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Abstract   An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s 
flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws 
(MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence 
model was also implemented. Two test cases were prepared to validate the solver. The computed 
results were compared with the experimental data and a good agreement validated the solver. Finally, 
the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design 
condition. The computed results showed a rotating stall-like instability with a periodic behavior. To 
investigate the flow properties during the instability condition, the flow pattern, Vortex properties and 
the axial velocity were studied. It was concluded that the instability vortices in the multi-blade 
cascade do not have the same generation history of the separated vortices over a single body.   
Key Words   Flow Instability, Cascade Study, Finite-Volume, Axial Compressors 

د و در آن    شيک کد کامپيوتری حل معادلات جريان لزج دو بعدی به روش حجم های محدود آماده                  چکيده    چکيده    چکيده    چکيده    
همچنين به منظور    .  برای محاسبه عددی شارهای ممنتم به کار گرفته شد              Van- Leer    روش تفکيک شار   

    دست    بالا  از خانواده  Van-Leer جلوگيری از نوسانات عددی و افزايش دقت محاسبات محدود کننده              
-Baldwin مورد استفاده قرار گرفت و مدل توربولانس دو لايه         (MUSCL)  يکنواخت براي قانون محافظه کار    

Lomax (BL)          له نمونه حل شد و نتايج ا، دو مسبرا ی تا ييد صحت عملکرد کد. در رژيم آشفته بکار گرفته شد
 ناپايدار در يک طبقه از يک کمپرسور محوری له جرياناسپس مس. انطباق خوبی با داده های آزمايشگاهی داشت

برای . نتايج ناپايداری از گونه سکته دوراني را نشان داد که دارای رفتاری نوسانی است              . مورد حل قرار گرفت   
 معين مطالعه شد و ويژگيهای گرداب های جريان ناپايدار به            ياين حالت خواص و الگوی جريان در زمان ها         

با " دارد که حرکت و توسعه گردابهای ناپايداری در يک کسکيد کاملا              نتايج بيان مي    .طور ويژه مطالعه شد   
توان دريافت که عواملي مثل  مي. وضعيت گرابهاي پشت يک هوابر در جريانی با زاويه حمله زياد متفاوت است            

 .ديده استهندسه چند پره ای و کاهش دبي جرمي و گراديان فشار مثبت با عث آغاز چنين گردابه هايی گر

1. INTRODUCTION 

The analysis of the flow field in unstable 
condition, especially in Gas-Turbine engines, has 
mainly been based on experimental observations 
and studies during last decay [1-3]. Recently, 
several computational fluid dynamics (CFD) codes 
have been developed. The axial compressors with 
their adverse pressure gradients in through flow 
direction, are the most critical component in Gas-
Turbine engines from the viewpoint of flow 
instability phenomena. Today, the use of CFD 
tools is a standard practice in the study of the 
cascade flow within the stable operating range of a 
compressor. However, the CFD approach still 

needs to be developed as a sound prediction 
method for operation in the unstable region. 
Studies of Sisto et al. [4] and Jonnavithula et al. [5] 
have resulted in notable progress in use of CFD-
type techniques for the calculation of instability 
effects. They used a two-dimensional discrete 
vortex model with the separation point being 
obtained by an integral boundary layer. The 
evolution of stall is well predicted when compared 
with their experiment, although only up to six 
blade passages were used in the computation. 
Further, He [6] carried out a numerical study in a 
single stage of an axial compressor. The Navier-
Stokes equations were discretized in space by 
finite volume method and integrated in time by 
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using a four-stage Rung-Kutta scheme. The 
second- and fourth-order blended smoothing 
was adopted in both the stream wise and 
circumferential directions for numerical damping, 
and Baldwin-Lomax turbulence model was 
also adopted. Outa et al. [7], made a numerical 
simulation for stall cells in rotor-stator frame of a 
compressor, using viscous approach. Furthermore, 
Saxer et al. [8] carried out a numerical study for 
inviscid flow passing through axial compressors, 
and the history of stall vortices were investigated 
for a fifteen-blade passage of a single stage. The 
mass flow rate fluctuations were approximately 
similar to those obtained from their experimental 
observations. 

