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Abstract    The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an 
infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free 
stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in 
this problem. A reduction of these equations is obtained by use of appropriate transformations. The 
general self-similar solution is obtained when the axial velocity of the cylinder varies as specified 
time-dependent functions. In particular, the cylinder may move with different velocity patterns. For 
completeness, sample semi-similar solutions of the unsteady Navier-Stokes equations have been 
obtained numerically using a finite-difference scheme. These solutions are presented for special cases 
when the time-dependent axial velocity of the cylinder is a step-function, a ramp, and a non-linear 

function. All the solutions above are presented for Reynolds numbers, υ= 2Re 2ka , ranging from 
0.1 to 100 where a is cylinder radius and υ is kinematic viscosity of the fluid. Shear stresses 
corresponding to all the cases increase with the Reynolds number. The maximum value of the shear 
stress increases with increasing oscillation frequency and amplitude. An interesting result is obtained 
in which a cylinder moving with certain axial velocity function and at particular value of Reynolds 
number is axially stress-free. 
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در اين مقاله جريان لزج سكون متقارن بر روي يك سيلندر با سرعت محوري وابسته به زمان مورد                    چكيده      چكيده      چكيده      چكيده      
حل عمومي تشابهي .  استوكس به دست مي آيند    –در اين مساله حل دقيق معادلات ناوير        . بررسي قرار مي گيرد   

همچنين نمونه اي از حل     . مساله براي سرعت محوري سيلندر بر حسب توابع مختلف زمان حاصل مي شود              
تنش برشي در تمام .  استوكس با استفاده از روشهاي تفاضلي حل و ارائه مي شوند–نيمه تشابهي معادلات ناوير 

نتيجه جالب اين است كه سيلندر در حال حركت با سرعت              . موارد با افزايش عدد رينولدز افزايش مي يابد         
 تا  ١/٠اين حلها براي اعداد رينولدز بين       . كاك خواهد بود  محوري خاص و در عدد رينولدز معلوم بدون اصط         

=υعدد رينولدز از رابطه .  ارائه مي شوند١٠٠ 2Re 2ka بدست مي آيد كه در آن a شعاع سيلندر و υ لزجت 
 .سينماتيكي سيال است

 
 
1. INTRODUCTION 

 
The task of finding exact solutions for Navier-
Stokes equations is a difficult one due to 
nonlinearity of these equations. However, exact 
solutions of Navier-Stokes equations are available 
for special cases. Hiemenz [1] has obtained an 
exact solution of the Navier-Stokes equations for 

two dimensional stagnation point flow on a flat 
plate. The analogous axisymmetric stagnation-
point flow 2 was investigated by Homann [2]. 
Results of the problem of stagnation flow against a 
flat plate for asymmetric cases were presented by 
Howarth [3] and Davey [4]. Wang [5] was first to 
find exact solution for the problem of 
axisymmetric stagnation flow on an infinite 
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stationary circular cylinder. Gorla [6-10], in a 
series of papers, studied the steady and unsteady 
flows over a circular cylinder in the vicinity of the 
stagnation-point for the cases of constant axial 
movement, and the special case of axial harmonic 
motion of a non-rotating cylinder. This special case 
is only for small and high values of frequency 
parameter using perturbation techniques. Recently, 
Cunning, Davis, and Weidman [11] have 
considered the stagnation flow problem on a 
rotating circular cylinder with constant angular 
velocity, including the effects of suction and 
blowing with constant rate. Takhar, Chamkha and 
Nath [12] have also investigated the unsteady 
viscous flow in the vicinity of an axisymmetric 
stagnation point of an infinite circular cylinder 
when both the cylinder and the free stream 
velocities vary as a same function of time. Their 
self-similar solution is only for the case when both 
the cylinder and the free-stream velocities vary 
inversely as a linear function of time and by taking 
an average value for Reynolds number. Also their 
semi-similar solutions are for the accelerating and 
decelerating cases of the cylinder movement but 
with the same type of time dependent function as 
the free-stream velocity and only for Reynolds 
numbers up to 10. The study considered by Rahimi 
[13] presents a systematic solution of Gorla’s 
results for high Prandtl number fluids using an 
inner-outer expansion of the fluid properties. 
     The effects of cylinder movement with time-
dependent axial velocity in general, especially with 
different types of harmonic oscillation, which are 
of interest in certain special manufacturing 
processes, textile technology, accelerating phases 
of rocket motors, have not yet been considered. 
     In the present analysis, the unsteady viscous 
flow in the vicinity of an axisymmetric stagnation 
point of an infinite cylinder with time-dependent 
axial movement is considered. An exact solution of 
the Navier-Stokes equations is obtained. 
     The general self-similar solution is obtained 
when the axial velocity of the cylinder varies in a 
prescribed manner. The cylinder may perform 
different types of motion: it may move with constant 
speed, with exponentially increasing/decreasing axial 
velocity, with harmonically varying axial speed, or 
with accelerating/decelerating oscillatory axial 
speed. 
     For different forms of azimuthal component of 

