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Abstract   The separation of unobserved sources from mixed observed data is a fundamental signal 
processing problem. Most of the proposed techniques for solving this problem rely on independence 
or at least uncorrelation assumption for source signals. This paper introduces a technique for cases 
that source signals are correlated with each other. The method uses Wold decomposition principle for 
extracting desired and proper information from the predictable part of the observed data, and exploits 
approaches based on second-order statistics to estimate the mixing matrix and source signals. 
Simulation results are provided to illustrate the effectiveness of the method. 
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به واسطه (نها آله جداسازي كور منابع سيگنال نامعلوم، كه فقط مشاهداتي از تركيبهاي خطي امس ـ   چكـيده چكـيده چكـيده چكـيده 
 يكي از مسائل اساسي در حوزه پردازش ،چند گيرنده دريافت شده است    توسط) تركيـب كنـنده اي نـامعلوم      

له بر اساس فرض استقلال و يا حداقل فرض نا هم بسته بودن ااغلب تكنيكهاي حل اين مس. باشد سيگنال مي
روش پيشنهادي ابتدا بر پايه . كند  اين مقاله روشي را براي منابع هم بسته معرفي مي.كنند براي منابع، عمل مي

كند و   مشاهدات استخراج ميپيشگويياطلاعـات مناسـب و مطلوبـي را از بخش قابل             Wold قضـيه تجـزيه   
، ماتريس تركيب )توابع هم بستگي سيگنال ها(فت هاي مبتني بر اساس آمارگان هاي مرتبه دوم   سپس با رهيا  

سازي عملكرد مؤثر روش را نشان  نتايج ناشي از شبيه. زند كننده و در نتيجه سيگنال هاي منابع را تخمين مي
 .دهد مي
 

 
 

1. INTRODUCTION 
 
In this section, blind source separation (BSS) is 
generally introduced and a brief review of existing 
algorithms is given. 
     Blind source separation is a basic and 
challenging research problem in signal processing, 
which has received a great deal of attention in 
recent years. It has a broad range of applications 
such as: array signal processing [1,2], speech 
processing [3],  image reconstruction [4],  
communication systems [5,6], biomedical signal 
processing [7], and semiconductor manufacturing 
[8]. 
     BSS consists of recovering source signals from 
several observed noisy mixtures of them. The 
observations are obtained from a set of sensors, 
each receiving different combinations of the source 
signals. The problem is called “blind” because no 
information is available about the mixture, i.e. 
recovering of source signals is achieved without 

the knowledge of the characteristics of the 
transmission channel.  The lack of prior 
information causes the difficulty of the problem, 
but it is precisely the strength of the BSS model, 
making it a versatile tool for signal processing 
problems. 
     Thus far, the problem of the BSS has been 
solved using various techniques and algorithms 
based on different assumptions and models. In the 
following a brief review of some of these 
approaches follows. 
     A common model used by many researchers is 
the combination system, i.e. the transformation 
from the source signals to the sensors is linear 
time-invariant (LTI) and instantaneous. This is the 
model that we use in this paper. A complicated 
model for the combination system is convolutive 
form tha t  has  been  inves t iga ted  by some 
researchers [9,10]. 
     The lack of prior information must be 
compensated by some assumptions that can be 
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divided into the following categories: 
 
(a) Particular Source Statistics   The most 
popular condition used by BSS techniques is the 
statistical independence assumption between the 
source signals. These techniques assume that the 
primary sources are statistically independent, and 
therefore the goal in these techniques is to achieve 
a separation process that produces outputs as 
independent as possible [11-13]. A less stringent 
condition is uncorrelation of sources. Techniques, 
that use this condition, exploit temporal correlation 
of each source signal (second-order blind 
identification), and use a joint diagonalization 
method of several correlation matrices [14], [15]. 
Other various assumptions in this category have 
been used such as cyclostationary condition that 
used by SCORE algorithm, which relies on the 
assumption that the different sources have different 
cyclostationary features [16,17]. 
 