The scope of this work is twofold. First, to 
introduce and validate a two-dimensional density- 
based flow equations solver, and second, preparing 
a numerical study on rotating stall inception 
using a viscous approach in a stage of an axial 
compressor studies.  
 In the present work, the computational test 
cases have been carried out to validate the solver 
and to study the implementation of flux splitting 
methods with MUSCL limiters in a multi-block 
computational domain, with the modified Baldwin-
Lomax turbulent model. 

2. GOVERNING EQUATIONS 

For a given thermodynamic system having two 
intensive degree of freedom, its fluid dynamic 
behaviour can generally be described by means of 
the system of conservation laws corresponding to 
the conservation of total mass, momentum and 
energy. 

Let Q be an unknown vector defined for a two-
dimensional study as follows: 

Q= [ ] [ ] TT qqqqEvu 4321 ,,,,,, =ρρρρ  (1) 

where E is the total energy 
( 2)v(ueE 22 ++= ). Let V be any volume with 
bounding surface V∂ and outward unit normal n. 
Assuming that the volume does not vary with time, 
Q satisfies the following integral conservation law: 

∫Vdt
d

Q dV = ∫ ∂
∂

V t
QdV 

= ∫∂−
V

F . n dS  (2) 

The equivalent differential form of Equation 2, 
in an inertial reference system reads: 

t∂
∂

Q = ∇− . F  (3) 

This accounts for the inviscid (FE) and viscous 
(FV) contributions, i.e. 

F = FE - FV  (4) 

where 

FE = [ ρ u, ρ uu + pI, ρ uH]T  (5-a) 

FV = [0, σ , -(q � u . σ )]T  (5-b) 

For an ideal gas the pressure is related to the 
density and temperature according to the equation 
of state; 

p = ρRT  (6) 

The stress tensor and heat flux is determined 
according to the Newton’s and Fourier’s laws by: 

σ = µ(∇ u + ∇ u T) 
3
2− µ∇  . uI  (7) 

q = -λ∇Τ   (8) 

From kinetic theory it can be shown that, for a 
thermodynamic system having only two intensive 
degree of freedom, the viscousity (µ) and the heat 
conduction (λ) coefficients depend only upon the 
gas temperature.  

The conservation equations are formally closed 
once the rate of all fluxes on the boundary V∂  and 
the initial state of Q are known. However, the 
determination of the boundary fluxes and the 
mathematical closure is not yet resolved [9]. 
Moreover, the numerical treatment of the boundary 
conditions is a very critical issue that requires a 
detailed analysis.  

The governing equations transforms to a 
computaional coordinate for the numerical 
solution. The transformed equations in general 
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computational domain reads: 

ηξηξτ ∂
∂+

∂
∂=

∂
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∂
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∂
∂ vv FEFEQ

  (9) 

The parameters in Equation 9, are related to 
physical vectors with following general relations: 

J
QQ =   (10-a) 
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EyyExxJ

FFE ξξ +=  (10-b) 
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)(1
vyyvxxv J
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vyyvxxv J

FFF ηη +=  (10-e) 

In addition, the following relations can relate 
the general coordinate to Cartesian coordinate: 

),,( yxt=τ   (11-a) 

),,( yxt=ξ   (11-b) 

),,( yxt=η  (11-c) 

ηξ Jyx =  (12-a) 

ηξ Jxy −=  (12-b) 

ξη Jyx −=  (12-c) 

ξη Jxy =  (12-d) 

where: 
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∂
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3. NUMERICAL PROCEDURE 

