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Abstract   Virtually all fibers exhibit some dimensional and structural irregularities.  These include 
the conventional textile fibers, the high-performance brittle fibers and even the newly developed 
nano-fibers. In recent years, we have systematically examined the effect of fiber dimensional 
irregularities on the mechanical behavior of the irregular fibers.  This paper extends our research to 
include the combined effect of dimensional and structural irregularities, using the finite element 
method (FEM). The dimensional irregularities are represented by sine waves with a 30 % magnitude 
of diameter variation while the structural irregularities are represented by longitudinal and horizontal 
cavities distributed within the fiber structure. The results indicate that fiber geometrical or 
dimensional variations have a marked influence on the tensile properties of the fiber. It affects not 
only the values of the breaking load and extension, but also the shape of the load-extension curves. 
The fiber structural irregularities simulated in this study appear to have little effect on the shape of the 
load-extension curves. 
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توان به   از آن جمله مي   . دهند نظمي ابعادي و ساختاري از خود نشان مي         بي تمام اليافها بطور طبيعي      چکيدهچکيدهچکيدهچکيده
نظميهاي ابعادي بر  تاثير بي. اليافهاي معمولي نساجي، اليافهاي پركار ترد و حتي اليافهاي نو ظهور نانو اشاره كرد        

اين مقاله در   .  بطور سيستماتيك توسط تيم تحقيقاتي ما بررسي شده است         رفتار مكانيكي الياف در سالهاي اخير     
نظمي ابعادي با بي نظمي ساختاري از طريق بكارگيري روش           راستاي توسعه تحقيقات قبلي براي تلفيق تاثير بي       

گرفته در نظر  %٣٠بي نظميهاي ابعادي بوسيله موج سينوسي با دامنه تغيير قطر . اجزاي محدود تحرير شده است    
. شده و بي نظميهاي ساختاري توسط حفرات طولي و افقي توزيع شده در ساختار الياف نمايش داده شده اند                     

 دهد كه تغييرات هندسي و ابعادي الياف تاثير بسزايي بر خواص كششي الياف دارد؛ بطوريكه                  نتايج نشان مي  
اين نتايج .  بر شكل منحنيهاي كشش نيز اثر داردگذارد، بلكه نه تنها بر مقادير نيرو و تغيير طول شكست تاثير مي         

نظميهاي ساختاري شبيه سازي شده در اين تحقيق بر دياگرامهاي كششي تنها تاثير              دهد كه بي   همچنين نشان مي  
 .اندكي دارد

 
 
 

1. INTRODUCTION 
 
Most fibers are highly irregular in both dimension 
and structure, and this is particularly true with 
textile materials. During fiber processing, various 
cuts and deformations may be introduced to the 
fibers by sharp mechanical elements such as carding 
tooth, hence exacerbating the fiber structural and 
geometrical irregularities. The effect of fiber 
irregularities on fiber tensile properties has long 
been recognized. Considerable research work on 
wool fibers has been conducted on how fiber 

