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Abstract    Due to the importance of longest path analysis in networks of queues, we develop an 
analytical method for computing the steady-state distribution function of longest path in acyclic 
networks of queues. We assume the network consists of a number of queuing systems and each one 
has either one or infinite servers. The distribution function of service time is assumed to be 
exponential or Erlang. Furthermore, the source node can include an M/G/∞  queuing system. The 
length of the arcs connecting the nodes of the network is assumed to be independent random 
variables. In the proposed method, the network of queues is transformed into a relevant stochastic 
network. Then, we compute the distribution function of longest path from the source node to the sink 
node in the transformed stochastic network. This is done through solving a system of linear 
differential equations with non-constant coefficients, which is obtained from a related continuous-
time Markov process. 
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   با توجه به اهميت نقش طولاني ترين مسير در شبكه صف، روشي تحليلي براي محاسبه تابع توزيع                      چكيده  چكيده  چكيده  چكيده  
 حالت پايدار در شبكه اي شامل سيستمهاي صف كه متشكل از يك يا بينهايت خدمت دهنده هستند، توسعه                    

تواند متشكل   مي) آغازين(منبع  علاوه بر اين، گره     . تابع توزيع خدمت نمايي يا ارلانگي فرض مي شود        . يابد مي
 شود كه طول شاخه هائي كه طول گره ها را به هم متصل                فرض مي " ضمنا.  باشد /M/G∞از يك سيستم     

در روش پيشنهادي، شبكه صف به يك شبكه احتمالي         . سازند نيز متغير هاي تصادفي يا توزيع نمايي هستند         مي
اين كار از   . گردد تعيين مي ) پاياني(لاني ترين مسير اين شبكه، از گره منبع تا گره چاه             آنگاه، طو . شود تبديل مي 

طريق حل يك دستگاه سيستم معادلات ديفرانسيل با ضرايب غير ثابت كه از يك فرايند ماركوفي پيوسته بدست            
 .شود آيد ميسر مي مي
 

 
 
 

1.  INTRODUCTION 
 
The subject of networks of queues is of the most 
important issues in the queuing theory, because of 
its vast applications. Furthermore, due to the 
complexity of analysis of networks of queues, 
many aspects of this area are still investigated by 
some researchers.  
     In this paper, we develop a method for 
computing the steady-state distribution function of 
longest path in acyclic network of queues. We 
assume the network consists of a number of 

queuing systems and each one has either one or 
infinite servers. The distribution function of 
service time is assumed to be exponential or 
Erlang. The length of the arcs, which connect the 
nodes of the network, is also assumed to be 
independent random variables.  
     In our proposed method, the network of queues 
is transformed into a relevant stochastic network. 
Then, we compute the distribution function of 
longest path from the source node to the sink node 
in the transformed stochastic network. This is done 
through solving a system of linear differential 
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equations with non-constant coefficients, which is 
obtained from a relevant continuous- time Markov 
process. 
     Although obtaining the longest path in networks 
of queues can solve many problems in the area of 
production or service, this subject has not been 
studied extensively by researchers and to our 
knowledge, no paper can be found particularly in 
the area of longest path calculations. However, in 
literature there are several methods for computing 
the distribution function of longest path of 
stochastic networks (from the source node to the 
sink node) or the distribution function of longest 
path in PERT networks. 
     The main difficulty in this area arises from the 
statistical dependence of the arcs that are common 
in more than one path. Adlakha and Kulkarni [1] 
provided an excellent review of analytic and 
Monte Carlo approaches to this problem. 
     Several authors have addressed the problem 
analytically. Charnes, Cooper and Thompson [5] 
developed a chance-constrained programming. 
They assume exponential activity durations. For 
polynomial activity durations, Martin [12] 
provided a systematic way of analyzing the 
problem through series-parallel reductions. 
Hopfinger and Steinhardt [9] developed a dynamic 
programming approach. 
     Owing to the difficulties arising from the exact 
computation of longest path distribution, some 
researches have developed approximation 
techniques. Elmaghraby [6] provided lower bounds 
for the expected value of the longest path, or the 
expected project completion time, in PERT 
networks. Robillard [14] has done the similar 
work. Ord [13] presented a simple and easy to 
implement approach to PERT networks with an 
acceptable degree of approximation. Soroush [16] 
presented an algorithm to identify the most critical 
path (MCP) at a given time. On the basis of this 
algorithm, the distribution function of project 
completion time may be computed  
     Van Slyke [17] reported a straightforward 
simulation to analyze the distribution function of 
project completion time in PERT networks. 
Several authors have used conditional sampling 
to achieve variance reduction (for example see 
Burt and Garman [4] for more details). Fishman 
[7] achieved further variance reduction by using 
a combination of quasirandom points and 

conditional sampling to estimate the distribution 
and mean of project completion time. 
     Kulkarni and Adlakha [10] developed an 
analytical procedure for PERT networks with 
independent and exponentially distributed activity 
durations. They modeled such networks as finite-
state, absorbing, and continuous-time Markov 
chains with upper triangular generator matrices. 
Then, they proved the time until absorption into 
this absorbing state is equal to the length of the 
longest path in the original network provided it 
starts from the initial state. 
     In this paper, we develop a method to compute 
the distribution function of longest path in 
networks of queues. Our method is an extension of 
the Kulkarni and Adlakha [10] method and it is 
adaptable to solve many practical problems. For 
example in PERT networks, if we assume there are 
some service stations in the nodes of the network 
and one should wait to receive the service in these 
stations, our method can be used for computing the 
distribution function of project completion time. 
     We also may refer to another important 
application in the area of production systems. Each 
dynamic job shop system can be represented as a 
network of queues, in which a service station 
indicates a machine or a production department. It 
is clear each part of the product spends some time 
equal to the waiting time in the system, in a 
machine or a service station. Furthermore, clearly 
the product is completed when all required 
operations are finished in all the service stations. 
Therefore, the longest path distribution of such 
network of queues is equal to the flow time 
distribution, and consequently the expected longest 
path is equal to the mean flow time, or in other 
words the time between arrival the demand until 
the completion of the product. Obviously, this 
duration is an important factor in production 
systems and can easily be computed by our 
method. Azaron and Fatemi Ghomi [2] developed 
a similar procedure for the optimal control of 
service rates of the service stations in a class of 
Jackson networks, in which the expected shortest 
path of the network and also the total operating 
costs of the service stations of the network per 
period are minimized. 
     In section 2, we present the longest path 
problem as well as how to transform the network 
of queues into a relevant stochastic network. In 
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section 3, an analytical method for obtaining the 
distribution function of longest path in Markov 
networks and also the networks of queues with 
Markovian queuing systems is presented. In 
section 4, we analyze the networks of queues with 
non-Markovian queuing systems. Section 5 
includes an illustrative example. Section 6 includes 
the computational experience, and finally in 
section 7, we draw the conclusion of the paper. 
 