3.1 Finite Volume Formulation Reconsidering 
Equation 9, the time derivative is approximated by 
a first-order backward differencing quotient and 

the remaining terms are evaluated at time level 
n+1. Thus: 
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 (14) 
Integrating Equation 14, over square ABCD 

shown in Figure 1, and using Green’s Theorem 
provides: 
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 (15) 
Since, the flux vectors in Equation 15, are 

evaluated in time step of n+1, by using the Taylor 
expansion and a first order approximation in 
time,they can be expressed in terms of ∆Q , and 
the fux vectors can be evaluated as following: 

QAEQ
Q
EEE ∆+=∆

∂
∂+=

+ nnn 1
 (16-a) 

QBFQ
Q
FFF ∆+=∆

∂
∂+=

+ nnn 1
 (16-b) 

 
Figure 1. The Finite Volume Cell. 
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The matrices A, B, Av, and Bv are the Jacobian 
matrices given by Hoffman et al.[9].  

Since, evaluation of inviscid flux vectors on 
cell faces is the most important problem in 
numerical solution of Euler and NS equations, the 
flux splitting methods are discussed in details in 
the following section. Since the viscous fluxes are 
related to second derivatives of velocity vectors, 
they are evaluated by central difference 
approximation. 

3.2 Flux Splitting   Hoffman et al. [9] has shown 
that a hyperbolic equation is unstable for a 
formulation with central difference approximation. 
However, the solution would be stable if the 
governing equation includes a diffusion term. To 
stabilize the hyperbolic equation approximated by 
central difference formulation of convective term; 
the addition of damping terms would be required. 
Furthermore, the damping terms are used to reduce 
oscillations within the domain, which may develop 
near sharp gradients. To avoid the addition of 
damping terms, the flux vector splitting schemes 
used to formulate the convective terms and central 
differencing approximates the diffusion terms. 

For a system of equations being classified as 
hyperbolic, the Jacobian matrix A  must possess 
real eigenvalues. The eigenvalues of  A represents 
the charactristic direction of the hyperbolic system 
and thus provide the direction of the propagation of 
information. If matrix A  has real eigenvalues and 
associated eigenvectors, it may be diagonalized; 
i.e., a similarity transformation exist such that: 

LΛLA g
1−=  (17) 

For a Jacobian matrix like A, a large class of 
flux decomposition can be obtained by defining A± 
as follows: 

2
)g( AAA ±=±  (18) 

and 

QAE ±±
=  (19) 

where g(A) is: 

LΛLA g
1 )g( −=  (20) 

and ΛΛΛΛg is a diagonal matrix whose non-zero 
coefficients are gi . These coefficients can be 
shown with the improper functional notation g(λ i) 
to indicate the same ordering of λ i. Thus, the 
eigenvalues of A±

 are : 

2
)(g ii

i
λ±λ=λ ±  (21) 

Following the current definition, the numerical 
flux function associated with a flux vector splitting 
is expressed as: 

)()( j1,iji,r +
−+

+= QEQEE  (22) 

Similar functions can be defined for other flux 
vectors at all faces of the finite volume cell. 

Van Leer has proposed a splitting method that 
removes the discontinuous behaviour of the split 
fluxes by modifying their functional dependence 
upon the Mach number M. In particular, the split 
fluxes are represented by a polynomial in M that 
gives the same functional values and slope of the 
unsplit fluxes at M = ±1. Moreover, the symmetry 
properties of each split flux component should be 
the same as those of the unsplit one [10], i.e. 

)()(  if  )()( MMMM −±=±=
−+

EEEE  (23) 

The numerical flux function approximating the 
flux at right face of a finite volume cell shown in 
Figure 1, is as follows: 

)()( j1,i,r +
−+ += QEQEE rjir  (24) 

where j1,i, / +QQ ji is the value of the variable 
upstream/downstream of the right bounding 
control surface that represents the left/right state 
transported by −+

rr EE / . 
An extension of the Van Leer-type splitting to 

multidimensional flows is not quite trivial. The 
split flux component for two dimwnsional flows 
can be constructed by retaining the one-
dimensional structure. For the present two 



IJE Transaction A: Basics Vol. 16, No. 2, June 2003 - 175 

dimentional studies, the split flux in physical space 
is as following [9]:  
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3.3 The Van Leer�s Limiter   To prevent the 
oscillatory behavior of the numerical results and to 
increase the accuracy, the Van-Leer’s limiter was 
added to the flux splitting algorithm [10]. 