tensile behavior depends on fiber diameter (or 
cross-sectional area) variation and structural 
irregularity. Among them, many works (Banky and 
Slen [1,2], Kenny and Chaikin [3], Collins and 
Chaikin [4], Shah and Whiteley [5], Wang [6], 
Zhang and Wang [7], Zhang [8]) are focused on 
fiber dimensional variation and its effect on the 
tensile behavior of fibers. Some works (Collins [9] 
and Collins and Chaikin [10-15]) are concerned 
with both dimensional variation and structural 
irregularity of fibers. These works have indicated 
that fiber irregularities would change the shape of 
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stress-strain curves and would reduce the fiber 
breaking stress and strain with increasing fiber 
variations. The effect of structural variability 
within wool fibers on the fiber tensile behavior 
has mainly been examined with a number of 
models based on the “two-phase” structure, as 
proposed by Feughelman [16,17]. A few papers 
(Mason [18], Andrews [19], Makinson [20]) 
have been published on the effect of the 
structural variability on the tensile behavior of 
wool fibers, in which the notched and modulated 
wool fibers are examined. The results showed 
that fibers notched to a shallow depth had 
substantially the same strength properties as a 
normal fiber and the strength reduction was 
small for modulated fibers. 
     Recently, more attention has been paid to the 
wool fiber breakage or damage due to the 
interaction of fibers and metallic elements 
during fiber processing. Different types of fiber 
damage may be induced during processing, such 
as transverse and longitudinal cracks, cavities, 
and crushed regions, etc. (Gharehaghaji and 
Johnson [21,22], Gharehaghaji [23]). Even the 
ancient technique of opening wool and cotton 
fibers with vibrating strings can cause different 
forms of structural damage (Wang [24]), which 
all lead to fiber weakening and affect the 
mechanical properties of fibers. 
     Wang and Wang [25,26] investigated fiber 
strength loss at processing stages, too. The study 
shows that it can cause different degrees of 
reduction in strength in each processing stage 
due to the different conditions of fiber/fiber and 

fiber/metallic elements interactions. 
     There has been considerable interest in brittle 
materials such as glass, carbon, and ceramics 
fibers, etc. for high-strength and high-modulus 
composite applications. The mechanical properties, 
especially tensile strength, of these fibers can 
significantly influence the fracture behavior of 
the composites. The structure of these fibers is 
usually imperfect. For instance, surface cracks, 
internal flaws and different distributions of flaws 
often exist in the fibers (Dalmaz et al. [27] and 
Zinck et al. [28]). 
     Many works are, therefore, focused on the 
effect of fiber structural variation on its strength. 
An analysis of the relationship between strength 
and structure of ceramic fibers was provided by 
Sawye et al. [29], who demonstrated that fiber 
tensile strength was controlled by critical flaws 
and pointed out that process improvements and 
elimination of large defects could result in 
increased tensile strength. 
     Tayor et al. [30] examined the effects of 
flaw location, flaw size and flaw type on the 
strength of ceramic-grade Nicalon fiber. They 
suggested that flaw size played a more 
prominent role than flaw type in determining 
fiber strength values. Jones et al. [31] examined 
the effects of flaw location on the strength of 
carbon filaments and found that fibers with 
internal flaws were generally stronger that 
fibers with the same flaws at the edge of the 
fiber surface. 
     Further research is needed to clarify this 
situation. In addition, investigation using 
simulation and mathematical modeling also 
showed that the cracks and flaws affect fiber 
strength (Karbhari and Wilkins [32], Knoff 
[33]). Numerical models using finite element 
methods have also been used to analyze related 
problems in brittle fibers and other composite 
materials (Wisnom [34], Tong et al. [35], 
Firmature and Rahman [36], Zhang and 
Subhash [37]). However, these papers only 
worked on structural irregularity of fiber, 
without considering diameter variation along 
the fiber length.  
     In this paper, we use the non-linear finite 
element analysis to model the structural and 
dimensional variations of fibers, and analyze 
the tensile behavior of these fibers. 

TABLE 1. Parameters for FE Model in Tensile Analysis. 
 

Properties Value 

Young’s modulus (MPa) 1700* 

Poisson’s ratio 0.35 

True stress at break (MPa) 258.5* 

Specimen diameter (µm) 20 

Specimen length (mm) 0.1 

* Obtained from a pen-grown Corriedale wool (Collins [9]). 
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2. FINITE-ELEMENT MODEL 
 
