A NUMERICAL INVESTIGATION ON THE UNSTABLE FLOW

IN A SINGLE STAGE OF AN AXIAL COMPRESSOR

B. Farhanieh, N. Amanifard and K. Ghorbanian

Thermo-Fluids Department, School of Mechanical Engineering, Sharif University of Technology
Tehran, Iran, bifa@sina.sharif.ac.ir - namanifard@hotmail.com - Kaveh@sina.sharif-ac.ir

(Received: April 9, 2002 - Accepted in Revised Form: May 15, 2003)

Abstract An unsteady two-dimensional finite-volume solver was developed based on Van Leer's
flux splitting agorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws
(MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence
model was aso implemented. Two test cases were prepared to validate the solver. The computed
results were compared with the experimental data and a good agreement validated the solver. Finaly,
the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design
condition. The computed results showed a rotating stall-like instability with a periodic behavior. To
investigate the flow properties during the instability condition, the flow pattern, VVortex properties and
the axial velocity were studied. It was concluded that the instability vortices in the multi-blade
cascade do not have the same generation history of the separated vortices over asingle body.
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1. INTRODUCTION

The anaysis of the flow field in unstable
condition, especialy in Gas-Turbine engines, has
mainly been based on experimental observations
and studies during last decay [1-3]. Recently,
several computational fluid dynamics (CFD) codes
have been developed. The axial compressors with
their adverse pressure gradients in through flow
direction, are the most critical component in Gas-
Turbine engines from the viewpoint of flow
instability phenomena. Today, the use of CFD
tools is a standard practice in the study of the
cascade flow within the stable operating range of a
compressor. However, the CFD approach still
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needs to be developed as a sound prediction
method for operation in the unstable region.
Studies of Sisto et al. [4] and Jonnavithula et al. [5]
have resulted in notable progress in use of CFD-
type techniques for the calculation of instability
effects. They used a two-dimensional discrete
vortex model with the separation point being
obtained by an integra boundary layer. The
evolution of stall iswell predicted when compared
with their experiment, although only up to six
blade passages were used in the computation.
Further, He [6] carried out a numerical study in a
single stage of an axial compressor. The Navier-
Stokes equations were discretized in space by
finite volume method and integrated in time by
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using a four-stage Rung-Kutta scheme. The
second- and fourth-order blended smoothing
was adopted in both the stream wise and
circumferential directions for numerical damping,
and Baldwin-Lomax turbulence model was
also adopted. Outa et al. [7], made a numerical
simulation for stall cells in rotor-stator frame of a
compressor, using viscous approach. Furthermore,
Saxer et a. [8] carried out a numerical study for
inviscid flow passing through axial compressors,
and the history of stall vortices were investigated
for a fifteen-blade passage of a single stage. The
mass flow rate fluctuations were approximately
similar to those obtained from their experimental
observations.

The scope of this work is twofold. First, to
introduce and validate a two-dimensional density-
based flow equations solver, and second, preparing
a numerical study on rotating stall inception
using a viscous approach in a stage of an axial
compressor studies.

In the present work, the computational test
cases have been carried out to validate the solver
and to study the implementation of flux splitting
methods with MUSCL limiters in a multi-block
computational domain, with the modified Baldwin-
Lomax turbulent model.

2. GOVERNING EQUATIONS

For a given thermodynamic system having two
intensive degree of freedom, its fluid dynamic
behaviour can generally be described by means of
the system of conservation laws corresponding to
the conservation of total mass, momentum and
energy.

Let Q be an unknown vector defined for a two-
dimensional study as follows:

Q=[p, pu, pv, PE]" =[41,45. 95,94 " (1)

where E is the total energy
(E=e+(u?+v?)/2). Let ¥ be any volume with
bounding surfaced)” and outward unit normal n.

Assuming that the volume does not vary with time,
Q satisfies the following integral conservation law:
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The equivalent differential form of Equation 2,
in an inertial reference system reads:

0
—Q=-0.F 3
3 2 ©)

This accounts for the inviscid (Fg) and viscous
(Fy) contributions, i.e.

