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Abstract   An artificial neural network can be used as an intelligent controller to control non-linear, 
dynamic system through learning. It can easily accommodate non-linearities and time dependencies. 
Most common multi-layer feed-forward neural networks have the drawbacks of large number of 
neurons and hidden layers required to deal with complex problems and require large training time. To 
overcome these drawbacks, a generalized neuron based non-linear controller has been developed and 
illustrated as a power system stabilizer. Studies on a five-machine power system show that the 
proposed controller can significantly improve the dynamic performance and provide good damping of 
the power system over a wide operating range. 
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تواند از طريق آموزش بصورت يک کنترل کننده هوشمند، برای کنترل               شبکه عصبی مصنوعی می       چكيدهچكيدهچكيدهچكيده

تواند به سادگی غير خطی بودن و وابستگی به زمان را اعمال              شبکه می  .سيستم های پويای غير خطی بکار رود      
برای لازم  تعداد بسيار زياد نورون و لايه های مخفی         به سبب    ،اغلب شبکه های عصبی چند لايه پيشرو      . نمايد

 يک کنترل   ، ها ضعفبرای مقابله با اين     . دهستنضعف  داراي  زمان آموزش   طولاني بودن   حل مسائل پيچيده و     
 تثبيت کننده سيستم قدرت     کننده غير خطی تعميم داده شده بر مبنای نورون توسعه داده شده و به صورت يک                

 ماشين نشان داده است که کنترل کننده ارائه شده رفتار            ۵مطالعات روی يک سيستم قدرت با       . بکار رفته است  
 سيستم قدرت فراهم  در   يوسيع ميرايی خوب  اي   بهبود داده و در محدوده         يديناميکی را بطور قابل توجه     

 .سازد می
 
 

1. INTRODUCTION 
 

Use of a supplementary control signal in the 
excitation system and/or the governor system of a 
generating unit can provide extra damping for the 
system and thus improve its dynamic performance 
[1]. Power System Stabilizers (PSSs) aid in 
maintaining power system stability and improve 
dynamic performance by providing a supplementary 
signal to the excitation system. This is an easy, 

economical and flexible way to improve power 
system stability. Over the past few decades, PSSs 
have been extensively studied and successfully 
used in the industry. 
     The commonly used PSS (CPSS), first proposed 
in 1950s, is designed using a linear model of the 
power system at some operating point to damp the 
low frequency oscillations in the system. Linear 
control theory is employed as the design tool for 
the CPSS. After decades of theoretical studies and 
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field experiments, this type of PSS has made a 
great contribution in enhancing the operating 
quality of the power system [2,3]. 
     With the development of increasingly complex 
power systems and increasing demand for quality 
electricity, it is worthwhile looking into the 
possibility of using modern control techniques. The 
linear optimal control strategy is one possibility that 
has been proposed for supplementary excitation 
controllers [4]. Preciseness of the linear model 
to represent the system and the difficulty of 
measurement of some states are major obstacles to 
the application of the optimal controller in practice. 
     A more reasonable design of the PSS is based 
on the adaptive control theory as it takes 
into consideration the non-linear and stochastic 
characteristics of the power systems [5]. This type 
of stabilizer can adjust its parameters on-line 
according to the operating condition. Intensive 
studies have shown that the adaptive stabilizer can 
not only provide good damping over a wide 
operating range but more importantly, there is no 
coordination problem with the existing CPSSs. 
     Response time of the controller is the key to a 
good closed loop performance of the power 
system. Many adaptive control algorithms have 
been proposed in the recent years; generally 
speaking, the better the closed loop system 
performance is desired, the more complicated the 
control algorithm becomes, thus needing more on-
line computation time to calculate the control 
signal. 
     More recently, multi-layer artificial neural 
networks (ANNs) [6-10] and fuzzy set theoretic 
approach [11-13] have been proposed for power 
system stabilization problems. Both techniques 
have their own advantages and disadvantages. 