2.1 Fiber Assumption   In this study, the 
cross-section of fiber specimen is assumed to be 
circular along the fiber length, so that fiber 
diameter variation can represent its dimensional 
irregularity. Structural variability of fiber and 
the combined structural and dimensional 
irregularities of fiber are considered, respectively. 
For the former, we assume that the different 
types of flaw (e.g., longitudinal crack, transverse 
crack and round cavities) are located in a uniform 
fiber (constant fiber diameter). For the latter, these 
defects are distributed in a fiber with 30% level of 
diameter variation, which follows the sine wave 

pattern.  In order to investigate the effect of 
fiber non-uniformity on fiber tensile behavior, we 
need to know the tensile behavior of the fiber 
without any structural and dimensional irregularities. 
Therefore, a tensile behavior similar to that of 
uniform pen-grown Corriedale wool (Collins [9]) 
is chosen and the nominal stress-strain curve of 
this kind of wool fiber is used. In addition, we 
assume that the length and average diameter of the 
simulated fiber specimen are 0.1 mm and 20 µm, 
respectively, in all cases simulated in this study.  
Relevant details concerning the fiber specimens 
used for the simulations are listed in Table 1. 
 
2.2 Model Description   ABAQUS/CAE (version 
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Figure 1. Specimen geometry mesh, dimension and loading conditions. 
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Figure 2. Geometry and dimension of crack. 
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6.1) [38] is used in this study to create three-
dimensional finite element models for the simulation. 
Physical and material properties are assigned to the 
simulated fiber, together with load and boundary 
conditions. Complex geometries can be difficult to 
mesh with hexahedral (brick-shaped) elements; 

therefore, the element type of C3D4 is chosen for 
this particular application. In addition, a large 
number of elements (fine meshes) have been used 
for the different simulated cases to ensure simulation 
accuracy. To reduce computational time, an irregular 
mesh is applied to the model. A finer mesh is 

(I)   

(II)   

(III)   

( a )   Finite element mesh for a 0.05 mm    
      specimen length (transverse section )   

(I)   

(II)   

(III)   

( b )   Finite element  mesh for a 0.04 mm  
      specimen length (vertical sectio  

 
 

 

Figure 3. Graphical representation of the simulated specimens with (a) transverse crack and (b) longitudinal crack. 
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chosen near the crack or cavity region where the 
stress concentration exists and accurate results are 
needed (see Figure 1A), and a relatively coarser 
mesh at distances farther away (see Figure 1B). The 
total number of elements is controlled at 8500-
9500/0.1 mm, and the average distortion of elements 
is 1.64-1.68, and the worst distortion is less than 3 for 
minimizing the mesh distortion. In the analysis, one 
end (left) of the fiber specimen is constrained and the 
other end (right) is extended along the fiber axial 
direction until the fiber is broken. Figure 1 gives a 
fiber specimen geometry mesh, dimension and 
loading conditions used in the analysis. 
 
 
 

3. RESULTS AND DISCUSSION 
 
3.1 Effect of Fiber Structural Irregularity 
on Fiber Tensile Behavior   In this part of 
study, dimensional variation is neglected, the fiber 
specimen is regarded as a uniform column and the 
diameter is 20 µm. 
 
3.1.1 Effect of Crack Type, Location and 
Size on Fiber Tensile Behavior   Two types of 

cracks, transverse and longitudinal cracks, are 
investigated here and the size of the crack is 
illustrated in Figure 2. Different cases are simulated. 
Case 1 represents a uniform fiber specimen. Case 2 
(Figure 3a) and Case 3 (Figure 3b) simulate the 
fiber specimen with transverse and longitudinal 
cracks, respectively, and these cracks also occur at 
different positions in the fiber specimen (Figure 3, 
I, II and III). Case 4 simulates the fiber specimen 
with longitudinal surface crack, but the size of the 
crack is different (see Table 2, Case 4). Further, 
case 5 simulates a fiber with two types of 
combined transverse and longitudinal cracks on the 
fiber surface, as shown in Figure 4. 
     Simulation results for the different cases are 
listed in Table 2. For all cases (except case 1), the 
crack weakens the fiber specimen, as expected. 
Results for case 2 and case 3 indicate that the 
transverse crack led to more reduction in breaking 
load and breaking extension than the longitudinal 
crack.  When the fiber specimen with a transverse 
crack is stretched, the tensile stress concentrates on 
the crack and grows rapidly with increasing fiber 
elongation, as illustrated in Figure 5. The 
maximum tensile stress of 258.5 MPa (true stress 
at break, as given in Table 1) is reached at an 