F=Fe-Fy (@)
where

Fe=[pu, puu+pl, puH]’ (5-a)
Fy=[0,0,-(q—u.0)] (5-b)

For an idea gas the pressure is related to the
density and temperature according to the equation
of state;

p=pRT (6)

The stress tensor and heat flux is determined
according to the Newton’s and Fourier’s laws by:

0=u(Du+DuT)—§uD.uI (7
q=-AT (8)

From kinetic theory it can be shown that, for a
thermodynamic system having only two intensive
degree of freedom, the viscousity (1) and the heat
conduction (A) coefficients depend only upon the
gas temperature.

The conservation equations are formally closed
once therate of al fluxes on the boundary d/ and
the initial state of Q are known. However, the
determination of the boundary fluxes and the
mathematical closure is not yet resolved [9].
Moreover, the numerical treatment of the boundary
conditions is a very critical issue that requires a
detailed analysis.

The governing equations transforms to a
computaional coordinate for the numerical
solution. The transformed equations in general
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computational domain reads:

aQ OE aF _OE, aFv ©
ot 65 617 0& 6/7

The parameters in Equation 9, are related to
physical vectors with following general relations:

6:% (10a)
E= %(EXFEX +& F,.) (10-b)
— 1

F= 7 (n.Fg, +n y FEy) (10-c)
Efémm%ﬁw (10-d)
— 1

F, = —('LFVX +n ,F,) (10-¢)

In addition, the following relations can relate
the general coordinate to Cartesian coordinate:

T=(t,x,y) (11-a)
&=(tx,) (11-b)
n=(@xy) (11-c)
S =y, (12-8)
&, =—Jx, (12-b)
n. =4y (12-c)
n, = Jx; (12-d)
where:

J= 1 _0(¢.n) (13)

XeV, ~Vex, 0(x,»)

3. NUMERICAL PROCEDURE
3.1 Finite Volume Formulation Reconsidering

Equation 9, the time derivative is approximated by
a first-order backward differencing quotient and
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Figure 1. The Finite Volume Cell.

the remaining terms are evaluated at time level
n+1. Thus:

—n+l - n

Q' -Q OE 1, OF
. +(a5) (dn)

—_ OE n+l aF n+l

—(7ﬁ70 (an)

(14)
Integrating Equation 14, over square ABCD

shown in Figure 1, and using Green’s Theorem
provides:

A Y S At = =
ANQ+—(E, -E,)+—(F,-F,) =
Q e ( 1) A’7( b)

AT

_(Ew -

Evl) + A_T(th - Fvb)
Aé An

(15

Since, the flux vectors in Equation 15, are
evaluated in time step of n+1, by using the Taylor
expansion and a first order approximation in
timethey can be expressed in terms of AQ, and
the fux vectors can be evaluated as following:

—n+l —n aE

E'" =E' +=AQ=E" +AAQ 16-a
20 Q Q (16-a)

—n+l —n aF

F =F +£AQ F' +BAQ (16-b)
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_Ev”+1=EV”+g—EVQA5:En+AVA6 (160

R =R+ g AQ=F"+B,AQ (16-d)

The matrices A, B, A, and B, are the Jacobian
matrices given by Hoffman et al.[9].

Since, evaluation of inviscid flux vectors on
cell faces is the most important problem in
numerical solution of Euler and NS equations, the
flux splitting methods are discussed in details in
the following section. Since the viscous fluxes are
related to second derivatives of velocity vectors,
they are evauated by central difference
approximation.

3.2 Flux Splitting Hoffman et a. [9] has shown
that a hyperbolic equation is unstable for a
formulation with central difference approximation.
However, the solution would be stable if the
governing equation includes a diffusion term. To
stabilize the hyperbolic equation approximated by
centra difference formulation of convective term;
the addition of damping terms would be required.
Furthermore, the damping terms are used to reduce
oscillations within the domain, which may develop
near sharp gradients. To avoid the addition of
damping terms, the flux vector splitting schemes
used to formulate the convective terms and central
differencing approximates the diffusion terms.