(B) Special Source Signals Structures   BSS 
algorithms that are in this category achieve 
separation process by tracking a special character, 
assumed a priory for source signals, in the 
observed data. Constant modulus algorithm (CMA) 
is an important technique in this class. This 
algorithm exploits the constant modulus property 
of some signals, e.g. communication signals like 
FM, PM, FSK. The algorithm is derived by 
finding proper weight vectors such that weighted 
observations become CM signals [18,19]. Another 
property of source signals might be the finite 
alphabet of digital signals [20]. 
 
(C) Special Structure For Combination 
System   Some approaches use properties of the 
mixer of source signals (mixing matrix), e.g. 
assumptions on the geometry of the antenna array 
that cause special structures for mixing matrix. In 
particular, the columns of the mixing matrix are 
assumed to be vectors on the array manifold, each 
associated with a certain direction of arrival 
(DOA) (like Vander monde structure based on 
DOA for uniform linear array). MUSIC [21,1], and 
ESPIRIT [22] algorithms, are in this class. It must 
be noted here that spatial smoothing (SS) [23] has 
been proposed to extend these algorithms to cases 
of correlated source signals. 
     In this paper, the aim is to propose a solution to 

BSS problem for correlated source signals without 
imposing special structures on signals or mixing 
matrix. 
     This paper is organized as follows: In section II, 
the problem of BSS is stated along with the related 
assumptions. Proposed pre-separation procedure is 
introduced in section III. Section IV expresses BSS 
algorithm, and simulation results are presented in 
section V. Concluding remarks are given in section 
VI. 
 
 
 

2. PROBLEM FORMULATION 
 
In this section a model for the problem and some 
notions of blind identification are presented. 
 
2.1 The Model   Assume that d signals 

)(),...,(1 tdt ss  are transmitted from d sources at 
different locations. By considering a narrowband 
time-invariant channel, what we receive at m 
sensors (antennas) will be an instantaneous linear 
combination of these signals that constructs 
observation data: 
 

)t()t()t()t( dd11 s.  s. naax ++…+=  (1) 
 
Thus the model is as follows: 

)t()t()t()t()t(  . n sAnyx +=+=  (2) 
 
where 
 

1m
)t(

×ℜ∈x  is the observed data vector from m 
sensors,  
 

1
)(

×ℜ∈
d

ts  
 
is the signal vector, composed of  d  unknown 
source signals, 
 

dm×ℜ∈=  d , ... ,1 ][ aaA  
 
Characterizes the unknown channel and is referred 
to as  “mixing matrix”, 
 

 1
)(

×ℜ∈
m

tn  
 
is the additive noise vector at the sensor array. 
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Following assumptions are considered in the 
model: 
 
(A1) Each element of )(ts  (source signals) is a 
zero-mean, stationary process. 
 
(A2) the additive noise )(tn  is assumed as a 
stationary, white zero-mean random process, 
independent of source signals. 
 
{ } Inn ).()t()t( .NE 0 ττ+ δ=∗  (3) 

 
where )(τδ  is Kronecker delta, 0N  is variance of 
noise, and  I denotes the identity matrix.  
 
(A3) Mixing matrix A  has full column rank, i.e. 
rank ( A ) = d , this is the only condition on A  and 
A  can have any unknown form. 
 
(A4) The number of sensors (m) must be greater or 
equal to d (the number of sources). 
     It must be emphasized here that we don’t 
impose any assumption about independence or 
uncorrelation of source signals. In other words, the 
source signals can be correlated, and only the 
following assumption is considered: 
 
(A5) Source signals are jointly stationary. 
    The aim of blind source separation (BSS) is to 
identify the mixing matrix A  (and consequently 
recovering the source signals from the 
observations), or equivalently to find a matrix B  
such that (ideally):   . IAB = . 
 