       (a) 

     (b)  
 

Figure 4. Finite element model: mesh of the fiber specimen with (a) T-crack and (b) L-crack. 
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extension of 17.5 % (see Figure 5c). 
     During subsequent stretching, the transverse 

crack becomes wider and propagates towards the 
inside across the fiber specimen (see Figure 5c to 

(h)   Ext. = 61, 
maxS = 258.5 

(g)   Ext. = 56, 
maxS = 258.5 

(f)   Ext. = 49, 
maxS = 258.5 

(e)   Ext. = 38.5, 
maxS = 258.5 

(d)   Ext. = 28, 
maxS = 258.5 

(c)   Ext. = 17.5, 
maxS = 258.5 

(b)   Ext. = 7, 
maxS = 177.3 

(a)   Ext. = 0, 
maxS = 0 

High 

Low 

S, Mises 

 
 

Figure 5. The contours of equivalent stress of uniform fiber with a transverse crack during successive extensions. 
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h), leading to the failure of the fiber specimen. 
However, for the fiber with a longitudinal crack, 
the tensile stress still concentrates on the crack, but 
it develops slowly with fiber extension (see Figure 
6). The breaking stress (258.5 MPa) is reached at a 
much higher extension of 59.9 % (see Figure 6 e). 
This is because the cross-sectional area of the fiber 
with a longitudinal crack is much larger than that 
with a transverse crack of similar size. So the 
breaking load and breaking extension of the fiber 
with the transverse crack is lower than that with 
the longitudinal crack. Despite of the fact that 
stress development and stress distribution pattern is 
different for the fiber specimen with the transverse 
crack or longitudinal crack, the fiber fracture for 
both cases always occurs at the crack region. 
     It is interesting to note that in case 2 I, II, III 
and case 3 I, II, III, as the cracks are at different 
locations (along the radius as shown in Figure 3), 
the breaking load and breaking extension of the 
fiber vary slightly. While the tensile properties 

are not very sensitive to the crack location, the 
trend for longitudinal and transverse cracks is the 
opposite. With the transverse cracks (case 2), 
surface crack is more serious than interior crack, 
which is consistent with results obtained by Jones 
et al. [31]. For longitudinal cracks, the reverse 
trend is observed (case 3, Table 2), namely, the 
lower breaking load of fiber accompanies the crack 
located closer to the fiber center, which is also in 
agreement with the experimental results obtained 
by Taylor et al. [30]. These simulation results 
therefore indicate that the effect of fiber structural 
flaw (defect) on the fiber tensile behavior depends on 
the geometrical shape and distribution of the flaw 
or crack. Nevertheless, the effect of longitudinal 
cracks on fiber tensile properties is very small.  The 
interior longitudinal crack is similar to medullae in 
animal fibers. Experimental results obtained from 
modulated wool fibers by Mason [18] and 
Andrews [19] have indicated that the effect of 
medullae on the tensile behavior of wool is small, 

TABLE 2. Simulation Conditions and Data for Fiber Specimen with Different Cracks. 
 

 

Simulation results 
Simulation cases Crack type 

 

Crack size  

(a x b x c)  

(µm) 

Breaking 

load (g) 

Breaking 

extension (%) 
 