velocity, sample distributions of shear stresses are 
presented for Reynolds numbers ranging from 0.1 
to 100. Particular cases of these results are 
compared with existing results of Wang [5] and 
Gorla [7,9], correspondingly. For completeness, 
some semi-similar solutions of the Navier-Stokes 
equations are obtained and results for few 
examples of cylinder axial motion in the form of a 
step-function, a linear, and a few non-linear 
function are presented for different values of flow 
parameters. 
 
 
 

2. PROBLEM FORMULATION 
 
Flow is considered in cylindrical coordinates 

),,( zr θ with corresponding velocity components 
(u,v,w), as Figure 1. We consider the laminar 
unsteady incompressible flow of a viscous fluid in 
the neighborhood of an axisymmetric stagnation-
point of an infinite circular cylinder when it moves 
axially with a velocity that varies with time. An 
external axisymmetric radial stagnation flow of 
strain rate k impinges on the cylinder with radius a 
and centered on r = 0. References 5-9 give the 
unsteady Navier-Stokes equations in cylindrical 
coordinates governing the axisymmetric flow: 
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     Where p, ρ  and υare the fluid pressure, 
density, and kinematic viscosity. The boundary 
conditions for velocity field are: 
 

)t(Vw,u:ar === 0  (4) 
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in which, Equations 4 are no-slip conditions on the 
cylinder wall and Relations 5 show that the viscous 
flow solution approaches the potential flow 
solution as ∞→r  [10]. 
     A reduction of the Navier-Stokes equations is 
obtained by the following coordinate separation of 
the velocity field: 
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where kt2=τ  and 2)ar(=η  are dimensionless 
time and radial variables and prime denotes 
differentiation with respect to η  Transformations 
6 satisfy Equation 1 automatically and their 
insertion into Equations 2-3 yield a coupled system 
of differential Equations in terms of ),( τηf  and 

),( τηH  and an expression for the pressure: 
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     In these Equations,  primes indicate 
differentiation with respect to η  and υ= 2Re 2ka  
is the Reynolds number. From Conditions 4 and 5, 
the boundary conditions for (7) and (8) are as 
follows: 
 

0,1:
)(,0,0:1

==′∞→η
τ==′==η

Hf
VHff

 (10) 

 
Here, Equations 7 and 8 are for different forms of 

)(V τ  functions and have been solved numerically 
with Re as parameter. 
     Note that none of the boundary conditions of 
Equation 7 are functions of time and assuming 
steady - state initial conditions for this equation, 
we have: 
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Therefore in this case Equation 7 is reduced to the 
following form: 
 

[ ] 01 2 =′′+′−+′′+′′′ ff)f(eRffη  (11) 
 
     Steady-state solutions are obtained by solving 
this equation. In all later times )0( ≠τ since none 
of the boundary conditions on f are functions of 
time and therefore this function does not change 
with respect to time, the steady-state solution at 

)0( =τ  is the same and thus )(),( η=τη ff and 
consequently Equation 7 can be reduced to 
Equation 11. 
     Equation 11 is the same as the one obtained by 
Wang [5] and its solution is known. Here, Equation 
8 is solved for different forms of )(τV functions. 
In what follows, first the self-similar equations and 
the exact solutions of some particular )(τV  

 
Figure 1. Schematic diagram of an axially moving cylinder 
under radial stagnation flow in the fixed cylindrical coordinate 
system, ),,( zr θ . 
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functions are presented and then, for completeness, 
the semi-similar equations and their numerical 
solutions are presented for few examples of these 
functions. 
 