For a system of equations being classified as
hyperbolic, the Jacobian matrix A must possess
real eigenvalues. The eigenvaluesof A represents
the charactristic direction of the hyperbolic system
and thus provide the direction of the propagation of
information. If matrix A hasreal eigenvalues and
associated eigenvectors, it may be diagonalized;
i.e., asimilarity transformation exist such that:

A=L7A,L (17)

For a Jacobian matrix like A, a large class of
flux decomposition can be obtained by defining A*
as follows:

: _ Atg(A)
2

A (18)

and
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—+

E =A*Q (19)
whereg(A) is:
g(A) =LA L (20)

and Ag is a diagonal matrix whose non-zero
coefficients are g . These coefficients can be
shown with the improper functional notation g(A;)
to indicate the same ordering of A;. Thus, the
eigenvalues of A*are:

AL = Aitg(A))
2
Following the current definition, the numerical
flux function associated with a flux vector splitting
is expressed as:

(21)

E.=E (Q.)+E (Q.) (22)

Similar functions can be defined for other flux
vectors at all faces of the finite volume cell.

Van Leer has proposed a splitting method that
removes the discontinuous behaviour of the split
fluxes by modifying their functional dependence
upon the Mach number M. In particular, the split
fluxes are represented by a polynomial in M that
gives the same functional values and slope of the
unsplit fluxes at M = £1. Moreover, the symmetry
properties of each split flux component should be
the same as those of the unsplit one [10], i.e.

E (M)=+E (M) if E(M)=2E(-M) (23)

The numerical flux function approximating the
flux at right face of a finite volume cell shown in
Figure 1, isasfollows:

Er = Er+ (61/) + E’_ (6”1,]) (24)

where 6[11. /6”1,,- is the value of the variable

upstream/downstream of the right bounding
control surface that represents the left/right state

transported by E, " / E .~ .

An extension of the Van Leer-type splitting to
multidimensional flows is not quite trivial. The
split flux component for two dimwnsional flows
can be constructed by retaining the one
dimensional structure. For the present two
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dimentional studies, the split flux in physical space
isasfollowing [9]:
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3.3 The Van Leer’s Limiter To prevent the
oscillatory behavior of the numerical results and to
increase the accuracy, the Van-Leer’s limiter was
added to the flux splitting algorithm [10].

Van Leer proposed to cast the polynomial
reconstruction in terms of the Legendre polynomial
expansion. The method in a compact form is
imployed by Farhanieh et.al. [10]. For an unknown
variable u the MUSCL can be expressed as:

= +510-0)8 uly + @Sl (2)

”

R (Xt (2)

where r =1/3 vyields third-order upwind biased
schemeand 0" and 6 * are the limited slopes:

Su=00u,wdu_) ; &u=4u,wdu,,) (28)

where 1<w>(3-r)/(1-r), and ¢ is the Van Leer's
minmod limiter function [10]. The simplified form
of MUSCL using Van Leer’s function becomes:

20 u.d"u
[(07u)® + (07 u)’]
f=A-r)o u+@Q+rA)o*u (29)
U, Uy —%f ¥

It is evident that for other faces the related
nodes are used in the same mathematical relations.

3.4 Using the Multi-Block Technique The
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solution space is split to a number of blocks, to
simplify the grid generation and solution
procedure. Each block is bounded between two
adjacent blades in circumferential direction. In
axial direction, each block is bounded between the
adjacent cascade row and the boundary of the
solution space. The technique is briefly described
by Farhanieh et. al. [10] for a rotor- cascade. The
required boundary condition is described in the
next section.

3.5 Numerical Boundary Conditions The
inflow and out flow boundary conditions were set
for a transonic flow [9]. If our inflow is subsonic,
the triple variables from outside at(#Rk inlet are

P,T and the inflow angle, and if the outflow is

subsonic, the P, iscomputed from the upstream.

For the solid walls, the no-slip boundary
condition isimplemented.

For the upper and lower boundaries of both the
rotor cascade and the stator cascade, the periodic
boundary condition was used to give the
circumferential continuity of the cascade. The
values in fictitious cells of the lower boundary are
set to be the same values as in the upper fictitious
cells.

Each row of blades was split to multi zones for
the multi-block technique and each block shares
one or more boundaries with its surrounding
blocks.

The common walls of the rotor and stator rows
share their data in each time step with their
adjacent wall boundary condition.

3.6 Grid Generation Each passage (between
two blades) has an individual mesh, which is
generated by mesh generator program using Partial
Differentia Equations (PDE) method. Clusteringis
available by related source terms as well as
orthogonality. The mesh generated for each
individual passage is considered as a single block,
and the solver assembles them to prepare the
complete area of solution by using the multi-block
boundary condition.