Integration of these approaches can give improved 
results. 
     The common neuron model has been modified 
to obtain a generalized neuron (GN) model using 
fuzzy compensatory operators as aggregation 
operators to overcome the problems such as large 
number of neurons and layers required for complex 
function approximation, which not only affect the 
training time but also the fault tolerance 
capabilities of the ANN [14]. 
     A preliminary study with GN based PSS 
(GNPSS) on a single machine infinite bus system 
was described in [15]. Interconnected power 
systems, however, have multi-modal oscillations 
and it is necessary to investigate the response of 
the PSS to the local mode and inter-area mode 
oscillations. Performance of the GNPSS in a multi-
mode oscillation environment is illustrated in this 
paper. 

 
 
 

2. DEVELOPMENT OF A GENERALIZED 
NEURON MODEL 

 
The general structure of the common neuron is an 
aggregation function and its transformation 
through a filter. It is shown in the literature [16-18] 
that the ANNs can be universal function 
approximators for given input - output data. The 
common neuron structure, Figure 1, has 
summation as the aggregation function with 
sigmoidal, radial basis, tangent hyperbolic or linear 
limiters as the threshold function. 
     The aggregation operators used in the neurons 
are Generally crisp. However, they overlook the 
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Figure 1. Simple neuron model. 
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Figure 2. Generalized neuron model. 
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fact that most of the processing in the neural 
networks is done with incomplete information at 
hand. Thus, a generalized neuron model approach 
using the fuzzy compensatory operators [19], that 
are partly sum and partly product to take into 
account the vagueness involved, has been adopted. 
 
A. Generalized Neuron Model   Use of the 
sigmoidal threshold function and ordinary 
summation or product as aggregation function in 
the common neuron model (Figure 1) fails to cope 
with the non-linearities involved in real life 
problems. To deal with these, the proposed model 
has both sigmoidal and Gaussian functions with 
weight sharing. The generalized neuron model has 
flexibility at both the aggregation and threshold 
function level to cope with the non-linearity 
involved in the type of applications dealt with. The 
neuron has both Σ and π aggregation functions. 
The Σ aggregation function has been used with the 
sigmoidal characteristic function (f1) while the π 
aggregation function has been used with the 
Gaussian function (f2) as a characteristic function. 
The final output of the neuron is a function of the 
two outputs OΣ  and Oπ with the weights, W and 
(1-W), respectively, as shown in Figure 2. 
     The neuron model described above is known as 
the summation type compensatory neuron model, 
since the outputs of the sigmoidal and Gaussian 
functions are summed up. Although a product type 
compensatory neuron model may also be 
developed, it is found that in most applications 
summation type compensatory neuron model 
works well [19] and is the one used for the 
development of the GNPSS. 
 
B. Advantages of GN   The number of weights 
in the case of a GN is equal to twice the number of 
inputs plus one, which is very low in comparison 
to a multi-layer feed-forward ANN. The weights 
are determined through training. Hence, by 
reducing the number of unknown weights, training 
time as well as the minimum number of patterns 
required for training can be reduced. In the 
proposed GN the training time is reduced by 
optimally selecting the number of aggregation 
functions and threshold functions. A comparison of 
the training and performance of the GN and ANN 
models is given in [14, 20, 21]. As example, the 
training time for GN versus ANN was found to be 

in the ratio of 760: 850 in [20] for a short-term 
load-forecasting problem. 
     In this paper, summation and product are used 
at the aggregation level for simplification, although 
it is also possible to take other fuzzy aggregation 
operators such as max, min or compensatory 
operators. Similarly, only the sigmoidal and 
Gaussian threshold functions are used for the 
proposed GN, though other functions like straight 
line, sine, cosine, etc. can also be used. The 
weighting factor may be associated with each 
aggregation function and threshold function. 
During training, these weights change and decide 
the best functions for the GN. 
 