Van Leer proposed to cast the polynomial 
reconstruction in terms of the Legendre polynomial 
expansion. The method in a compact form is 
imployed by Farhanieh et.al. [10]. For an unknown 
variable u  the MUSCL can be expressed as: 
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where r =1/3 yields third-order upwind biased 
scheme and ++ δδ andˆ are the limited slopes: 
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where 1≤ω≥(3-r)/(1-r), and   l is the Van Leer’s 
minmod limiter function [10]. The simplified form 
of MUSCL using Van Leer’s function becomes: 
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It is evident that for other faces the related 
nodes are used in the same mathematical relations. 

3.4 Using the Multi-Block Technique   The 

solution space is split to a number of blocks, to 
simplify the grid generation and solution 
procedure. Each block is bounded between two 
adjacent blades in circumferential direction. In 
axial direction, each block is bounded between the 
adjacent cascade row and the boundary of the 
solution space. The technique is briefly described 
by Farhanieh et. al. [10] for a rotor- cascade. The 
required boundary condition is described in the 
next section. 

3.5 Numerical Boundary Conditions   The 
inflow and out flow boundary conditions were set 
for a transonic flow [9]. If our inflow is subsonic, 
the triple variables from outside at the inlet are 

tt TP ,  and the inflow angle, and if the outflow is 
subsonic, the sP  is computed from the upstream. 

For the solid walls, the no-slip boundary 
condition is implemented. 

For the upper and lower boundaries of both the 
rotor cascade and the stator cascade, the periodic 
boundary condition was used to give the 
circumferential continuity of the cascade. The 
values in fictitious cells of the lower boundary are 
set to be the same values as in the upper fictitious 
cells. 

Each row of blades was split to multi zones for 
the multi-block technique and each block shares 
one or more boundaries with its surrounding 
blocks.  

The common walls of the rotor and stator rows 
share their data in each time step with their 
adjacent wall boundary condition. 

3.6 Grid Generation   Each passage (between 
two blades) has an individual mesh, which is 
generated by mesh generator program using Partial 
Differential Equations (PDE) method. Clustering is 
available by related source terms as well as 
orthogonality. The mesh generated for each 
individual passage is considered as a single block, 
and the solver assembles them to prepare the 
complete area of solution by using the multi-block 
boundary condition.  

3.7 Turbulence Modeling   One of the groups 
of statistical turbulence models is the algebraic one 
or two-layer turbulence closure. These models can 
easily be implemented into a numerical algorithm, 
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but they require the determination of boundary 
layer parameters to calculate the eddy viscosity. In 
a complex flow such as the flow through a turbine 
or compressor cascade, the calculation of thickness 
of shear layer in a CFD code is difficult, because 
no realistic criterion can be found to define the 
edge of the boundary layer [10]. That is specially 
the case when flow separation exists within the 
domain. 

An algebraic model, which is not written in 
terms of the boundary layer quantities and is very 
robust in separated regions, is the modified 
Baldwin-Lomax (BL) model [9]. He [6] has 
employed the BL model in a numerical 
investigation of Rotating-Stall inception in a multi-
blade cascade flow in an axial compressor, with 
the possibility of having large-scale separated 
zones. Moreover, the comparison of other 
turbulence models such as κ-ε with BL model, 
done by Bohn et al. [11], shows the adequate 
assurance of using BL model in cascade problems. 
Regarding a large amount of memory required in 
multi-blades studies, the BL consumes the least 
memory and CPU time with respect to higher-
order turbulence models. For the present work the 
BL model is employed.  