2.2 B. Blind Separability and Identifiability   
An issue in blind source separation problem is 
separability, i.e. the existence of a matrix B  such 
that the product  .AB separates the original 
signals. This depends purely on the structure of 
A (mixing matrix). In [24], it has been proved that 
if the rank of A  equals d (i.e. full column rank) 
then there always exists such a Matrix B . Also it 
has been shown that for separating all sources, 
there must exist at least d (the number of sources) 
sensors. 
     Another issue in BSS is blind identifiability 
(and indeterminacy) [15]. Complete identification 
of the mixture matrix is impossible because the 

exchange of a fixed scalar factor between a 
given source signal and the corresponding column 
of A  doesn’t affect the observations (scaling 
indeterminacy). 
 

 )t()t()t()t( )t(kk
d

1k k

k s    . n an sAx +α
α

=+= ∑
=

 (4) 

 

where kα is an arbitrary factor , and ka denotes the 
k-th column of A . 
Indeterminacy is in the order of the separated 
signals (permutation indeterminacy). This is 
expressed by:  
 

)t(s.P)t(ŝ =  (5) 
 
where )(ts  and )(ˆ ts  are original and separated 
source signals and P  is a permutation matrix. 
Generally, in the blind context, there are the 
following “waveform-preserving” relations 
between the original and the estimated mixing 
matrices and the source signals doublets ( A , )(ts ) 
and ( Â , )(ˆ ts ) [15]: 
 

T ..ˆ 1 PAA −Λ=  (6) 
 

)t(.)t( .ˆ sPs Λ=  (7) 
 
for some permutation matrix P ,and some 
nonsingular diagonal matrix Λ . 
 
 
 

3. PRE-SEPARATION PROCEDURE 
 
The main step in our approach for correlated 
sources is a pre-separation process. The observed 
data is decomposed into regular and predictable 
components, using Wold decomposition. In the 
predictable component, the combination of 
uncorrelated contributions of source signals is 
identified on whose basis A  (and consequently 
the source signals) is estimated using second 
order  s ta t is t ics .  In this  sect ion,  Wold 
decomposition and its application on observation 
data are introduced. The description of 
identifying algorithm for mixing matrix will 
follow. 
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3.1. Wold Decomposition   An arbitrary process 
can be written as a sum: 
 

)t(p)t(r)t( sss +=  (8) 

 
where )(r ts  and )(p ts  are regular and predictable 
processes. This expansion is called Wold 
decomposition. In [25,26] it has been proved that 
the processes )(p ts  and )(r ts  are orthogonal: 
 

t ,   ,       0}ssE{   )t(p)t(r ∀=∗τ+  (9) 
 
and have the same prediction filter as )(ts . 
Furthermore, )(p ts  is comprised of complex 
exponentials: 
 

)t.exp(js i
i

i0)t(p ω+= ∑cc  (10) 

 
where ic ’s are orthogonal zero-mean random 
variables. Hence, )(p ts  has a line spectrum: 
 

)(  2)(P ii
i

sp ω−ωδπα=ω ∑  (11) 

 
)(r ts  can be represented as the response of a 

minimum-phase innovation filter ( )L(s ) with a 
white process input. It has a smooth spectrum: 

2)L()(
r

ωω jPs =  that satisfies the Paley-Wiener 
condition: 
 

〈∞
+∫ ω
ω
ω

d
Ps  

1
)(ln

2
r . 

 
3.2. Observation Decomposition     In this 
subsection a method is proposed for extracting 
and decomposing some information from the 
regular and predictable parts of the observation 
data. For simplicity, a special case of Model 2 
with d = 2 and m = 2 is considered, that can be 
extended to general cases. So, we have the 
following model satisfying conditions expressed 
in II-A: 









+








=








=

)t(2

)t(1
)t(2

)t(1
)t(2

)t(1
n
n

 
s
s

.
x
x

)t(  Ax  (12) 

 
where )(1 ts  and )(2 ts  are the source signals and 









βα
βα

=
22

11A  is the mixing matrix. Hence: 

 
)t(1)t(21)t(11)t(1 nssx +β+α=  (13) 

 
)t(2)t(22)t(12)t(2 nssx +β+α=  

 
    Regular and predictable parts of source signal 
are indicated by )(ir ts  and )(ip ts  ( 2,1=i ): 
 