 
 

2.  LONGEST PATH PROBLEM 
 
Consider a network of queues, in which each node 
contains a queuing system. The number of servers 
in each node is either one or infinite, while the 
service time is a random variable with exponential 
or Erlang density function. However, the source 
node can also have any general distribution 
function, provided that it has infinite number of 
servers or in fact, this node may contain an 
M/G/∞  queuing system. In practice, a node can be 
represented as a queuing system with infinite 
servers if there are enough servers in it such that 
almost no customer needs to wait. On the other 
hand, an arc that connects two nodes represents the 
length of time a customer moves between two 
nodes. We assume the arc lengths are independent 
random variables with exponential distributions. 
However, the length of arcs originating from the 
source node can have a general distribution. We 
develop an analytical method to compute the 
distribution function of steady-state longest path in 
this network. 
     The networks of queues, which are analyzed in 
this paper, are generalized versions of Jackson 
networks. Although in our model a network does 
not include M/M/C queuing systems, there are 
M/G/∞ , M/Ek/1 and G/M/1 queuing systems in its 
nodes. Furthermore, the arc lengths among the 
service stations are independent random variables, 
while in Jackson networks the arc lengths are equal 
to zero. 
     Therefore, taking into account our assumptions, 
the length of a path in the network is the sum of the 
lengths of the arcs and the nodes of the path. The 
length of each node is equal to the waiting time in 
system (waiting time in queue plus the service 
time). 

2.1  General Procedure to Solve the Model 
In our proposed method, each network of queues is 
transformed into a stochastic network. Then, we 
determine the distribution function of steady-state 
longest path from the source node to the sink node 
of this stochastic network by solving a system of 
differential equations with non-constant 
coefficients. This system of differential equations 
is obtained by applying continuous-time Markov 
process technique. In fact, we generalize the 
method developed by Kulkarni and Adlakha [10]. 
The main steps of our method to obtain the 
distribution function of longest path are as follows: 
Step 1.  Determine the density function of the 

waiting time (including service time) for 
each node, by applying the queuing 
theory relations. 

Step 2.  Transform the network of queues into a 
stochastic network by transforming each 
node that contains a queuing system into a 
stochastic arc, whose length is equal to 
the waiting time of that node. 

Step 3.  Obtain the distribution function of 
longest path in the stochastic network, by 
modeling the problem as a continuous-
time Markov chain. 

Step 4.  Solve the resulting system of differential 
equations. 

     In step 2, for transforming node k containing a 
queuing system into a stochastic arc, let b1, b2,…, 
bn be the incoming arcs to that node and d1, d2 
,…,dm be the outgoing arcs from it. Then, we 
substitute this node by arc (k', k"), whose length is 
equal to the waiting time of this queuing system. 
Furthermore, all arcs bi, for i=1,…,n, end up with 
k', while all arcs dj, for j = 1,…,m, start from node 
k". The indicated process is the opposite of 
absorption an edge in a graph (G.e), see Bondy and 
Murty [3] for more details. After transforming all 
such nodes to the stochastic arcs, the network of 
queues is transformed into a stochastic network. 
 
 
 

3. DISTRIBUTION FUNCTION OF 
LONGEST PATH IN STOCHASTIC 

NETWORKS 
 
In this section, we present an analytical method to 
obtain the distribution function of longest path 
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from the source to the sink node of a directed 
stochastic network, in which the arc lengths are 
mutually independent exponentially distributed. 
To do that, we apply the method developed by 
Kulkarni and Adlakha [10]. 
     Let G=(V, A) be a directed network, in which V 
represents the set of nodes and A represents the set 
of arcs of the network. The source and sink nodes 
are denoted by s and t, respectively. Length of arc 

Aa ∈  is an exponentially distributed random 
variable with parameter aλ . For Aa ∈ , let )(aα  
be the starting node of arc a, and )(aβ  be the 
ending node of arc a. 
 
Definition 1   I(v) and O(v) are the set of arcs 
ending and starting at node v, respectively, and 
defined as follows: 
 

{ }vaAavI =∈= )(:)( β                )( Vv ∈  (1) 
 

{ }vaAavO =∈= )(:)( α                 )( Vv ∈  (2) 
 
Definition 2   If X⊂V such that s∈X and 
t∈ X =V-X, then an (s, t) cut is defined as: 
 

})(,)(:{),( XaXaAaXX ∈∈∈= βα  (3) 
 

An (s,t) cut XX ,( ) is called a uniformly directed 

cut (UDC), if ),( XX  is empty. 

Example 1.   Before proceeding, we illustrate the 
material by an example. Consider the network 
shown in Figure 1. 

     Clearly, (1,2) is a uniformly directed cut 
(UDC), because V is divided into two disjoint 
subsets X and X , where A∈  X and E∈ X .  The 
other UDCs of this network are (2,3), (1,4,6), (3,4, 
6) and (5,6). 
 