Case 1 
 

No crack 
 

- 
 

4.96 
 

65.6 

I 4.53 61.1 

II 4.64 61.8 
Case 2 

 
III 

Transverse crack 

4.66 62.0 

I 4.94 64.8 

II 4.92 64.7 
Case 3 

 
III 

Longitudinal crack 

15 x 1 x 4 

4.88 64.4 

I 15 x 1 x 8 4.80 63.5 Case 4 

 II 
Longitudinal crack 

15 x 2 x 4 4.84 64.2 

T-crack 4.38 59.2 Case 5 

 L-crack 
Combined crack 15 x 1 x 4 

4.49 60.4 
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which supports the simulation results here. 
     In addition, increasing the depth (case 4 I) 
or width (case 4 II) of the crack will result in a 
reduction of the breaking load and breaking 
extension (see Table 2, case 4) as the weak region 
of fiber increases. Especially, for fiber with a deep 
crack, the minimum fiber diameter decreases and 
the fiber is weaker than the fiber with a wide but 

shallow crack. This is consistent with the weakest-
link theory. 
     For case 5, the fiber has a combination of 
transverse and longitudinal cracks (T-crack and L-
crack) (see Figure 4), and its breaking load and 
breaking extension drop more than the fiber with 
only a transverse crack or a longitudinal crack. 
Meanwhile, for the fiber with a T-crack, it might 

(g )   Ext. =  64.8, maxS = 258.5 

(f)   Ext. = 63.0, maxS = 258.5 

(e )   Ext. = 59.5, maxS = 258.5 

(d )   Ext. =  52.5, maxS = 226.7 

(c )   Ext. = 35.0, maxS = 122.0 

(b )   Ext. =  17.5, maxS = 54.7 

(a )   Ext. = 0, maxS = 0 

H igh  

L o w 

 
 
    S , M is es  

 
Figure 6. The contours of equivalent stress of uniform fiber with a longitudinal crack during successive extensions. 
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be easier to be stretched and deformed in the joint. 
Therefore, the values of breaking load and breaking 
extension of the fiber are lower than the fiber with 

a L-crack. 
     It is worth mentioning that for the different 
cases simulated, the shapes of the load-extension 

TABLE 3. Simulation Conditions and Data for Fiber Specimen with Different Distribution and Size of Interior Cavities. 
 

Simulation results 
Simulation cases 

Radius of cavity (R) 

(µm) Breaking load (g) Breaking extension (%) 

I 4.80 64.4 

II 4.75 64.0 

III 4.78 63.7 

IV 4.72 63.4 

Case 1 

V 

3 

4.51 60.4 

I 2 4.90 64.8 
Case 2 

II 4 4.49 62.3 
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Figure 7. Load-extension curves for a uniform fiber and fibers with different cracks. 
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curve of fiber specimen are all the same. The load- 
extension curves also overlap. Only the values at 

the breaking point vary with the crack type, 
location and size. Figure 7 gives the load-extension 

(II)   

0.025 mm   

(I)   

0.025 mm   

5  µ m   

(IV)   

(III)   

5  µ m   

0.01 mm   

5  µ m  

(V)   

0.01 mm   

 
 

Figure 8. Finite element mesh of different distribution of interior cavities. 
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curves of uniform fiber and fiber with the transverse 
cracks and T-crack. 
 
3.1.2 Effect of Distribution and Size of 
Interior Cavities on Fiber Tensile Behavior   
As indicated in Table 3, we simulated two cases 
here. Case 1 represents fiber specimen with three 
interior cavities and these cavities all have the 
same radius (R = 3 µm), but their distribution in 
the specimen is different. Three cavities in case 1 I 
to case 1 IV are arranged along the fiber specimen 
length. The interval between these cavities is 0.025 
mm for case 1 I and II, and 0.01 mm for case 1 III 
and IV. In addition, for case 1 I and III, the cavities 
distribute in the fiber center, and for case 1 II and 
IV, the location of these cavities is 5 µm away 
from the fiber center. In case 1 V, two cavities are 
in the radial direction. All details for case 1 are 
illustrated in Figure 8. Case 2 simulates the fiber 
specimens with different sizes of interior cavities 

and the distribution of these cavities is the same as 
case 1 I. Figure 9 gives the fiber specimen mesh with 
different size of cavities. 
     The simulation results are listed in Table 3. The 
fiber with interior cavities along its central axis has 
higher breaking load and breaking extension than 
the fibers with cavities located away from the 
central axis (see Figure 8 I, III and Figure 8 II and 
IV). This suggests that the stress concentration 
develops more easily around cavities away from 
the fiber center. Considering the density of the 
distribution of the cavities (see Figure 8 I and III or 
Figure 8 II and IV), we have found that the higher 
the density, the lower the breaking load and 
breaking extension. As three cavities distribute 
closely, the tensile stress in this region concentrates 
severely, the fiber is therefore weaker and the 
breaking load and breaking extension decrease. 
The results are also consistent with the results 
obtained by Karbhari and Wilkins [32]. But the 