C. Learning Algorithm of a Generalized 
Neuron   The following steps are involved in the 
training of a generalized neuron: 
 
Step 1. The output of the Σ1 part of the 

generalized neuron is 
 

e netss
O

_*1

1
λ−+

=Σ  

 

where ΣΣ += ∑ oii XXWnets _  
 
Step 2. The output of the π part of the generalized 

neuron is: 
 

e netpipO _* 2λ−=Π  
 

where ∏ ΠΠ= oii XXWnetpi *_  
 
Step 3. The output of the generalized neuron can 

be written as: 
 

WOWOOpk *)1(* ΣΠ +−=  
 
Step 4. After calculating the output of the 

generalized neuron in the forward pass, as 
in the feed-forward neural network, it is 
compared with the desired output to find 
the error. Using back-propagation algorithm 
the GN is trained to minimize the error. In 
this step, the output of the single flexible 
generalized neuron is compared with the 
desired output to get error for the ith set of 
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inputs: 
 

Error )( OiYiEi −=  
 

Then, the sum-squared error for convergence of all 
the patterns is: 
 

∑= 25.0 EiEp  
 
A multiplication factor of 0.5 has been taken to 
simplify the calculations. 
 
Step 5. Reverse pass for modifying the connection 

strength. 
 
(a) Weight associated with the Σ1 and Σ2 parts 
of the GN is: 
 

WkWkW ∆+−= )1()(   (6) 
 
where: 
 

)1()( −+−=∆ ΠΣ kWXiOOW k αηδ  
 
and: 
 

∑ −= )( OiYikδ  
 
(b) Weights associated with the inputs of the Σ1 
and Σ2 part of the GN are: 
 

iii WkWkW ΣΣΣ ∆+−= )1()(  (7) 
 
where: 
 

)1( −+=∆ ΣΣΣ kWXiW iji αηδ  

and: 
 

ΣΣΣ ∑ −= OOWkj *)1(δδ  
 
(c) Weights associated with the inputs of the π part 
of the GN are 
 

iii WkWkW ΠΠΠ ∆+−= )1()(  (8) 
 
where: 
 

)1( −+=∆ ΠΠΠ kWXiW iji αηδ  
 
and: 
 

ΠΠ ∑ −−= OnetpiWkj *)_*2(*)1(δδ  
α is Momentum factor for better convergence and 
η is Learning rate. Range of these factors is from 0 
to 1 and is determined by experience. 
 
 
 

4. CONVENTIONAL PSS 
 

The CPSS is a fixed parameter device. The input of 
the CPSS, usually obtained from speed or a related 
signal such as the frequency, is processed through 
a suitable network to obtain the desired phase 
relationship [22,23]. Configuration of a practical 
CPSS is discussed thoroughly in [3]. 
 
 
 

5. GNPSS AND ITS TRAINING 
 

A block diagram of the GN controller as a PSS on 
a generator is shown in Figure 3. The power 
system consists of a single machine connected to a 
constant voltage bus through a double circuit 
transmission line. The angular speed of the 
synchronous machine, sensed at fixed time 
intervals, is used as input to the GNPSS.  The 
GNPSS calculates the output or control action. 
Parameters of the dynamic model of the 
synchronous machine constant voltage bus system 
are given in the Appendix. 
     Training of an ANN is a major exercise, 
because it depends on various factors such as the 
availability of sufficient and accurate training data, 
suitable training algorithm, number of neurons in 
the ANN, number of ANN layers and so on. The 

Power System  GNPSS 

Learning 
Algorithm 

Desire d ωωωω     - 
+

 
 

Figure 3. Block diagram of GNN based PSS. 
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GNPSS with only one neuron is able to cope with 
the problem complexity, as the selection of the 
number of neurons and layers is not required. 
     Performance depends upon the training of the 
GN. Data used for training must cover most of the 
working range and working conditions in order to 
get good performance. Of course it is impossible to 
train any ANN under all working conditions that 
the controller is likely to meet. Still most of the 

working conditions must be included in the 
training. The current and past three generator speed 
signals (i.e. ω (t), ω (t-T), ω (t-2*T), and ω (t-
3*T), where T is the sampling period), and past 
three values of the PSS output are used as inputs to 
the GN. Hence, the input vector for the GN can be 
written as: 
 
Xi=[ω (t), ω (t-T), ω (t-2*T), ω (t-3*T), 

 
 

Figure 4. Performance of GN-PSS and CPSS for a 3-phase ground fault. 
 

