t) R(t) A(t) R(t) A(t) R(t) 
0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
5 0.973820 0.914973 0.973779 0.914797 0.973738 0.914622 

10 0.954971 0.703409 0.954962 0.703206 0.954954 0.703006 
15 0.952301 0.530769 0.952300 0.530613 0.952299 0.530459 
20 0.951964 0.400148 0.951964 0.400031 0.951964 0.399915 
25 0.951921 0.301661 0.951921 0.301573 0.951921 0.301485 
30 0.951916 0.227414 0.951916 0.227347 0.951916 0.227281 
35 0.951915 0.171441 0.951915 0.171391 0.951915 0.171341 
40 0.951915 0.129245 0.951915 0.129207 0.951915 0.129169 
45 0.951915 0.097434 0.951915 0.097405 0.951915 0.097377 

 
 
 

TABLE 2. Reliability and Availability for different values of m1. 
 

m1 = 1.2 m1 = 1.4 m1 = 1.6 
t 

A(t) R(t) A(t) R(t) A(t) R(t) 
0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
5 0.966753 0.901446 0.973659 0.914280 0.979080 0.925392 

10 0.939781 0.657966 0.954937 0.702615 0.966125 0.742016 
15 0.935229 0.468348 0.952297 0.530159 0.964621 0.587050 
20 0.934537 0.332911 0.951963 0.399688 0.964465 0.464201 
25 0.934433 0.236622 0.951921 0.301314 0.964449 0.367052 
30 0.934417 0.168182 0.951916 0.227152 0.964448 0.290234 
35 0.934415 0.119538 0.951915 0.171244 0.964447 0.229493 
40 0.934414 0.084963 0.951915 0.129096 0.964447 0.181465 
45 0.934414 0.060389 0.951915 0.097322 0.964447 0.143487 
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the failure rate (α )  of warm standby units 
increase. 

• With the increase in repair rate of 
permanent and additional repairmen, the 
reliability and availability both increase. 

• The reliability and availability decrease as 
the number of operable units increase. 
Furthermore as time goes on, the reliability 
tends to zero asymptotically however 
availability becomes almost constant. 
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