R = 2  µ m   

R = 3  µ m  [case 6 (I)]   

R = 4  µ m   

 
 

Figure 9. Finite element mesh of different sizes of interior cavities. 



404 - Vol. 16, No. 3, November 2003 IJE Transactions A: Basics 

values vary slightly by either changing the location of the cavities or the density. However, when two 

A: the coarsest fibre segment   
B: distance of 0.01 mm from C   
C: the thinnest fibre segment   

(a)   

A   
B   C   

A   

C   B   

(b)   

 
 

Figure 10. The different locations of (a) transverse crack and (b) longitudinal crack. 
 
 

A

B C

C

 
Figure 11. Graphical representations of two transverse cracks at different locations. 



IJE Transactions A: Basics Vol. 16, No. 4, November 2003 - 405 

cavities are in the radial direction and another 
cavity is located along the fiber length (Figure 8 

V), as two cavities in the radial direction cause a 
further reduction in fiber cross-sectional area, the 

High 

Low 

S, Mises  

B C 

 
 

Figure 12. The contours of equivalent stress of a fiber with two transverse cracks located at 
B and C segments during successive extensions. 
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fiber is weaker than other cases. Therefore, the 
breaking load and breaking extension of the fiber 
specimen decreases significantly. 
     When the diameter of interior cavities of the 
fiber specimen varies (see Figure 9), the tensile 
behavior of the fiber will be affected. The 
breaking load and breaking extension decrease 
markedly with the increase in the diameter of 
interior cavities (see Table 3 case 1 I and case 2). 
The results also show that the size of the cavity 
plays a more prominent role in determining fiber 
tensile properties than the cavity distribution, which 
is in agreement with the experimental results 
obtained by Taylor et al. [30]. 

3.2 Effect of Fiber Structural and 
Dimensional Variation on Fiber Tensile 
Behavior   The dimensional variation of fiber 
specimen is considered here, which follows the sine 
wave pattern and has a 30% level of diameter 
variation in the simulations, together with flaws 
distributed in it. The length and average diameter 
of fiber specimen are also 0.1 mm and 20 µm, 
respectively. 
 

3.2.1 Effect of Type, Location and Size of 
Surface Crack on Fiber Tensile Behavior   
We simulate five cases here. Case 1 represents 
the fiber specimen with a 30 % level of diameter 

TABLE 4. Simulation Condition and Data for Fiber Specimen with Different Location and Size of Surface Crack. 
 

 

Simulation results 

Simulation cases Crack type 
Crack 

location 

Crack size 

(Unit: µm) 
Breaking 

load  

(g) 

Breaking 

extension 

(%) 

Case 1 No crack - 0 2.48 42.2 

I A 2.48 42.2 

II B 2.29 40.5 Case 2 

III 

Transverse crack 

C 1.97 34.3 

I A 2.48 42.2 

II B 2.45 41.6 Case 3 

III 

Longitudinal crack 

C 

15 x 1 x 4 

2.42 41.0 

I A 2.48 42.2 

II B 
15 x 1 x 8 

1.82 32.0 

III A 2.48 42.2 
Case 4 

IV 

Transverse crack 

B 
15 x 2 x 4 

2.26 40.1 

I A + C 2.01 35.1 
Case 5 

II 
Two transverse cracks 

B + C 
15 x 1 x 4 

2.03 35.9 
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variation and without any surface and interior 
flaws. Case 2 and Case 3 simulate the fiber 
specimen with a surface transverse and 
longitudinal cracks and the crack is located in three 
different positions A, B and C along the fiber, 
respectively, as shown in Figure 10. Case 4 is the 
same as Case 2, but the size of the crack is changed 
(see Table 4). Case 5 simulates the fiber specimen 
with two transverse cracks, but with different 
locations along the fiber, as illustrated in Figure 11. 
Table 4 lists the breaking load and breaking 
extension of the simulated fiber specimen for all 