)t(ir)t(ip)t(i sss +=  (14) 
 
where, 
 

)texp(j.s 1k
k

k)t(1p ω= ∑a  (15) 

 
)texp(j.s l2

l
l)t(2p ω= ∑b  (16) 

 
in which { ka } and { lb } are sets of orthogonal 
random variables, and { 1ω }, { 2ω } are proper 
frequency sets. Also, since source signals are 
assumed jointly stationary, ka  and lb  
corresponding to   21k lωω ≠ are orthogonal. 
     Using (13), (14) and the fact that regular and 
predictable parts in each signal are orthogonal, we 
obtain: 
 

2  ;     nxxx 1,i )t(i)t(ir)t(ip)t(i =++=  (17) 
 
where 
 

1,2i   ;        )t(2pi)t(1pi)t(ip ssx =β+α=  (18) 
 

1,2i   ;)t(2ri)t(1ri)t(ir       ssx =β+α=  (19) 
 
From (15),(16),(18) following relation obtains: 
 

1,2i   ;q
q

iq)t(ip     )texp(j.x =∑ ω= d  (20) 
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where { iqd } are orthogonal random variables and 
 
{ } { } { }21q ωωω U= . 
 
     From these equations, each observation signal 
has regular and predictable components, each 
corresponding to the combination of individual 
regular and predictable parts of source signals. A 
spectral method for separating these parts follows. 
    The correlation functions of the observation data 
are given by: 
 

)(.N)(r)(r          

             }xxE{)(r

0
x
ijp

x
ijr

  1,2ji,      ; )t(j)t(i
x
ij

τδ+τ+τ=

=τ =∗τ+
 (21) 

 
where 0N  is the noise variance and )(r x

ijr τ  and 

)(r x
ijp τ  are correlation functions of regular and 

predictable parts: 
 

}xxE{)(r )t(jr)t(ir
x
ijr

∗τ+=τ  (22) 

 

  )texp(j}.E{            

}xxE{)(r

q
q

iqiq

)t(jp)t(ip
x
ijp

ω=

=τ

∑ ∗

∗τ+

dd
 (23) 

 
Hence power spectral density (psd) and cross-
spectral density (csd) functions of observations 
have the forms: 
 

 N)(P)(P)(P 0
x
ijp

x
ijr

x
ij +ω+ω=ω  (24) 

 
where, 
 

)(}..E{2)(P q
q

jqiq
x
ijp ω−ωδπ=ω ∑ ∗dd  (25) 

 
     As expected, the spectra of the predictable parts 
are pure impulsive. So, it is possible to detect and 
separate these components in the observation 
spectra. Although some little power of regular 
part and noise remain on separated predictable 
part spectra that are negligible. Consequently, 
correlation functions ( )(r x

ijp τ ) of the predictable 

parts are obtained that will be used next. 
 
3.3 Extracting Desired Information From 
Predictable Part   Rewriting predictable parts 
of source signals (15)-(16), considering { nΩ } as 
the common frequency set, we obtain: 
 

)texp(jΩ.  )texp(j.s n
n  

n1k
n  k

k)t(1p ∑∑
≠

+ω= aa  (26) 

 

 )texp(jΩ.  )texp(j.s n
n  

nl2
n  l

l)t(2p ∑∑
≠

+ω= bb  (27) 

 
where: 
 
(1) Random variables ka  and lb  corresponding to 

  21k lωω ≠  are orthogonal, i.e.: 
 

0}E{ lk =ba  (28) 
 
(2) Correlation of predictable signals )(1p ts  and 

)(2p ts  arises from correlation of random variables 

na  and nb  corresponding to { nΩ } (common 
frequency components of source signals). 
 