Definition 3   Let FED ∪=  be a uniformly 
directed cut (UDC) of a network. Then, it is called 
an admissible 2-partition, if for any Fa ∈ , we 
have FaI ⊄))((β . 
     To illustrate this definition, consider example 1, 
again. As mentioned before, (3,4,6) is a UDC. This 
cut can be divided into two subsets E and F. For 
example, E = {4} and F = {3,6}. In this case, this 
cut is an admissible 2-partition, because ))3((βI  
= {3,4} F⊄  and also ))6((βI  = {5,6} F⊄ . 
However, if E = {6} and F = {3,4}, then the cut is 
not an admissible 2-partition, because ))3((βI  = 
{3,4} ⊂  F = {3,4}. 
    For constructing the proper stochastic process, it 
is convenient to visualize the stochastic network as 
a PERT network, in which the arcs in the network 
represent the activities of a project. Duration of 
activity Aa ∈  is assumed to be an exponentially 
distributed random variable with parameter aλ  

(the mean is 
aλ

1 ). Then, we try to find the 

distribution function of project completion time in 
the related PERT network. 
 
Definition 4   During the project execution and at 
time t, each activity can be in one of the active, 
dormant or idle states, which are defined as 

 A
 

 B 
 

 D
 

 E 
 C 

 

1 

2  
4  

3  

6  

5  

 
 

Figure 1. The example network. 
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follows: 
 
i. Active: an activity is active at time t, if it is 

being executed at time t. 
ii. Dormant: an activity is dormant at time t, if 

it is finished but there is at least one 
unfinished activity in ))(( aI β . If an activity 
is dormant at time t, then its successor 
activities in ))(( aO β  cannot begin. 

iii. Idle: an activity is idle at time t, if it is 
neither active nor dormant at time t. 

 
     The set of active and dormant states are 
denoted by Y(t) ,  Z(t),  respectively and 
X(t)=(Y(t),Z(t)).  
     Consider example 1, again. If activity 3 is 
dormant, it means that this activity is finished 
but the next activity, i.e. 5, cannot start, 
because activity 4 is still active and not 
finished. 
     Table 1 presents all admissible 2-partition 
UDCs of this network. We use a superscript star to 
denote a dormant activity. All others are active. E 
contains all active, while F includes all dormant 
activities. 
     Now, let S denote the set of all admissible 
2 - p a r t i t i o n  U D C s  o f  t h e  n e t w o r k ,  a n d  

)}.,{( φφ∪= SS  Note that X(t)= ),( φφ  implies 
that Y(t)=φ  and Z(t)=φ , i.e., all activities are idle 
at time t and hence the project is completed by 
time t. It can be proved that {X(t),t≥ 0} is a 
continuous-time Markov process with state space 
S , see Kulkarni and Adlakha [10] for the details 
of proof. 
     As mentioned before, E and F contain 
active and dormant activities of a UCD, 

respectively. When activity a  finishes 
(with the rate of aλ ), and there is at least 
one unfinished activity in ))(( aI β , it moves 
from E to new dormant arcs set, i.e.  to F' .  
Furthermore, if by finishing this activity its 
succeeding ones, ))a((O β , become active, 
then this set will also be included in the 
new E' ,  while ))(( aI β will be deleted from 
E.  Thus, the elements of the infinitesimal 
generator matrix of this process, denoted 
by )}]','(),,{([ FEFEqQ = , where (E,F) and 

)','( FE S∈ ,  are calculated as follow: 

In example 1, if E = {1, 2}, F = )(φ  and 
E' = {2,3}, F' = )(φ , then ))1((})1{(' β∪−= OEE , 
and thus from Equation 5, 1)}','(),,{( λ=FEFEq . 
     {X(t),  t ≥ 0} is  a  finite-state absorbing 
continuous-time Markov process and since 

,0)},(),,{( =φφφφq  it can be concluded that this 
state is the absorbing one and obviously, the other 
states are transient. Furthermore, we number the 
states in S  such this Q matrix be an upper 
triangular one. We assume q [ (E,F) , E’,F’) = 
 

{ }
{ }
{ } { }





∪=′−=′
−=′

⊄∈

aFF,aEE
,aEE

aF))a((I,Ea
ifs

Uβ
λ  (4) 

 
{ }

{ }






−=
∪−=′
⊄∈

))((IF'F
))(()aE(E

aF))a((I,Ea
ifa

αβ
αβ

β
λ 0

U

 (5) 

TABLE 1. All Admissible 2-Partition Cuts of the Example Network. 
 

1. (1,2) 5. (1,4*,6) 9. (3*,4,6) 13. (3,4*,6*) 17. ),( φφ  

2. (2,3) 6. (1,4,6*) 10. (3,4*,6) 14. (5,6)  

3. (2,3*) 7. (1,4*,6*) 11. (3,4,6*) 15. (5*,6)  

4. (1,4,6) 8. (3,4,6) 12. (3*,4,6*) 16. (5,6*)  
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FF,EEif
Ea a =′=′∑ ∈
λ  (6) 

 
0             otherwise.  (7) 
 
     States are numbered 1, 2, …, N = S . State 1 is 

the initial state, namely );),(( φsO  and state N is 
the absorbing state, namely ),( φφ . 
     Table 2 shows the infinitesimal generator 
matrix. The diagonal elements of the matrix Q 
are easily computed from (6). For example, 

)(}1,1{)}2,1(),2,1{( 21 λλ +−== qq . 
     Let T represent the length of the longest path in 
the network. It is clear that T = min {t>0: X(t) = 
N/X(0) = 1}. Thus T is the time until {X(t), t≥ 0} 

gets absorbed in the final state starting from state 
1. 
     Chapman-Kolmogorov backward or forward 
equations is applied to compute F(t) = P{T≤ t} or 
the distribution function of longest path in the 
stochastic network . Using the backward algorithm, 
we define: 
 
Pi(t) = P{X(t) = N/X(0) = i}     i = 1, 2, …, N (8) 
 
Therefore, F(t) = P1(t). The system of differential 
equations for the vector P (t) = [P1 (t), P2 (t), …, 
PN(t)]T is given by: 
 
P'(t) = Q.P(t) 
 (9) 
P(0) = [0,0,…,1]T 

TABLE 2. Matrix Q Corresponding to the Example Network. 
 