3.7 Turbulence Modeling One of the groups
of statistical turbulence modelsisthe algebraic one
or two-layer turbulence closure. These models can
easily be implemented into a numerical algorithm,
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but they require the determination of boundary
layer parameters to calculate the eddy viscosity. In
a complex flow such as the flow through a turbine
or compressor cascade, the calculation of thickness
of shear layer in a CFD code is difficult, because
no redlistic criterion can be found to define the
edge of the boundary layer [10]. That is specialy
the case when flow separation exists within the
domain.

An algebraic model, which is not written in
terms of the boundary layer quantities and is very
robust in separated regions, is the modified
Baldwin-Lomax (BL) model [9]. He [6] has
employed the BL model in a numerical
investigation of Rotating-Stall inception in a multi-
blade cascade flow in an axial compressor, with
the possibility of having large-scale separated
zones. Moreover, the comparison of other
turbulence models such as k-€¢ with BL model,
done by Bohn et a. [11], shows the adequate
assurance of using BL model in cascade problems.
Regarding a large amount of memory required in
multi-blades studies, the BL consumes the least
memory and CPU time with respect to higher-
order turbulence models. For the present work the
BL model is employed.

In BL model the turbulent boundary layer is
divided to inner and outer layers. The turbulent
viscosity at inner layer is proposed by following
relation [9]:

H, = p’lo (30)

which

[=0411-¢"'%)y (31)
O

y" = uy (32)
%

Ug = \/E (33)
o

and the vorticity is defined as following:

w= ou_0ov (34)
dy Ox

At the outer layer the turbulent viscosity is
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computed as follows:

l’lt = apCCPFWakeFKleb (35)
In which:

. AV)?
F Wake =mi nl-y maxGmax’ CWakey max ((;—V)] (36)

max

G = maxBl—|w|H (37)

041 'O
0 sl :
F., =U+55 Kieb O (38)
g Vs OF
2 0.01312
Chir = 3 "R amms A0 (39)
3 0.1724-p0
a9 Ve OV
= max = 40
B 0° o (40)
3- 4CKleb

(41)

cp

2CKleb (2 - 3CKleb + CKlebS)

4. DISCUSSION OF RESULTS

4.1 Code Validations The performance of the
described methodology is assessed via comparing
the computed results to other approved dada.

The first test case is prepared for an
incompressible flow over aflat plate, with the
Mach number M=0.2. The Reynolds number is 10°
and the transition point is set at the leading edge of
the plate. This example demonstrates the
performance of the solver with the employed
turbulence model.

The good agreement of the results with the
experimental results reported by Bohn et a.,
illustrated in Figure 2, shows that the grid
resolution 20080 used for the computational
domain is sufficient to capture the boundary layer.

The second test study is prepared for the
subsonic viscous flow over a NACAQ012 airfail.
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The Reynolds number is set to 10° and the flow is
turbulent. The inlet Mach number is set to 0.4 and
the angle of attack is set to zero. Figure 3, shows
the computed results, which are in a good
agreement with experimental results reported by
Fletcher [12].

Thistest caseis prepared to examine the solver
in viscous — turbulent flows with the existence of
pressure gradients. This condition is a quite
common in flows through a stage of an axial
compressor. The grid resolution is the same as that
in flat plate test case.

4.2 Unstable Flow Through the Compressor
Stage  The fina study is prepared for flow
through a compressor stage at the unstable point of
operation of an axial compressor.

The geometrical characteristics of the bladesin
the stage are given in Table 1, and the flow
characteristics in the stable and unstable operating
conditions are given in Tables 2, and 3
respectively.

Figure 4, shows the stage as a multi-block
zone, where each block is the passage between the
upper and the lower surfaces of the two adjacent
blades in each row. Each of the rotor and the stator
rows contains 9 blades and, consequently, 10
passages. Five probes are located near the leading
edge of blades in rotor row to indicate the required
parameters.

The grid used in each passage is 75x41 with
clustering and orthogonality near the solid walls.
The total number of finite volume cellsisto 61500
for the computational domain of the stage. Figure
5, shows an enlarged area of the grid used in the
stage problem.