(3) Removing common frequency components of 
source signals from )(1p ts  and )(2p ts  result in two 

residue signals, )(1p
~ ts  and )(2p

~
ts , that are 

uncorrelated: 
 

)texp(j.s~ 1k
n  k

k)t(1p ω= ∑
≠

a  (29) 

 

)texp(j.s~ l2
n  l

l)t(2p ω= ∑
≠

b  (30) 

 

0}s~.s~ E{ )t(2p)t(1p =∗τ+  (31) 
 
Hence, 
 

     n
n  

nini  )t(ip

  n
n  

nini

   )t(2pi)t(1pi)t(ip

)texp(j Ω. )ba(x~        

 

)texp(j Ω. )ba(

]s~ s~[x

∑

∑

β+α+=

β+α

+β+α=

 

 1,2ifor              =  (32) 
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and Relation 25 can be rewritten as: 
 

 )(}..E{2)( q
nq

jqiq
x

ijp ωωδπω −=∑
≠

∗ddP  

)ΩΩ(}..E{2          n
n

jnin −δπ+ ∑ ∗dd  (33) 

 
Removing the terms corresponding to common 
frequency components: 
 

)(}..E{2)(P~ q
nq

jqiq
x
ijp ω−ωδπ=ω ∑

≠

∗dd  (32) 

 
from which the desired correlation functions are 
obtained: 
 

)}(P~{F)(r~ x
ijp

1x
ijp ω=τ −  (34) 

 
            }~~E{     1,2ifor   )(jp)(ip =

∗
+= tt xx τ  

 
})~ ~).(~ ~E{( )(2pj)(1pj)(2pi)(1pi

∗
++ ++= ττ βαβα tttt ssss

 
     At last, because )(1p

~ ts  and )(2p
~

ts , are 
uncorrelated, we get the following matrix form: 
 












=
∆

)(r~)(r~
)(r~)(r~

)(~
x

22p
x

21p

x
12p

x
11px

p ττ
ττ

τR  

 
∗





























=

21

21
s

22p

s
11p

22

11 .
)(r~0

0)(r~
.

ββ
αα

τ
τ

βα
βα

 

 
Hs

p ).(~. ARA τ=  (35) 
 
where H  denotes complex conjugate transpose, 
and 
 

1,2i)t(ip)t(ip
s

iip   ;   }s~s~E{ )(r~ =∗τ+=τ  (36) 

 
It is seen that in (35) the matrix, which is 
related to source signals, is diagonal (a desired 
condition). This representation is the basis of an 
algorithm for estimating mixing matrix A . 

4. BLIND SOURCE SEPARATION 
ALGORITHM 

 
In this section, an algorithm for estimating A (and 
recovering source signals) is proposed which is 
based on the model embedded in Equation 32 and 
restated in Equation 37 using second order 
statistics.  
 

 1,2i  ;        )t(2pi)t(1pi)t(ip s~ s~x~ =β+α=  (37) 

 
Steps of the algorithm are following:   
 
4.1 Orthogonalization    Although )(1p

~ ts  and 

)(2p
~

ts  are uncorrelated and based on the discussion 
in II.B, we can assume that:  
 

IR =)0(~ s
p  (38) 

 
According to Equation 37,  ~  and  ~

)(2p)(1p tt xx  
are correlated. Hence, we apply Karhunen-
Loeve orthogonalization transformation on 

 ~  and  ~
)(2p)(1p tt xx . The orthogonalizer matrix is 

obtained from eigendecomposition of matrix 
)(~ x

p τR  at 0=τ . If eigenvalues of )0(~ x
pR  are 

denoted by  λ &λ 21  and 2& vv1  are the 
corresponding eigenvectors, the orthogonalization 
matrix T , defined by: 
 

H
2

21
]

λ
1  , 

λ
1[ vvT 1=  (39) 

 
satisfies: 
 

ITRT =Hx
p ).0(~.  (40) 

 
Also from (35),(38),(40), it is seen that : 
 

ITAATTARAT == HHHHs
p ....).0(~..  (41) 

 
This equation shows that matrix ATU .= , is a 
unitary matrix. As a consequence mixing matrix 
A  can be factored as: 



IJE Transactions A: Basics Vol. 16, No. 4, November 2003 - 337 

UTA .1−=  (42) 
 
    It is important to note here that this 
orthogonalization procedure changes the problem 
from the determination of mixing matrix A  to that 
of a unitary matrix U . 
 