different cases described above. 
     For Case 2 I, Case 3 I and Case 4 I, III, the fiber 
all has one crack, which is located at the coarsest 
segment A of fiber, but the crack type and size are 
different. When the fiber is stretched, the values of 
the breaking load and breaking extension are all 
the same as the fiber only with dimensional 
variation (case 1). As the crack in all of these cases 
does not lead to the reduction in the minimum 
cross-sectional area of fiber and the fiber will break 
at the thinnest segment C. Consequently, the 
breaking load and breaking extension are not 

II 

III 

C

B

A 

I 0.01mm 

 
 

Figure 13. Finite element mesh of different location of interior cavity(s). 
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changeable for these cases. 
     When the transverse crack or longitudinal crack 

is located at the thinnest segment C of fiber, 
undoubtedly, the minimum cross-sectional area of 

Table 5: Simulation Condition and Data for Fiber Specimens with Interior Cavities at Different Locations. 
 
 

Simulation results 
Simulation Cases Cavity(s) location 

Breaking load (g) Breaking extension (%) 

Case 1 No  2.48 42.2 

I A 
(three cavities) 

2.48 42.2 

II B 2.46 41.6 Case 2 

III C 2.19 37.7 
 
 
 

S, M is es  

H igh  

L o w 

C ase 1 

C ase 2 (I) 

C ase 2 (II) 

C ase 2 (III)  
 

Figure 14. The contours of distribution of equivalent stress of a fiber for different cases at the last deformation step. 
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fiber has a marked decrease. The breaking load and 
breaking extension of the fiber are bound to 
decrease (see case 2 III and case 3 III) and for the 
other case, the transverse crack or longitudinal 
crack is located at neither the coarsest nor the 
thinnest segment of the fiber, which is at a distance 
of 0.01 mm (B) from the thinnest segment (C) 
(Figure 10). In this position, the crack with a depth 
of 4 µm results in a reduction of the fiber cross-
sectional area, but this cross-sectional area is still 
larger than that of the thinnest segment C with the 
same crack and lower than the thinnest segment 
without the crack. Therefore, the values of fiber 
breaking load and breaking extension are between 
that of two cases. However, whether the crack is 
located at (B) or (C), the reduction in breaking load 
and breaking extension of the fiber with a 
transverse crack is more than the fiber with a 

longitudinal crack (case 2 II and Case 3 II, case 2 
III and Case 3 III). This result is the same as the 
previous result discussed in Section 3.1.1 and also 
can be explained using the stress distribution and 
the size of cross-sectional area where the crack is 
located. 
     When the depth (case 4 I) or width (case 4 II) of 
the transverse crack at the B segment increases, the 
breaking load and breaking extension of the fiber 
decrease. And the fiber with a deep crack is also 
weaker than the fiber with a wide crack, which is 
also agreement with the previously results in 
Section 3.1.1. 
     Two transverse cracks are located at two different 
segments of the fiber, as shown in Figure 11. The 
simulation results are listed in Table 4, case 5. It is 
very interesting to compare the simulation results 
for Case 5 and Case 2 III. When there is a crack in 
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Figure 15. Load-extension curves of fibers with dimensional variation and different flaws. 
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the fiber section with the minimum cross-sectional 
area, adding an identical crack to another section 
of the fiber actually improves the fiber breaking 
load and breaking extension slightly. This suggests 
that an increased number of the crack is sharing the 
tensile stress when the fiber is stretched, which 
contributes to the increased breaking load and 
breaking extension. The sharing the tensile stress 
can be clearly observed in Figure 12, in which the 
tensile stress not only concentrates on the thinnest 
segment C, but also on the segment B at increasing 
extensions. Ultimately, the fracture of the fiber still 
occurred at the weakest - thinnest segment. 
 