In BL model the turbulent boundary layer is 
divided to inner and outer layers. The turbulent 
viscosity at inner layer is proposed by following 
relation [9]: 

ωρµ 2lt =  (30) 

which: 
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and the vorticity is defined as following: 
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At the outer layer the turbulent viscosity is 

computed as follows: 
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4. DISCUSSION OF RESULTS 

4.1 Code Validations   The performance of the 
described methodology is assessed via comparing 
the computed results to other approved dada.  

The first test case is prepared for an 
incompressible flow over a flat plate, with the 
Mach number M=0.2. The Reynolds number is 106 
and the transition point is set at the leading edge of 
the plate. This example demonstrates the 
performance of the solver with the employed 
turbulence model.  

The good agreement of the results with the 
experimental results reported by Bohn et al., 
illustrated in Figure 2, shows that the grid 
resolution 200×80 used for the computational 
domain is sufficient to capture the boundary layer. 

The second test study is prepared for the 
subsonic viscous flow over a NACA0012 airfoil. 
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The Reynolds number is set to 106 and the flow is 
turbulent. The inlet Mach number is set to 0.4 and 
the angle of attack is set to zero. Figure 3, shows 
the computed results, which are in a good 
agreement with experimental results reported by 
Fletcher [12]. 

This test case is prepared to examine the solver 
in viscous – turbulent flows with the existence of 
pressure gradients. This condition is a quite 
common in flows through a stage of an axial 
compressor. The grid resolution is the same as that 
in flat plate test case. 

4.2 Unstable Flow Through the Compressor 
Stage   The final study is prepared for flow 
through a compressor stage at the unstable point of 
operation of an axial compressor.  

The geometrical characteristics of the blades in 
the stage are given in Table 1, and the flow 
characteristics in the stable and unstable operating 
conditions are given in Tables 2, and 3 
respectively. 

Figure 4, shows the stage as a multi-block 
zone, where each block is the passage between the 
upper and the lower surfaces of the two adjacent 
blades in each row. Each of the rotor and the stator 
rows contains 9 blades and, consequently, 10 
passages. Five probes are located near the leading 
edge of blades in rotor row to indicate the required 
parameters. 

The grid used in each passage is 75×41 with 
clustering and orthogonality near the solid walls. 
The total number of finite volume cells is to 61500 
for the computational domain of the stage. Figure 
5, shows an enlarged area of the grid used in the 
stage problem.  

The numerical solution of the flow field in the 
stage shown in Figure 4, is started at the stable 
condition given in Table 2, After 3 revolutions of 
the rotor, the steady state stable solution was 
captured, and no instability effect were detected. 
The steady solution was chosen as a basis to study 
the unstable condition and at this point the time 
was set to zero. The inlet flow angle, the axial 
velocity and the exit pressure were changed to the 
values given in Table 3, at the same rotating 
speed chosen in stable operating condition. 
The axial velocity traces obtained from the 
probes shown in Figure 4, can be illustrated with 
respect to dimensionless time. To distinguish the 

velocity traces, the curves are shifted by a 
constant value. Evidently, the axial velocity traces 
show a cyclic behavior of the flow and the five 
velocity traces have phase differences, the period 
of the cycles are 83% of the period of rotation. 
The two times tA and tB were set for the minimum 

TABLE 1. Geometrical Characteristics of the Stage. 
 