4.2. Estimation of U , A  and )(ts    By 
applying orthogonalization matrix T  to equation 
(35) for some 0≠τ ,  

HHs
p

Hx
p

x
p

.).(~..           

 0  ;         ).(~.)(

TARAT

TRTR

τ=

≠τ∀τ=τ
∆

 (43) 

 
Hence, 
 

Hs
p

x
p ).(~.)( URUR τ=τ  (44) 

 
where matrix )(x

p τR is called orthogonal 
correlation matrix. 
    Since U  is unitary and )(~ s

p τR  is diagonal, 
equation (44) states that orthogonal correlation 
matrix )(x

p τR  is diagonalized by the unitary 
transformation U (unitary diagonalization). In 
other words unitary matrix U can be specified by 
unitary diagonalizing of orthogonal correlation 
matrix )(x

p τR  for some lag  0≠τ . This property 
is a result of spectral theorem for hermitian 
matrices [27]. It states that a hermitian (and/or  
normal) matrix M  is unitarily diagonalizable ,i.e. 
there exists a unitary matrix U and a diagonal 
matrix D  such that HUDUM ..= . 
    Since )(x

p τR  is hermitian (and normal) and 
equation (44) is satisfied , the existence of unitary 
matrix V  such that for any time lag τ and a 
diagonal matrix D , 
 

DVRV =τ).(. x
p

H  (45) 
 
is guaranteed. The essential aim is finding a unique 
unitary matrix U that diagonalizes )(x

p τR  for all 
time lags τ . 
    A method for attaining this aim, as used in most 

BSS approaches that exploit statistical properties, 
is joint diagonalization(JD) method (see the 
Appendix) which operates as simultaneous 
diagonalization of the set  } | )({ K 1,2,...,ii

x
p =τR of K 

orthogonal correlation matrices and is described in 
the following theorem[14]: 
 
THEOREM. Let  K21 ,...,, τττ  be K nonzero time 
lags, and let V  be a unitary matrix such that : 
 

(k)]d , ... (k),diag.[d).(.K    k1 n1
x
p

H =τ≤≤∀ VRV  (46) 
 

(k)d(k)d     k, n    ji1 ji ≠∋∃≤≠≤∀  (47) 
 
then: 
 
- V  is essentially equal to U (desired     unique 
unitary matrix) 
- A permutation can be operated on diagonal 
elements of (k)]d , ... (k),diag.[d n1 .(In our case n 
= 2) 
 
This theorem is a consequence of “essential 
uniqueness of joint diagonalization” theorem (see 
Appendix) which states that a unique unitary 
matrix U can be determined if for at least a 0≠τ , 
eigenvalues of  )(x

p τR  are distinct, a condition 
that is surely satisfied for sources with different 
spectra. 
    After determination of a unique unitary matrix 
U , A  can be computed from  .1 UTA −= , and 
consequently the source signals are estimated as  
 

)) xAs t(1t( .−=  (48) 
 
It is important to note that for computing )(ts , we 
use observation data  ( )x t  (not  (

~
)x t ), so there isn’t 

any information loss. 
 
 
 

5. SIMULATION RESULTS 
 

In this section, the performance of the proposed 
method is investigated via computer simulation 
results. 
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     Source signals )( 1,2i  ;  )(i =ts  are composed of 
regular and predictable parts. Regular component 
in each source consists of a zero-mean normal 
process (independent from the other) and a 
uniform process (common between two sources). 
Predictable parts consist of random amplitudes 
sinusoidal functions with some common frequency 
and correlated amplitude components. These 
signals are mixed by an arbitrary 22×  mixing 
matrix A , and corrupted by AWGN, to obtain the 
observation signals  )( 1,2i  ;  )(i =tx . Then algorithm 
is applied on observed data and the estimation of 
A , Â  , is obtained. This procedure is repeated for 
G=500 independent trials. 
     To evaluate the approach, a performance index 
is introduced. Since, it is ideally expected that the 

product AAQ .ˆ 1−
∆
=  (called unmixing matrix) 

equals identity matrix 22×I (complete separation), 
the following performance index (PI) is applied, 
 