 
 

3.SELF-SIMILAR EQUATIONS 
 
Equation 8 can be reduced to a system of ordinary 
differential equations if we assume that the 
function ),( τηH  in Equation 8 is separable as: 
 

)(h.)(V),(H ηττη =  (12) 
 
Substituting these separation of variables into 
Equation 8, gives: 
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The general solution to the differential equation in 
(13) with )(τ  as an independent variable is as 
follows: 
 

[ ]τβατ )i(exp.b)(V +=  (14) 
 
Here, 1−=i  and b, α  and β  are constants. The 
boundary conditions are: 
 
 11 == h:η  (15) 
 

0=∞→ h:η  (16) 
 
Substituting the solution (14) into the differential 
Equation 13 with η as independent variable results 
in: 
 

[ ] 0Re =−α−′−′+′+′′η iBhhhfhfhh  (17) 
 
     Note that in Equation 14 )0( =b corresponds to 
the case of cylinder with no axial movement, 
Wang [5]. If )0( ≠b  and )( 0== βα  in 
Equation 14 gives the case of moving cylinder with 
constant axial velocity, Gorla [7]. The conditions 

)0( ≠b , )( 0≠β  and )( 0=α  corresponds to 

the case of moving cylinder with a harmonic 
velocity in its own plane, Gorla [9]. The case of 

)0( ≠b , )0( ≠α , )0( ≠β  is the most general case 
that is considered in this paper. 
     To obtain solution of Equation 17, it is assumed 
that )(h η  is a complex function as: 
 
 )(ih)(h)(h ηηη 21 +=  (18) 
 
Substituting Equation 18 into Equation 17, the 
following coupled system of differential equations 
are obtained: 
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The boundary conditions for functions f, and h 
become: 
 

1001 ==′== h,f,f:η  (20) 
 

01 ==′∞→ h,f:η  (21) 
 
Hence, the boundary conditions on functions 1h  
and 2h  are: 
 
 011 21 === h,h:η  (22) 
 

00 21 ==∞→ h,h:η  (23) 
 
The coupled equations in system of Equations 
19 along with Boundary Conditions 22 and 23 
have been solved by using the fourth-order 
Runge-Kutta method of numerical integration 
along with a shooting method, Press et al. [14]. 
Using this method, the initial values of )1(1

′h , 

)1(2
′h  are guessed and the integration was 

repeated until convergence was obtained. The 
value of 02 =)(h η  was assumed initially and 
then by repeating the integration of this system 
of equations, final values of )(h η1  and 

)(h η2  were obtained. 
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The axial velocity of cylinder is: 
 

[ ])(sin)(cos)()( βτ+βτατ=τ iExpbV  (24) 
 
and thus, the ),( τηH  function from definition 
(12) becomes as follows: 
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Sample axial velocity profiles will be presented in 
later sections. 
 
 
 

4. SEMI-SIMILAR EQUATIONS 
 
Equation 8 can be solved directly for any chosen 

)(τV  function. The solutions obtained this way, 

are called semi-similar solutions. This equation 
along with Boundary Conditions 10 was solved 
using a central finite difference method, which 
lead to a tri- diagonal matrix. Assuming steady 
state for 0≤τ , the solution starts from )0(V , 
and marching through time, time-dependent 
solutions for 0fτ  were obtained. The results for 
same selected velocity functions are presented 
later, such as step – function, a linear function, 
and a nonlinear function. 
 
 
 

5. SHEAR-STRESS 
 
The shear stress on the cylinder surface is 
calculated from: 
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Figure 2. Sample profiles of )(ηh  for cylinder with accelerating and decelerating exponential axial velocity. 
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Where, µ  is the fluid viscosity. Using Definition 
6, the shear stress at the cylinder surface for semi-
similar solutions becomes 
 

[ ]),(Hz.)(fk
a

τµσ 1122 ′+′′=  (27) 

 
Axial surface shear stress for self-similar solutions 
is presented by the following form: 
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Some numerical values of this component will 
be presented later for few examples of axial 
velocities. 

6. PRESENTATION OF RESULTS 
 
In this section, the solutions of the self-similar 
equation (25) and the semi-similar equation (8) 
along with surface shear stresses for different 
functions of axial velocity are presented. Also, the 
axial components of velocity ),(w τη , for some of 
these cases are given. 
     Figure 2 presents the sample profiles of )(h η  
for )(V τ  in exponential form for accelerating and 
decelerating case at Re = 1. It is interesting to note 
that for 0fα  as α  increases, from Figure 2a, the 
depth of the diffusion of the fluid velocity field 
decreases and for 0pα  as absolute value of α  
increases, fluid velocity in the vicinity of the 
cylinder cannot decrease with the same rate as the 
cylinder axial velocity and therefore in this region, 
as the Figure 2b shows, the fluid velocity is greater 
than the cylinder velocity. Also 0=α  indicates the 
case of moving cylinder with constant axial 
velocity [7]. 