Stagger angel of rotor blades 55° 

Stagger angel of stator blades 35° 
Rotor blade profile  NACA65-(A10) 
Stator blade profile  NACA65-(A10) 

Solidity 1.0 

Gap in percent of chord 37% 
 
 
 
TABLE 2. The Stable Condition.  
 

t
h

r
r  0.6 

R 0.56 
Pin 100000 Pa 
Tin 300   K° 

Pexit/ Pin 1.02589 

β1 62° 

ψ 0.28 
φ 0.4 
Vxin 36 m/s 
Min 0.223 
Ur 90     m/s 

RPM 1240 

Pexit/Pin 1.02989 

ββββ1 72° 

Vxin 22   m/s 

φφφφ 0.24 

RPM 1240 
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and maximum peaks of the velocity trace of the first probe. To study the reason of the cyclic 

 
Figure 2. Comparing the computed velocity profile for flat 
plate with the experimental profile at 68% of plate length, 
from the leading edge of the flat plate. 

 

 
Figure 3. Computed and experimental Pressure coefficients 
over a semi NACA0012 airfoil. Mach number is 0.4 and 
Reynolds Number is 106. 

TABLE 3. The Unstable Condition. 
 

Pexit/Pin 1.02989 
β1 72° 

Vxin 22   m/s 

φ 0.24 

RPM 1240 

Figure 4. Multi-block geometry of the Compressor stage. 
 
 

 
Figure 5. The enlarged area of the mesh generated for the 
stage. 
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behavior of the traces, the streamlines of the stage 
in relative frame are shown in Figures 7, for the 
times tA and tB. The streamlines show that in time 
tA, nine of ten passages contain instability vortices, 
two of them in the first and sixth passages (from 
the bottom) are greater than the others and it seems 
that they are growing in size. It is also evident that 
the flow entering the second passage (passing over 
the first probe) in time tA, is deviated from its 
entering angle shown in time tB. This may cause 
the reduction of the axial velocity at the time tA, 
and the increase of it in tB on the first probe. The 
Figure 6, shows the growth, the diffusion and the 
movement of the vortices. 

In time tA there are two growing cells in the 
first and sixth passages. At tB, the cells are grown 
and they are moved to the fourth and ninth 

passages. The studies show that the diffusion, 
growing and the movement of the vortices were 
repeated and this can cause the cyclic behavior of 
the velocity traces. 

The cyclic behavior of the velocity traces is 
similar to the mass flow rate traces of the in viscid 
solutions reported by Saxer et al. [8]. The velocity 
traces reported by He [6] also show that a fully 
developed rotating stall has a constant frequency. 

 
 
 
Figure 6 .  Axial  Veloci ty t races  wi th  respect  to  
ro tor  revo lu t ions .  

 
 
Figure 7. Unstable Streamlines at the relative frame.  
 
 

 
 
Figure 8. The Deep Cell in rotor blades at t = tB. 
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This frequency depends on the noises of the input 
pressure field. In this work, the input pressure field 
is free of any exciting frequency, and the rotating 
stall inception becomes form the reduction of the 
mass flow rate and exceeding of the exit pressure, 
which moves the operating point of the compressor 
stage to the instability region of the compressor 
map.  

The generation, growth and the diffusion of the 
vortices in a rotating stall indicates that the effect 
of a vortex in a rotating stall may differ from that 
in a simple separated area. 

To study the instability vortices, a more 
detailed investigation is prepared for the deep cells 
captured in time tB. Figure 7, shows the deep cell 
in the relative frame and Figures 8 and 9 show, 

respectively, the pressure and the axial velocity 
contours for the deep cell. Figure 8, shows that the 
pressure value is minimum in the eye of the cell 
and toward the downstream there is an adverse 
pressure gradient.  Figure 9, shows that the axial 
velocity becomes negative near the cell, which is 
in agreement with those reported by Saxer et al. 
[8]. 

5. CONCLUSION 

A multi-blocks 2-D solver was developed to 
investigate the viscous approaches in 
turbomachinery through-flow problems. The 
viscous-turbulent flow over a flat plate and the 
flow over a NACA0012 airfoil were considered, to 
validate the solver and the required grid resolution 
in viscous-turbulent flows. The test cases of 
NACA0012 demonstrate the grid performance of 
the solver. 