 ].ˆ 
G
1[ ogl 10. PI

G

1g

2

F
1

10 ∑
=

− −= IAA  (49) 

 
where

F
 .   is the Frobenius norm. Actually, PI 

shows the distance between unmixing matrix 
Q (obtained in experiment) and the ideal identity 
matrix 22×I . 
     We performed and compared two experiments: 
without pre-separation process (experiment #1) 
and with pre-separation process (experiment #2).  
The experiments were executed under noise free 
and SNR=3,5,8,10 (dB) conditions for various 
number of correlation matrices used in JD 
algorithm, and with different correlation 
coefficient of original source signals. Results are 
illustrated in Figures 1-8. 
    Figures 1-3, show performance index (PI)(in 
dB) versus the number of jointly diagonalized 
correlation matrices for experiments #1 and #2. In 
these figures correlation coefficient is 0.5, and 
each figure has been plotted for a fixed SNR. In 
Figures 4 and 5, corresponding to experiment #1 
and #2, the performance indexes (in dB) versus 
several SNR (in dB) have been plotted for some 
constant number of jointly diagonalized correlation 
matrices with correlation coefficient 0.5. In Figures 

6-8, SNR and the number of jointly 
diagonalized correlation matrices have been kept 
constant, and correlation coefficient of source 
signals has been varied from 0.1 to 0.9. These 
figures illustrate PI versus correlation coefficient 
for each experiments #1 and #2. 
     Almost in all figures, better performance of 
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Figure 1. Performance versus number of JD covariance 
matrices (K = 1:6): [Noise Free] and [Correlation Coefficient 
= 0.5]. 
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Figure 2. Performance versus number of JD Covariance 
Matrices (K = 1:6): [SNR = 3 dB] and [Correlation Coefficient 
= 0.5]. 
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proposed algorithm is evident. In Figures 1-3, it is 
obvious that the performances of two experiments 
become better as the number of the jointly 
diagonalized correlation matrices is increased, but 
this has a limit (as it is seen from small different 
between PI for K=5 and K = 6). 

     Figures 4 and 5 show improvement in 
performance by increasing SNR. From 
Figures 6-8, it is revealed that the 
performance index of two experiments are close 
for small correlation coefficients, and as the 
correlation coefficient is increased, the PI of two 
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Figure 3. Performance versus number of JD covariance 
matrices (K = 1:6): [SNR = 8 dB] and [Correlation Coefficient 
= 0.5]. 
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Figure 4. Performance versus SNR for Experiment #1: [K(No. 
of JD Covariance Mat.) = 2,4,6] and [Correlation Coefficient 
= 0.5]. 
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Figure 5. Performance Versus SNR for Experiment #2: 
[K(No. of JD Covariance Mat.) = 2,4,6] and [Correlation 
Coefficient = 0.5]. 
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Figure 6. Performance versus correlation coefficient: [Noise 
Free] and [K (No. Of JD Covariance Mat.) = 6]. 



340 – Vol. 16, No. 4, November 2003 IJE Transactions A: Basics 

experiments are decreased, but the performance in 
experiment #2 is better than that in experiment 
#1, particularly for intermediate correlation 
coefficients. 
     For visible demonstration of proposed 

algorithm another experiments were performed 
by considering two simple signals plotted 
in Figure 9.  The combination signals 

 )( 1,2i  ;  )(i =tx  in Figures 10 and 13 
corresponding to free noise and SNR = 5dB 
cases, have obtained by applying an 
arbitrary matrix A  on the original signals. 
Figures 11 and 14 show separated signals, 
which have been extracted using proposed 
algorithm. Differences of the original 
signals and the separated signals have been 
plotted in Figures 12 and 15. 
     Because there are two indeterminacies in 
the solution of problem, noticed in section II-
B, it must be mentioned that in these 
experiments the separated signals have been 
modified knowing mixture matrix A  for 
better comparing with original signals and 
computing their differences. So it seems that 
this criterion is not very suitable for general 
and more complicated cases although it 
depicts better the performance of the 
algorithm for simple cases. However, the 
effectiveness of the proposed algorithm is 
evident in these experiments, too. 
 