State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1  1λ  0 2λ  0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0  3λ  0 0 0 0 2λ  0 0 0 0 0 0 0 0 0 

3 0 0  0 0 0 0 0 2λ  0 0 0 0 0 0 0 0 

4 0 0 0  4λ  6λ  0 1λ  0 0 0 0 0 0 0 0 0 

5 0 0 0 0  0 6λ  0 0 1λ  0 0 0 0 0 0 0 

6 0 0 0 0 0  4λ  0 0 0 1λ  0 0 0 0 0 0 

7 0 0 0 0 0 0  0 0 0 0 0 1λ  0 0 0 0 

8 0 0 0 0 0 0 0  3λ  4λ  6λ  0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0  0 0 6λ  0 4λ  0 0 0 

10 0 0 0 0 0 0 0 0 0  0 0 6λ  3λ  0 0 0 

11 0 0 0 0 0 0 0 0 0 0  3λ  4λ  0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0  0 0 0 4λ  0 

13 0 0 0 0 0 0 0 0 0 0 0 0  0 0 3λ  0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0  5λ  6λ  0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 6λ  

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5λ  

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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where P(t) represents the system state vector and Q 
is the infinitesimal generator matrix of the 
stochastic process {X(t),t≥ 0}. By taking advantage 
of the upper triangular nature of Q, the differential 
Equations 9 can be easily solved. 
     Therefore, if the waiting time in system for each 
queuing system is an exponential random variable, 
after transforming the queuing systems to the 
related stochastic arcs, we can use the above 
results to obtain the distribution function of longest 
path in the network of queues. 
 
3.1. Networks of Queues with M/M/ ∞  
Queuing Systems   The simplest case to 
determine the longest path is a network, which 
includes only M/M/∞  queuing systems. In this 
case, since no queue exists, the waiting time in the 
system is equal to the service time with 
exponential distribution. Therefore, each node 
having a queuing system is transformed into an 
exponential arc with parameter µ , where µ  is the 
service rate. After solving the system of 
differential Equations 9, the distribution function 
of longest path in the network is obtained. 
 
3.2. Networks of Queues with M/M/1 
Queuing Systems   In this case, the waiting 
time density function in each M/M/1 queuing 
system is: 
 

tetw )()()( λµλµ −−−=  t>0 (10) 
 
where λ and µ  are the arrival rate and the service 
rate of this queuing system, respectively. 
Consequently, the system waiting time distribution 
is exponential with parameter ( µ -λ ). Therefore, 
we can transform each node into an exponential arc 
with parameter ( µ -λ ), and one can find the 
distribution function of longest path in the 
network, according to the proposed method. 
 
 
 

4.  NETWORKS OF QUEUES WITH NON-
MARKOVIAN QUEUEING SYSTEMS 

 
Assume that the length of arc Aa ∈  originating 
from the source node is a random variable with 

density function f(t) and distribution function F(t). 
If N(t) represents the number of passages from this 
arc until time t, it is a non-homogeneous Poisson 
process with the following intensity function. 
 

))(1(
)()( tF

tfta −=λ  (11) 

 
In this case, the probability of passage from this 
arc in the interval [t, t+∆ t] is equal to aλ (t)∆ t; 
given there has been no passage before t. It is clear 
that aλ (t) can be considered as a failure rate 
function; see Ross [15] for more details. Therefore, 
if the length of each arc Aa ∈ , originating from 
the source node, is a random variable with general 
distribution function and the failure rate function 

aλ (t), we should replace aλ  in (4), (5) and (6) 
with aλ (t). In this case, some elements of the first 
row of the infinitesimal generator matrix will 
be the functions of t. Thus, the system of 
linear differential equations with non-constant 
coefficients (12) has to be solved. 
 
P'(t)=Q(t).P(t) 
 
 (12) 
P(0)=[0,0,…,1]T 
 
     One should notice that the above equations 
can be applied only for the arcs originating 
from the source node, or if there is an M/G/ ∞  
queuing system in the source node. When 
another arc of the transformed stochastic 
network has the general distribution, the 
intensity function is a function of the starting 
time of traversing this arc, which is different 
from the quantity t in the differential 
Equations 12. 
     The first differential equation of the system 
P'(t) = Q(t).P(t) corresponding to P1(t) has 
non-constant coefficients. Owning to the upper 
triangular nature of Q(t), we can easily solve 
the differential Equations 12. Let Q  represent 
an (N-1)× (N-1) submatrix of Q(t) with the 
elimination of the first row and the first column of 
Q(t).  
     Now, we see how the system of differential 
equations with constant coefficients (13) is solved, 
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where 
 

T
N tPtPtPtP )](),...,(),([)( 32=  

 

'P (t)= Q . )(tP  
 

)0(P =[0,0,…,1]T (13) 
 
     Let M be the modal matrix of Q . That 
is, M is the (N-1)× (N-1) matrix whose N-1 
columns are the eigenvectors of Q . Let 

)N(...,),(),( 121 −λλλ  be the eigenvalues 

of Q , which are the diagonal elements of 

Q  owning to the upper triangular nature of 

Q . We can compute )(tP  from Equation 
14. 
 

)(tP =M teΛ )0(1 PM −  (14) 
 
where teΛ  is the diagonal matrix with ith 
diagonal element ...)(1 ++ tiλ  (see Luenberger 
[11] for the details), thus: 
 





















=

−

Λ

tN

t

t

t

e

e
e

e

)1(

)2(

)1(

..0
....
..0
0.0

λ

λ

λ

 

 
     Let q11(t) represent the element in the 
first row and first column of the matrix 
Q(t), and Q1(t) represent the N-1 row vector 
corresponding to the first row of Q(t) after 
the elimination of its first element, i.e. 
Q1(t)=[ ])(),...,(),( 11312 tqtqtq N . Now, we should 
solve the following linear differential equation 
with non-constant coefficients. 
 