 

 
 

Figure 5. Performance of GN based PSS when 20 % step change in Pref at P=0.7 pu and Q=0.3 pu lead. 
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u(t-T),  u(t-2*T), u(t-3*T)] (9) 
 
The output of the GN is the control signal u, which 
is a function of the deviation in angular speed and 
past control signals. 
     Training data for the GN is acquired from the 
system controlled by the CPSS. For this, the CPSS 
is tuned for each operating condition. The GN is 
trained over a wide working range of the generator, 
i.e. output ranging from 0.1pu to 1.0 pu and the 
power factor ranging from 0.7 lag to 0.8 lead. 
Similarly, a variety of disturbances, like change in 
reference voltage, governor input torque variation, 
one transmission line outage and three phase fault 
on one circuit of the double circuit transmission 
line are also included in the training data. 
 
 
 

6. RESULTS 
 

A number of simulation studies were initially 
performed to study the performance of the GNPSS 
on a single machine. In this environment there are 
no multi-mode oscillations. To verify the damping 
ability of the GNPSS, the performance of the 
GNPSS was then investigated in a multi-machine 
power system environment. 

6-1. Single Machine Constant Voltage Bus 
System 
 
A. CPSS Parameter Tuning   With the generator 
operating at P = 0.9 pu and Q = 0.4 pu lag, a 100 
ms three phase to ground fault is applied at 0.5s at 
the generator bus. The CPSS is carefully tuned 
under the above conditions to yield the best 
performance and its parameters are kept fixed for 
all studies. 
 
B. Three-Phase to Ground Fault   A number of 
studies were performed for a 100 ms three-phase to 
ground transient fault at generator bus under 
different operating conditions. Results for the 
initial operating condition of P = 0.9 pu and Q = 
0.4 pu lag are shown in Figure 4. Because the 
CPSS has been tuned for P = 0.9 pu, Q = 0.4 pu 
lag, performance at this operating condition as 
shown in Figure 4 is practically the same for both 
the GNPSS and the CPSS. In all figures, 
performance with GNPSS is shown by solid lines 
and with CPSS by dashed lines. 
 
C. Operating Point Change   The GNPSS 
performance is studied for a sudden change in the 
power input reference by 20% of its initial value. 
Results given in Figure 5 show that the angular 
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Figure 6. Schematic diagram of a five-machine power system. 
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speed deviations are damped quickly with the 
GNPSS. 
 
6.2 Multi-Machine System   A five-machine 
power system without infinite bus, shown in Figure 
6, is used to study the performance of the 
previously trained GNPSS in the presence of 
multi-mode oscillations. In this system, generators 
# 1, # 2 and # 4 have much larger generating 

capacity than generators #3 and #5. All five 
generators are quipped with governors, AVRs and 
exciters. Parameters of all generators, transmission 
lines, loads and operating conditions are given in 
the Appendix. 
     The whole system can be viewed as a 
combination of two areas connected through a tie 
line between buses # 6 and bus # 7. Generators # 1 
and #4 form one area and generators #2, #3 and#5 

 
(a)                                                                          (b) 

 

 
(c) 

 
Figure 7. System Response with only GNPSSs and only CPSSs installed on G1, G2, and G3 for 30% step 

change in Torque Reference. 
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form another area. Under normal operating 
condition, each area serves its local load and is 
almost fully loaded with a small load flow over the 
tie line. When a disturbance happens in the system, 
multi-mode oscillations arise because of the 
different inertias of the generators and the topology 
of the system. 
 
A. Torque Reference Change   A 30% step 

decrease in torque reference of generator #3 is 
applied at 1s and returns to its original level at 10s. 
Results with only GNPSS and only CPSS applied 
at generators #1, #2, and #3 are shown in Figure 7. 
The following parameters are set for the CPSS: 
 
For small capacity generator #3: 
 
Ka=0.2, T1=T3=0.07, T2=T4=0.03, T5=0.3 

 
(a)                                                                           (b) 

 

 
(c) 

 
Figure 8.  System response with GNPSSs on G1, G3 and CPSSs on G2, G4, G5 for one line removed at 1s 

and reconnected at 10s. 
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For large capacity generators # 1 and # 2: 
 

Ka = 0.5, T1 = T3 = 0.3, T2 = T4 = 0.1, T5 = 0.4 
 
     Oscillations between large generators # 1 
and # 2 (Figure 7a) in different areas exhibit the 
low frequency inter-area mode and oscillations 
between generators # 2 and # 3 in the same area 
exhibit the higher frequency local mode. It can be 
seen that both modes are damped very effectively. 
 