The rotating stall effect was captured for the 
flow through the stage of an axial compressor by 
varying the operating point to the unstable 
condition. The results show that this mode of 
rotating stall may have a constant frequency in 
axial velocity traces and this depends on the cyclic 
configuration of the moving cells. The results have 
nearly the same characteristics as with these 
reported in previous numerical works.  

Considering separated flow over a single airfoil 
in a high angle of attack and the results of the 
present work, it may be concluded that the moving, 
growing and the diffusion of an instability vortex 
in the cascade flow are completely different from 
those of a separated  vortex on an airfoil with a 
high angle of attack. It may be concluded that the 
multi-blade cascade geometry, the adverse pressure 
gradient, and the reduction in mass flow rate which 
increases of the inlet angle of attack in a constant 
rotating speed, may be the main causes of starting 
the rotating stall effect. 

 
 
 

6. NOMENCLATURE 

ρ  density 

 
 
Figure 9. Pressure Contours for the deep cell at t=tB. 
 
 

 
 
Figure 10. Axial velocity contours for the deep cell in relative 
frame at t= tB 
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 l  limiter function 
 Q  unknown vector 

u~  averaged u at cell boundary 
++ δδ ,ˆ  limited slopes 

F  transformed  inviscid flux vector 
in η direction 

E  transformed inviscid flux vector in 
ξ direction 

 Q  transformed of Q 
 vE  transformed viscous  vector flux 

vector in ξ direction 

vF  transformed viscous flux vector in 
η direction 

v  x-direction component of velocity 
vector 

u  x-direction component of velocity 
vector and a abitrary parameter. 

φ flow coefficient 
ψ load coefficient 
β1 inlet angle of relative  
ΛΛΛΛg diagonal matrix with its elements 

being the eigen values 
λi ± eigen values of A±±±± 
λi  eigen values of A 
µt turbulent viscosity 
∂V bounding surface of volume V 
∆V Maximun velocity difference in 

normal direction 
ξx partial of ξ with respect to x 
ηx partial of η with respect to x 
ξy partial of ξ with respect to y 
ηy partial of η with respect to y 
A Jacobian matrix for E  
A± decomposed matrix of A 
µ absolute viscosity 
Av Jacobian matrix for vE  

B Jacobian matrix for F  
Bv Jacobian matrix for vF  
C velocity of sound 
E total energy 
F overal flux vector 
FE  inviscid flux vector 
Fv  viscous flux vector 
g(A)  any matrix having the right and 

left eigenvectors  
H total enthalpy 
ξ horizontal axis of transformed 

coordinate 
I unit tensor 
i cell index in ξ direction 
j cell index in η direction 
J Jacobian transformation 

k 
v

p

C
C

k =  

L eigenvector matrix of A 
L-1 Inverse matrix of L 
M Mach number 
Min Inlet Mach number 
Mn Mach number in n direction 
n normal vector of A 
P thermodynamic pressure 
Pexit down stream pressure 
Pin inlet pressure 
Ps static pressure 
Pt total pressure 
q Heat flux 
R constant of ideal gas and the 

reaction degree 
RPM Roation velocity of the Rotor 
ω slope averaging parameter 
σ stress tensor 
t time in physical coordinate 
τ time in transformed coordinate 
Tin inlet temperature  
Ts static temperature 
Ts static temperature 
Ts static temperature 
Tt total temperature 
U velocity vector 
Ur Linear rotation velocity of the 

Rotor. 
V inviscid velocity in η direction 
V volume velocity 
η vertical axis of transformed 

coordinate 
Vx Axial velocity in stage 
Vxin inlet axial velocity 
x vetical axis of Cartesian 

coordinate 
xξ partial of x with respect to ξ 
xη partial of x with respect to η 
y horizontal axis of Cartesian 
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coordinate 
yξ partial of y with respect to ξ 
yη partial of y with respect to η 
ymax The point of maximum velocity in 

normal direction 
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