P'1(t)=q11(t).P1(t)+ Q1(t). )(tP  

P1(0)=0 
 
Then P1(t) is  computed from the following 
equation. 





 += ∫ CdssPsQsttP

t
)().()()(

1)( 11 µµ  

 

where ∫=
−

t
dssq

et
)(11

)(µ . Taking into account the 
initial condition, the distribution function of 
longest path is computed as follows: 
 





= ∫ dssPsQsttF

t
)().()()(

1)( 10
µµ  

 
4.1.  Networks of Queues with M/G/ ∞  
Queuing System in the Source Node 
Because of the limitations explained above, only 
the source node can contain an M/G/∞  queuing 
system. If the source node contains an M/G/∞  
queuing system, it can be transformed into an arc 
whose length is equal to the service time and its 
intensity function, or λ (t), is equal to the failure 
rate function of the service time at time t. Then, the 
distribution function of longest path of the network 
is determined according to the method explained in 
section 4. 
     Although in this case, the density function of 
the service time is not exponential, the steady-state 
density function of the t ime between two 
successive departures from the queuing system is 
exponential. Therefore, the departure process from 
this queuing system is a Poisson process, in which 
the departure rate would be equal to the arrival rate 
to the queuing system. See Gross and Harris [8] for 
more details. 
 
4.2.  Networks of Queues with M/Ek/1 
Queuing Systems   For this system, computing 
the density function of the waiting time is not easy, 
compared with the previous ones. Therefore, for 
analyzing each M/Ek/1 queuing system with ( µ , k) 
as the parameters of the Erlang distribution of 
service time, we consider only the special case that 
this queuing system must satisfy the heavy traffic 
assumption, which means its utilization factor 
should be approximately equal to 1. 
 
Theorem 1.    Considering the diffusion 
approximation of density function of the waiting 
time in queue, each M/Ek/1 queuing system in 
heavy traffic assumption can be transformed into 
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k+1 exponential series of arcs with parameters 

2
)2(
σ

γ− , µ ,… , µ , where γ  and 2σ  represent 

the expected value and the variance of the waiting 
time in queue. 
 
Proof.   Assuming the heavy traffic assumption, 
the expected value and the variance of the 
waiting time in queue in each M/G/1 queuing 
system are: 
 

)t(Ot))S(E(t ∆+∆−=∆ 1λγ  

)t(Ot)S(Et ∆+∆=∆ 22 λσ  
 
where S represents the service time, and λ  
represents the arrival rate. 
     Let wq(x,t/x0) represent the density function of 
the waiting time in queue at time t, given that the 
waiting time in queue at time zero is equal to x0. It 
is proved that wq(x,t/x0) can be obtained from the 
Fokker-Planck equation, as follows: 
 
∂ wq(x,t/x0)/∂ t= 
 
- γ ∂ wq (x,t/x0)/∂ x+σ 2/2∂ 2wq(x,t/x0)/∂ x2, 
 
with the following boundary conditions: 
 

∫
∞

0
wq(x,t/x0)dx=λ / γ  

 
wq(x,t/x0)≥ 0 
 
In steady-state, the limiting density function exists, 
i.e. wq(x)=lim wq(x,t/x0), and can be computed as 
                 ∞→t      
follows: 
 
σ 2 / 2d2 wq(x) / dx2 - γ  dwq (x)/dx = 0 
 
This is a second order differential equation with 
constant coefficients. Taking into account the 
following limiting boundary conditions under the 
heavy traffic, 
 

∫
∞

0
wq(x) dx = λ / γ  ≅  1 

 
   wq(x) ≥  0  

It is concluded that: 
 
wq(x) = (-2 γ ) / σ 2 exp [(2 γ ) / σ 2 x]    x > 0 
 
     Therefore, the steady-state density function of 
the waiting time in queue is approximated by 
exponential with parameter (-2 γ )/σ 2. 
     We can decompose each random variable with 
Erlang distribution to a collection of structured 
random variables with exponential distributions; 
see Gross and Harris [8] for more details. The 
waiting time in queue has exponential distribution 
with parameter (-2 γ )/σ 2 and the service time can 
be decomposed to k exponential series arcs with 
parameter µ , and Theorem 1 is proved. 
     Finally, we can find the distribution function of 
longest path in the network, according to the 
proposed method. 
     It should be noticed that the following theorem 
is also a new proof for this matter that the density 
function of the waiting time in queue in each 
M/G/1 queuing system in the steady state, taking 
into account the heavy traffic assumption, is 
exponential. 
 
4.3. Networks of Queues with G/M/1 
Queuing Systems   If the arrival process to 
each queuing system is the Poisson process, we 
have no G/M/1 queuing system in the network 
and we can easily find the rate of arrival 
process to each queuing system. In this case, if 
rij represents the probability that the customer 
whose service was finished in the service 
station settled in node i, goes to the service 
station settled in node j (rij, for all i and j∈V, 
are independent from the state of the system), 

iλ  or the rate of arrival Poisson process to the 
service station settled in node i is given by: 
 

∑
∈

=
Vj

jjii r λλ    i∈V 

 
Otherwise, if there is even one M/G/1 queuing 
system in the network, the other forward queuing 
systems, which are connected to this queuing 
system through a path, do not have the arrival 
Poisson processes. After passing each node u∈V 
with the general distribution of service time and 
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this assumption that the arrival process to this 
node is the Poisson process with rate λ , the 
departure process from node u and also the 
arrival process to each node v∈V would not be 
the Poisson processes. However, we can compute 
the distribution function of time between two 
successive departures from node u by Equation 
15. Let C (t) represent this distribution function 
and B(t) represent the distribution function of 
service time and ρ represent the utilization factor 
of this M/G/1 queuing system. C (t) is given by: 
 

C(t) = ρB(t) + (1-ρ ) ∫
t

0
B(t-u) λ e- λ u du (15) 

 
We can compute λ u(t) or the rate of departure 
process from node u, which is equal to the failure 
rate function of the time between two successive 
departures from node u, from the following 
equation. 
 