 
 

6. CONCLUSION 
 
In this paper, an approach for solving BSS 
problem in the cases where source signals 
are correlated is introduced without additional 
assumptions on signal or mixing matrix 
structures. 
     An important step of this BSS algorithm is 
a pre-separation procedure where based on 
Wold decomposition principle, the information 
of predictable part of source signals (i.e. 
uncorrelated 
parts of predictable signals) is derived. The 
diagonal structure of the correlation matrix of this 
part is essential for next step of algorithm where 
by using the second-order based method and JD 
technique; separation process is completed by 

estimating Â  and recovering 
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Simulation results show effectiveness of the 
algorithm. 
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Figure 7. Performance versus correlation coefficient: [SNR = 
3 dB] and [K(No. of JD Covariance Mat.) = 6]. 
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Figure 8. Performance versus correlation coefficient: [SNR = 
8 dB] and [K (No. Of JD Covariance Mat.) = 6. 
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7. APPENDIX 
 
Joint Diagonalization   Joint diagonalization of 

several matrices defines a kind of “average 
eigenstructure” shared by several matrices. It has 
been studied in [28] from the point of view of 

 
 

Figure 9. Original signals S1(t) and S2(t). 
 
 

 
 

Figure 10. Two combinations of original signals X1 (t) and X2 (t) [Noise Free]. 
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Figure11. Separated signals SS1 (t) and SS2 (t). 
 
 

 
 

Figure 12. Difference of original signal with separated signals [Noise Free]. 
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Figure 13. Two combination of original signals X(t) and X(t) [SNR 5 dB]. 
 

 
 

Figure 14. Separated signals: SS1(t) and SS2(t) [SNR 5dB]. 
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numerical analysis. 
     The “off” of a nn× matrix M  is defined 
as: 
 

∑
≤≠≤

∆
=

nji1

2
ijM) off(M  (50) 

 
where ijM  denotes the (i,j)-th entry of matrix 
M . The unitary diagonalization of a single 
matrix M  by a unitary matrix V is equivalent 
to zeroing ) off( MVVH .  In addition, if a 
matrix M is in the form    HUDUM = ,  
where U is unitary and D  is diagonal with 
distinct diagonal elements, then it may be 
unitarily diagonalized only by matrices that 
are essentially equal to U ,  that is, if 

0) (off H =MVV . 
     Similarly, joint diagonalization of a set M 
= K

1kk}{ =M  of K, nn×  matrices is achieved by 
any unitary matrix V  which minimize the 
“joint diagonality” criterion, that is defined as: 
 

∑
=

∆
=Γ

K

1k
k

H ) off(),( VMVVM  (51) 

 
the unitary matrix V that minimizes (51) over 
the set of all unitary matrices is called “joint 
diagonalizer” of the set M. At this issue, the 
uniqueness of a joint diagonalizer is more 
interested for BSS problems, which following 
theorem exists: 
 
THEOREM. Essential Uniqueness of Joint 

 
 
 
 

 
 

Figure 15. Difference of original signals and separated signals [SNR. 5dB]. 
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Diagonalization:   Let M = K
1kk}{ =M  be a set 

of K matrices where, for Kk1 ≤≤ , matrix 

kM  is in the form HUUDM kk =  with U  a 
unitary matrix, and (k)]d ... (k),Diag.[d n1k =D . 
Any “joint diagonalizer” of M is essentially equal 
to U  if and only if 
 

(k)d(k)dK   k1  k   ,n  ji1 ji ≠≤≤∋∃≤≠≤∀  (52) 
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