B. Coordination between GNPSS and 
CPSS   The advanced PSSs will not replace all 
CPSSs operating in a system at the same time. 
Therefore, operation of the GNPSSs and CPSSs 
working together needs to be investigated. In this 
test, the proposed GNPSS is installed on generators 
# 1 and # 3; CPSSs with the above mentioned 
parameters are installed on generators # 2, # 4 and 
# 5. The operating conditions are the same as given 
in the Appendix. System response for sudden 
removal of one transmission line between bus # 3 
and bus # 6 at 1s and reconnected at 10s is shown 
in Figure 8. The results demonstrate that two types 
of PSSs can work cooperatively to damp 
oscillations in the system. 
 
 
 

7. CONCLUSIONS 
 
A generalized neuron, that can incorporate the non-
linearities involved in the system, is described 
in this paper. It uses only one neuron and is 
trained using back-propagation learning algorithm. 
Because it has a much smaller number of weights 
than the common multi-layer feed-forward ANN, 
the training data required is drastically reduced. 
Training time is also reduced considerably, 
because the number of weights to be determined is 
much less than an ANN. 
     GN has been employed to perform the function 
of a PSS to improve the stability and dynamic 
performance of a multi-machine power system. 
Simulation studies described in the paper show that 
the performance of the GNPSS provides good 
performance over a range of operating conditions. 
The effectiveness of the GNPSS to damp multi-
mode oscillations in a five-machine power system 
provides satisfactory results and it can cooperate 
with other CPSSs. 

8. APPENDIX 
 
A. Single Machine Infinite Bus System   The 

generating unit is modeled by seven first order 
non-linear differential equations [6]. Parameters 
used in the simulation studies of single 
machine constant voltage bus system are given 
below: 

 
ra = 0.00528, rf = 0.00116, 
rkd = 0.0179, rkq = 0.0179, 
xmd= 1.74, xmq = 1.65, xf = 0.16, 
xkd = 0.09, xkq = 0.146, 
H = 5.83, kd = 0.027 
Tg = 0.1, Ts = 0.3, kg = 0.0796 
ka = 0.001; Ta = 0.01; ke = 5.56; TTe = 0.01 
Rt = 0.06, Xt = 0.25 
Rtr = 0.008,  Xtr = 0.10 

 
All resistances and reactances are in per unit and 
time-constants in seconds. 
 
B. Multi-Machine Power System 
1. Generator Parameters   For small generators 
# 3 and # 5: 
 

xd = 1.026, xq = 0.6580, xd’= 0.3390: 
xd’’= 0.2690, xq’’= 0.3350, H = 20: 

 
For large generators # 1, # 2 and # 4: 
 

xd = 0.1026, xq = 0.0658, xd’= 0.0339: 
xd’’= 0.0269, xq’’= 0.0335, H = 100: 

 

Time constant for all generators: 
 

Tdo’=0.3670, Tdo’’=0.0314, Tqo’’= 0.0623. 
 
2. Simplified IEEE Standard Type ST1A AVR 
and Exciter Model   Tr = 0.04, Ka = 190.0, Kc = 
0.08, Ta = 10.0, Tc = 1.0. 
 
3. Governor Model 
 

δ
dt
d

sTg
bag ]

1
[

+
+=  

 
where: 
 
Tg = 0.25, a = -0.00133, b = -0.0150. 
 
4. The Conventional PSS has the Following 
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Transfer Function 
 

)(
)1(
)1(

)1( 2

1 s
sT
sT

sT
sTku

w

w
gpss ω∆

+
+

+
−=  

 
6. Loads Admittance (pu) 
 
L1 = 7.5 – j 5.0, L2 = 8.5 – j 5.0, L3 = 7.0 – 4.5. 
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