λ u (t)=C'(t)/(1-C(t)) 
 
It is assumed that the departure process from node 
u has the independent increment. This assumption 
is reasonable, because the network is acyclic. 
Therefore, the departure process from node u can 
be considered as a non-homogeneous Poisson 
process with the intensity function λ u(t). 
     Now, let N1(t) represent the arrival process from 
node u to node v and N(t) represent the departure 
process from node u. As mentioned, N(t) is a non-
homogeneous Poisson process with the following 
distribution. 

P[N(t)=m]= 0     !)(
0

)(
0 ≥



∫ ∫

−
mmdsse

mt

u

dss
t

u λ
λ

 

 
Then, the rate of arrival process to node v from 
node u is proved to be equal to ruv λ  u(t). 
 
Theorem 2.   N1(t) is a non-homogeneous Poisson 
process with the intensity function equal to 
ruv λ u(t) or its distribution is  
 
P[N1(t)=n]=

0     !)(
0

)(
0 ≥



∫ ∫

−
nndssre

nt

uuv

dssr
t

uuv λ
λ

 

 
Proof. 
 

P[N1(t)=n]=∑
∞

=nm
P[N1(t)=n/N(t)=m].P[N(t)=m] 

 

P[N1(t)=n/N(t)=m]= 





n
m n

uvr  (1- ruv)m-n 

 

P[N1(t)=n] = ∑
∞

=nm
 





n
m n

uvr  

 

(1- ruv)m-n      !)(
0

)(
0 mdsse

mt

u
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t
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

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Figure 2. The network of queues corresponding to the illustrative example. 
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Corollary 1.   The rate of arrival process at each 
node k∈V is 
 
λ  k(t)=∑

∈Vj
rjk λ  j(t)   k∈V 

 
Proof.   The time between two successive arrivals 
to node k is the minimum of some random 
variables, in which each one corresponds with the 
time between two successive arrivals from the 
node j∈V to node k. The failure rate function of 
this random variable is rjk λ j(t), because the arrival 
process from node j to node k is a non-
homogeneous Poisson process with the intensity 
function rjk λ j(t), Therefore, the failure rate 
function of the minimum of these random 
variables, which indicates the rate of arrival 

process to node k, would be equal to 
 

∑
∈Vj

 rjk λ j(t). 

 
     In each node k∈V which contains an G/M/1 
queuing system, if we obtain λ k(t) or the rate of 
arrival process to this node, we can compute A(t) 
or the distribution function of time between two 
successive arrivals to node k from the following 
equation. 
 

A(t)=1- ∫−
t

k duu
e 0

)(λ
 

 
Assuming µ  as the service rate of the G/M/1 
queuing system, we can compute 0<x0 <1, or 
the unique root of Equation 16, by using a 
numerical method like the Newton-Raphson 
method. 
 

Z= ∫
∞ −−

0

)1( zte µ dA(t)     0<z<1  (16) 

 
After computing x0, we can compute the density 
function of the waiting time in system in the G/M/1 
queuing system in this manner: 
 

txextw )1(
0

0)1()( −−−= µµ      t>0 
 
It is clear that w(t) has exponential distribution 
with the parameter µ (1-x0), and we can transform 
this node to an exponential arc with the parameter 
µ  (1-x0). 

TABLE 3. Characteristics of the Queuing Systems. 
 

Node Distribution of service 
time Number of servers Parameters of the 

distribution 
A Weibull ∞  (α,β)=(1,2) 

B Erlang 1 (µ ,k)=(1,2) 
 

C Exponential 1 µC=4 
D Exponential 1 µD=2 
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5.  ILLUSTRATIVE EXAMPLE 
 
Consider the network of queues depicted in Figure 
2. Table 3 shows the characteristics of the service 
stations. There is no queuing system in node E. 
The other assumptions are as follows: 
 
1.  There is only one external arrival process to 

node A according to a Poisson process with the 
average of λ =0.98 per hour. 

2.  The arc lengths k, l, m, p are 0, but the length of 
arc n has exponential distribution with 
parameter 3. 

3.  Each customer after being served in node A 
goes to the service stations B or D with the equal 
probabilities (rAB=rAD=0.5). 

 
     According to the assumption 3, the arrival rate 
at the M/E2/1 queuing system settled in node B is 
equal to 0.5*0.98=0.49, and the utilization factor 

of this queuing system is  
 
ρ B=2(0.49)=0.98 
 
     Therefore, the heavy traffic assumption is 
satisfied, and we can apply the diffusion 
approximation and the results of Theorem 1. 
The distribution function of time between two 
successive departures from node B, or C(t), is 
approximately equal to B(t), i.e., the distribution 
function of service time in this M/E2/1 queuing 
system, because ρ B approaches 1. Since node 
C is connected to node B only through arc m, 
then C(t) is equal to A(t), i.e., the distribution 
function of time between two successive arrivals 
to node C. Therefore we conclude 
 
A(t) = C(t) and C(t) ≅  B(t) ⇒  A(t) ≅  B(t) 
 
Now, we can compute x0, or the unique root of  

TABLE 4. Matrix Q(t) Corresponding to the Illustrative Example. 
 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 -2t 2t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 -1.524 0.014 0 0 1.51 0 0 0 0 0 0 0 0 0 0 