 
Figure 3. Sample profiles of )(&)( 21 ηη hh  for cylinder with (a) Axial harmonic oscillation for 2,1,0=β  (b) accelerating and 

decelerating oscillatory motion for 2,1,0,1−=α  and 1=β . 
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     Figure 3a exhibits the sample )(h η  solution 
for pure harmonic motion of the cylinder at 
different frequencies at Reynolds 10. The case of 

0=β  is the same as in Reference 7 and clearly 
the imaginary part of )(h η  is zero. Like the 
foregoing discussion, as β  increases the depth of 
the diffusion of the fluid velocity field decreases. 

     Figure 3b presents the sample )(h η  solution 
and real part of axial velocity of the cylinder 
at z = 0 for exponentially oscillating cylinder 
for different α  and β  for Re = 10. From this 
figure it is seen that as α  increases the depth of 
the diffusion of the fluid velocity decreases 
rapidly. 

 
Figure 4. Real Part of Axial Shear Stress at z = 0. For cylinder with (a) Exponential Axial Velocity at 

Re = 1. (b) and (c) Harmonic Oscillation for 210 ,,=β  at Re = 1, 10. (d) Accelerating and 
decelerating oscillatory motion for 2101 ,,,−=α  and 1=β  at Re = 10. 
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     Figure (4a) shows the axial shear stress on 
the surface of the cylinder for exponential axial 
velocity in terms of accelerating rate at Re=1. It 
is concluded from this figure that the slope of 
the curves decreases as α  increases, meaning 
that the sensitivity of shear stress with respect 
to variation of α  decreases as α  increases. It is 

also interesting to note that for particular value 
of negative α  and Reynolds number, the value 
of shear stress is zero. This interesting result 
opens the way for an analysis of flows for which 
a cylinder moving with certain combination 
of Reynolds number and α  is axially stress 
free. 

 
Figure 5. Sample profiles of, ),( τηH  for different axial velocity functions; (a), (b) and (c) for step-functions, 

(d) for Limited linear function. 
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     Figure 4 presents the real part of axial shear 
stress at z = 0 on the surface of the cylinder with 
pure harmonic and accelerating and decelerating 
oscillatory motion for Re = 10. This shear stress is 
for a complete period between 0 and π2 . From 
Figure 4b as β  increases the maximum of the 

absolute value of shear stress increases. Here, 
0=β corresponds to the case of constant axial 

velocity, as in Reference 7. From Figure 4d, when 
the value of α  increases the maximum absolute 
value of axial shear stress increases. And 0=α  
corresponds to the shear stress of the pure 

 
Figure 6. Sample Profiles of, ),(H τη  for Different Axial Velocity Functions: (a) τ ƒ, (b), 2τ  (c), 2

1

τ  and (d) 
τ+1

1 . 
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oscillation case that was obtained by Gorla [9] by 
using perturbation method and only for very high 
and very low frequencies. Also from this figure, it 
can be seen that shear stress and axial velocity 
have phase differences. Figure 4c shows that the 
absolute value of surface shear stress increases as 
Reynolds number increases. 
     Figure 5 presents the semi-similar solution for 
different forms of time-dependent axial velocity in 
which the function ),(H τη  is shown in terms of 
η and for different non-dimensional time values 
and Reynolds numbers. The selected functions 
here are step-function and linear function for axial 
velocity, which are presented for Reynolds number 
0.1 and 100. 
     Figure 6 shows the semi-similar solution for 
non-linear forms of time-dependent axial velocity 
in terms of non-dimensional time values and 
Reynolds numbers. These selected forms are only 
for particular non-linear functions and presented 
for Reynolds numbers 10. And 100. Other velocity 
functions for particular usage can be selected. 
 
 
 

7. CONCLUSIONS 
 

An exact solution of the Navier-Stokes equations is 
obtained for the problem of stagnation-point flow 
on a circular cylinder. A general self-similar 
solution is obtained when the cylinder has different 
forms of axial motions including: constant axial 
velocity, exponential axial velocity, and pure 
harmonic movement, both accelerating and 
decelerating oscillatory motion. Also, some sample 
semi-similar solutions for the same problem have 
been considered when the circular cylinder is 
moving with different types of time-dependent 
axial velocity. 
     Axial component of fluid velocity and surface 
axial shear stress on the cylinder are obtained in 
all the above situations, and for different 
values of Reynolds numbers and transportation 
rate. Absolute value of axial shear stresses 
corresponding to all the cases increase with 
the increase of Reynolds number and suction 
rate. Also, the maximum value of shear stress 
increases with increasing oscillation frequency 
and accelerating and decelerating parameter in the 
exponential amplitude function. It is also shown 

that a cylinder moving axially in an exponential 
manner is  axially stress-free for certain 
combinations of Reynolds number and rate of this 
exponential function. 
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