3.2.2 Effect of Location of Interior Cavities 
on Fiber Tensile Behavior   As shown in 
Figure 13, the cavities simulated here are located at 
A, B and C, respectively. In case 2 I, three cavities 
are distributed in the coarse segment of fiber 
specimen and the middle cavity is located at the 
coarsest segment A, Cases 2 II and III have one 
cavity only, located in B and C, respectively. The 
cavities distribute in the fiber center in all these 
cases. 
     Table 5 lists the results from the FE model. The 
results indicate that the breaking load and breaking 
extension decrease when the cavities are located in 
segments B and C of the fiber, respectively, and 
the values decrease slightly for the former and 
markedly for the latter. But the values are the same 
as the fiber without any cavities even though three 
cavities occur at the coarsest segment A (see Case 
1 and Case 2 I). Figure 14 plots the contours of 
distribution of equivalent stress of a fiber for 
different cases at the last deformation step, in 
which the maximum stress is always distributed in 
the weakest segment of fiber specimen. This result 
is also consistent with the results obtained from the 
study of the surface crack in Section 3.2.1. This 
proves that the flaw location is more important 
than the flaw type in determining fiber tensile 
properties. 
     Investigation of combined dimensional and 
structural variations of fibers shows that for fiber 
specimen with crack or cavity, their shapes of 
load-extension curves are all the same as that the 
fibers with a 30 % level of diameter variation and 
without any flaws. But the breaking point varies 
with fiber flaw type, size and location.  The load-
extension curves for some cases are shown in 

Figure 15. 
     To further compare Figure 7 with Figure 15, an 
important result is that the effect of dimensional 
variation of fiber on fiber tensile properties is larger 
than that of structural irregularity. Dimensional 
variation of fiber leads to a marked reduction in 
breaking load and breaking extension and also 
changes in the shape of load-extension curves. The 
structural irregularity of fiber only affects the 
values of breaking load and breaking extension. 
 
 
 

4. CONCLUSIONS 
 
A three-dimensional finite-element model has been 
utilized to investigate the tensile behavior of fibers 
with simulated structural irregularities and combined 
dimensional and structural variations, respectively. 
The following conclusions can be drawn from this 
study: 
• The model prediction agrees with previous 
research in that a fiber always breaks at its weakest 
point. Dimensionally uniform fibers would break 
at the position of fiber flaws or defects. For fibers 
with both dimensional and structural irregularities, 
their combined effect will determine where the 
weakest point is, and hence where the fiber breaks.  
• The fiber with a transverse crack leads to more 
reduction in the breaking load and breaking 
extension than the fiber with a similar longitudinal 
crack, and with increasing depth and width of the 
crack, the breaking load and breaking extension 
decrease. This can be attributed to the reduction in 
fiber cross-sectional area. 
• The size of the interior cavity plays a more 
prominent role in determining the breaking load 
and breaking extension of the fiber than the 
distribution of the cavity. The larger the cavity, the 
lower the breaking load and breaking extension. 
• For a fiber with dimensional variation, the flaw 
location influences the breaking load and breaking 
extension of the fiber more than the flaw type. The 
values of the breaking load and breaking extension 
will decrease when the structural flaw leads to a 
net reduction in the minimum cross-sectional area 
of the irregular fiber. 
• Fiber geometrical or dimensional variations have 
a marked influence on the tensile properties of the 
fiber. It affects not only the values of the breaking 
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load and extension, but also the shape of the load-
extension curves. However, the fiber structural 
irregularities simulated in this study appear to have 
little effect on the shape of the load-extension 
curves. 
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