3 0 0 -2.51 1 0 0 1.51 0 0 0 0 0 0 0 0 0 

4 0 0 0 -2.51 1 0 0 1.51 0 0 0 0 0 0 0 0 

5 0 0 0 0 -5.338 0 0 0 1.51 0 0 0 0 3.828 0 0 

6 0 0 0 0 0 -3.014 0.014 0 0 3 0 0 0 0 0 0 

7 0 0 0 0 0 0 -4 1 0 0 3 0 0 0 0 0 

8 0 0 0 0 0 0 0 -4 1 0 0 3 0 0 0 0 

9 0 0 0 0 0 0 0 0 -6.828 0 0 0 3 0 3.828 0 

10 0 0 0 0 0 0 0 0 0 -0.014 0.014 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 -3.828 0 0 3.828 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.51 1.51 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 3 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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z = ∫
∞

0
e-4t(1-z) te-t dt    0 < z <1 

 
x0 = 0.043 
 
     Now, each node containing a queuing system is 
transformed into an arc whose length is equal to 
the waiting time in system for this queuing system. 
Therefore, the network of queues is transformed to 
a stochastic network. Figure 3 shows this 
stochastic network. 
     Taking into account Figure 3, the M/G/∞  
queuing system settled in node A whose 
distribution of service time is Weibull with the 
density function 

2

2)( ttetf −=  is replaced by arc a 
with the density function aλ (t)=2t, which is equal 
to the failure rate function of the service time. The 
waiting time in system in node B, which contains 
an M/E2/1 queuing system, is the sum of the 
waiting time in queue or b1 and the service time. 
Taking into account the heavy traffic assumption, 
the distribution of the waiting time in queue is 
exponential with the parameter 

1bλ , which is 
computed as follows: 
 
 γ =0.5 λ E(S)-1=-0.02 

σ 2 = 0.5 λ E (S2) = 0.49 (Var (S) + (E (S) )2) =  
 
         0.49 (2+4) = 2.94 
 


1bλ  = (-2 γ )/σ 2 = 0.014 
 
     According to the Theorem 1, the service time is 
replaced by two series arcs b2 and b3, in which both 
of them have exponential distributions with 
parameter 1. Arc c indicates the waiting time in 
system in G/M/1 queuing system settled in node C, 
which has exponential distribution with this 
parameter: 
 
 cλ =µ C (1-x0)=4(1-0.043)=3.828 
 
     Arc d indicates the waiting time in system in 
M/M/1 queuing system of node D, which has 
exponential distribution with this parameter: 
 

dλ  = (µ D - 0.5λ ) = 2 - 0.49 = 1.51 
 
Arc n indicates the length of arc n in the original 
network, which has exponential distribution with 
parameter nλ =3. 
     Now, we want to find the distribution function 
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Figure 3. The stochastic network corresponding to the illustrative example. 
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Figure 4. The network of queues corresponding to Case I. 
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of longest path from node 1 to node 7 in the 
stochastic network, which is equal to the 
distribution function of longest path from node A 
to node E in the original network of queues. 
     The indicated stochastic process {X(t),t≥ 0} has 
16 states in this order: 
 

)},(),n*,c(),d*,c(*),n,c(

*),n,b(*),n,b(*),n,b(),n,c(),n,b(),n,b(

),n,b(),d,c(),d,b(),d,b(),d,b(),a{(S

φφ

32132

1321=

 

 
Therefore, the infinitesimal generator matrix Q(t) 
has 16 states. Table 4 shows the infinitesimal 
generator matrix Q(t). The arc parameters are as 
follows: 
 

aλ (t) = 2t, 
1bλ  = 0.014, 

2bλ  = 1, 
3bλ  = 1, 

 

cλ  = 3.828, dλ  = 1.51, nλ  =3 
 
     Then, we solve the following system 
of differential equations with non-constant 
coefficients. 
 
P'16(t) = 0 
P'15(t) = -3P15(t)+3P16(t) 
 
P'14(t) = -1.51P14(t)+1.51P15(t) 
 
P'13(t) = -3.828P13(t)+3.828P16(t) 
 
P'12(t) = -P12(t)+P13(t) 
 
P'11(t) = -P11(t)+P12(t) 
 
P'10(t) = -0.014P10(t)+0.014P11(t) 
 
P'9(t) = -6.828P9(t)+3P13(t)+3.828P15(t) 
 
P'8(t) = -4P8(t)+P9(t)+3P12(t) 
 
P'7(t) = -4P7(t)+P8(t)+3P11(t) 
 
P'6(t) = -3.014P6(t)+0.014P7(t)+3P10(t) 
 
P'5(t) = -5.338P5(t)+1.51P9(t)+3.828P14(t) 
 
P'4(t) = -2.51P4(t)+P5(t)+1.51P8(t) 

P'3(t)=-2.51P3(t)+P4(t)+1.51P7(t) 
 
P'2(t)=-1.524P2(t)+0.014P3(t)+1.51P6(t) 
 
P'1(t)=-2tP1(t)+2tP2(t) 
 
Pi(0)=0   for  i=1,2,…,15 
 
P16(0)=1 
 
     According to the proposed method in section 4, 
we initially compute )(tP  from Equation 14. Then 

we obtain Q1(t). )(tP in this manner: 
 

t.t.t.

ttt.

t.tt.

tt.t.t
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Finally, F(t)=P1(t) is obtained in this manner: 
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22

22
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038.0038.0
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001.0028.2
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)(  

 
     We can easily compute the moments of the 
distribution, using a suitable numerical integration 
technique. We used MATLAB 5.3 to compute the 
expected value and the variance of the longest path 
in the indicated network of queues. Theses values 
are as follows: 
 

µ = ∫
∞

0
)(ttdF =72.883 
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2

0

22 )( µσ −= ∫
∞

tdFt =5020.616  

 
 
 

6. COMPUTATIONAL EXPERIENCE 
 
For showing the validity of the proposed method, 
we solve 4 new numerical examples. All of these 
networks have 4 service stations, but with different 
configurations and characteristics of the service 
stations. The arc lengths are all assumed to be 
equal 0. 
     Case I is depicted in Figure 4. This is a serial 
network of queues. The arrival process to the 
source node of this network is assumed to be a 
Poisson process with the rate of 1=λ  per hour. 
Node A contains an M/G/∞  queuing system with 
the Weibull distribution of service time and the 
parameters ( βα , ) = (1,2). Nodes B and D contain 
the M/M/1 queuing systems with the service rates 
equal to µ B=µ D=2. Node C contains an M/M/∞  
queuing system with the service rate equal to 
µ C=1. Figure 5 shows the transformed stochastic 
network. 
     In this case, the size of the state space is equal 

to 5, )},(),4(),3(),2(),1{( φφ=S , and F(t) is 
given by 
 

∫ −−−− −−−=
t ssssssst dsseesesseetF
0

23 22222

222)(  
 
     Case II is depicted in Figure 6. The 
configuration of this network is the same as the 
illustrative example, except that there is no non-
Markovian queuing system in the nodes of this 
new network. The arrival process is a Poisson 
process with the rate of 2=λ  per hour. Node A 
contains an M/M/∞  queuing system with the 
service rate equal to µ A=3. Nodes B, C and D 
contain the M/M/1 queuing systems with the 
service rates equal to µ B=2, µ C=4 and µ D=2, 
respectively. There is no queuing system in node 
E. It is also assumed that rAB = rAD = 0.5. Figure 7 
shows the transformed stochastic network. 
     In this case, the size of the state space is equal 
to 7, 
 

)},(),4,3(),4,3(),4,3(),4,2(),4,2(),1{( *** φφ=S  
and F (t) is given by 
 

tt

ttt

ee

eteetF
32

43

25.35.4

5.15.175.31)(
−−

−−−

−+

++−=  

 
     Case III is depicted in Figure 8. This is the 
first network of queues that we analyze and has 
more than one G/M/1 queuing system. The arrival 
process is a Poisson process with the rate of 
λ=0.49 per hour. Node A contains an M/G/ ∞  
queuing system with the Weibull distribution of 
service time and the parameters (α,β)=(2,2). 
Node B contains an M/E2/1 queuing system with 
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Figure 5. The transformed stochastic network corresponding to Case 
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Figure 6. The network of queues corresponding to Case II. 
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the service parameters equal to ( µ , k)=(1,2). 
Nodes C and D contain the G/M/1 queuing 
systems with the service rates equal to µC=4 and 
µD=2, respectively. There is no queuing system in 
node E. It is also assumed that rBC = 0.8 and rBD = 
0.2. Figure 9 shows the transformed stochastic 
network. 
     In this case, the size of the state space is equal 
to 8,  
 

)},(),6,5(),6,5(),6,5(),4(),3(),2(),1{( ** φφ=S , 
 
and F(t) is given by: 
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     The configuration of the network of queues in 
Case IV is the same as the illustrative example, 
Figure 2, except that node D contains an M/E2/1 
queuing system with the service parameters equal 
to ( µ ,k)=(1,2) instead of the M/M/1 queuing 
system, and the arc lengths of this new network are 
all equal to 0. This is the first network of queues 
that we analyze and has more than one M/Ek/1 
queuing system. Figure 10 shows the transformed 
stochastic network. 
     In this case, the size of the state space is equal 
to 19 
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By comparing these four cases and also the 
illustrative example with each other, it is 
concluded that the size of the state space is 
dependent on the number of service stations, 
the number of arcs, and also the number of 
M/Ek/1 queuing systems settled in the nodes of 
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Figure 7. The transformed stochastic network corresponding to Case II. 
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Figure 8. The network of queues corresponding to Case III. 
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the network of queues. All of these 5 cases 
have the equal number of service stations, but 
Case IV, which has the maximum number of 
arcs and M/Ek/1 queuing systems between 
these 5 cases, has the maximum size of the 
state space equal to 19, and consequently, 
Case I has the minimum size of the state space 
equal to 5.  
     Therefore, the worst case of the problem 
would be a complete network of queues with 
maximum number of M/Ek/1 queuing systems, 
in which each node should contain a service 
station. 
 
 
 

7. CONCLUSION 
 
In this paper, we developed an analytical method 
to determine the steady-state distribution function 
of longest path in networks of queues on the 
basis of stochastic process, queuing theory and 
also graph theory. Furthermore, we assumed the 
arc lengths are independent random variables. 
Several problems in the fields of project 

management, production systems, reliability 
modeling and computer networks can be 
formulated as a network of queues and then 
apply this method. 
     In the proposed method, the network of 
queues is transformed into a stochastic network. 
Then, we obtain the distribution function 
of the steady-state longest path by solving 
a system of linear differential equations 
corresponding to the related continuous-time 
Markov process. If the service times and the 
arc lengths are exponential random variables, 
then the coefficients of the system of linear 
differential equations are constant and can be 
easily solved. However, if any of those 
random variables has the general distribution, 
the resulting system of linear differential 
equations has non-constant coefficients, and 
can be solved through the analytical method, 
which described in section 4. 
     The limitation of this model is that the state 
space can grow exponentially with the network 
size. As the worst-case example, for a complete 

transformed network with n nodes and 2
)1( −nn  

arcs, the size of the state space is given by 
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Figure 9. The transformed stochastic network corresponding to Case III 
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Figure 10. The transformed stochastic network corresponding to Case IV. 
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1)( −−= nn UUnN , where 
 

∑
=

−=
n

k

knk
nU

0

)(2  

 
Refer to Kulkarni and Adlakha [10]. 
     In practice, the number of arcs in PERT 

networks is generally much less than 2
)1( −nn , 

and it should also be noted that for large networks 
any alternate method of producing reasonably 
accurate answers will be prohibitively expensive. 
     In this paper, we analyzed the acyclic networks 
with no direct or indirect feedback or overtaken. 
Therefore, it can be assumed that the waiting time 
in the queuing systems are independent random 
variables. Other limitation of this model is that the 
waiting time in the queuing systems settled in the 
nodes of the network are not always independent, 
and we have some limitations to use the 
independency assumption. 
     This model can be extended to the networks 
of queues, which contain the other kinds of 
queuing systems. 
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