The numerical solution of the flow field in the
stage shown in Figure 4, is started at the stable
condition given in Table 2, After 3 revolutions of
the rotor, the steady state stable solution was
captured, and no instability effect were detected.
The steady solution was chosen as a basis to study
the unstable condition and at this point the time
was set to zero. The inlet flow angle, the axial
velocity and the exit pressure were changed to the
values given in Table 3, at the same rotating
speed chosen in stable operating condition.
The axial velocity traces obtained from the
probes shown in Figure 4, can be illustrated with
respect to dimensionless time. To distinguish the
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TABLE 1. Geometrical Characteristics of the Stage.

Stagger angel of rotor blades | 55°

Stagger angel of stator blades | 35°

Rotor blade profile NACAB5-(A10)

Stator blade profile NACA65-(As0)

Solidity 1.0

Gap in percent of chord 37%

TABLE 2. The Stable Condition.

Ty

" 0.6
R 0.56
P, 100000 Pa
Tin 300 K°
Pt/ Pin 1.02589
B1 62°
U] 0.28
(0] 0.4
Vyin 36 m/s
Min 0.223
U, 90 m/s
RPM 1240
Pexit/Pin 1.02989
B1 72°
Vxin 22 m/s
[0} 0.24
RPM 1240

velocity traces, the curves are shifted by a
constant value. Evidently, the axial velocity traces
show a cyclic behavior of the flow and the five
velocity traces have phase differences, the period
of the cycles are 83% of the period of rotation.
The two times t, and tg were set for the minimum
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TABLE 3. The Unstable Condition.

1.02989
72°

22 m/s

0.24
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Figure 4. Multi-block geometry of the Compressor stage.
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the first probe. To study the reason of the cyclic

and maximum peaks of the velocity trace of
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Figure 6. Axial Velocity traces with respect to
rotor revolutions.

behavior of the traces, the streamlines of the stage
in relative frame are shown in Figures 7, for the
times t4 and tz. The streamlines show that in time
ta, Nine of ten passages contain instability vortices,
two of them in the first and sixth passages (from
the bottom) are greater than the others and it seems
that they are growing in size. It is al'so evident that
the flow entering the second passage (passing over
the first probe) in time t,, is deviated from its
entering angle shown in time tg. This may cause
the reduction of the axial velocity at the time ta,
and the increase of it in tg on the first probe. The
Figure 6, shows the growth, the diffusion and the
movement of the vortices.

In time t, there are two growing cells in the
first and sixth passages. At tg, the cells are grown
and they are moved to the fourth and ninth
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Figure 8. The Deep Cell in rotor bladesat t = tg,

passages. The studies show that the diffusion,
growing and the movement of the vortices were
repeated and this can cause the cyclic behavior of
the velocity traces.

The cyclic behavior of the velocity traces is
similar to the mass flow rate traces of the in viscid
solutions reported by Saxer et a. [8]. The velocity
traces reported by He [6] also show that a fully
developed rotating stall has a constant frequency.
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This frequency depends on the noises of the input
pressure field. In this work, the input pressure field
is free of any exciting frequency, and the rotating
stall inception becomes form the reduction of the
mass flow rate and exceeding of the exit pressure,
which moves the operating point of the compressor
stage to the instability region of the compressor
map.

The generation, growth and the diffusion of the
vortices in a rotating stall indicates that the effect
of avortex in arotating stall may differ from that
in asimple separated area.

To study the instability vortices, a more
detailed investigation is prepared for the deep cells
captured in time tg. Figure 7, shows the deep cell
in the relative frame and Figures 8 and 9 show,

180 - Val. 16, No. 2, June 2003

respectively, the pressure and the axia velocity
contours for the deep cell. Figure 8, shows that the
pressure value is minimum in the eye of the cell
and toward the downstream there is an adverse
pressure gradient. Figure 9, shows that the axial
velocity becomes negative near the cell, which is
in agreement with those reported by Saxer et al.

9.

5. CONCLUSION

A multi-blocks 2-D solver was developed to
investigate the  viscous  approaches in
turbomachinery through-flow problems. The
viscous-turbulent flow over a flat plate and the
flow over aNACAQQ12 airfoil were considered, to
validate the solver and the required grid resolution
in viscous-turbulent flows. The test cases of
NACAO0012 demonstrate the grid performance of
the solver.

The rotating stall effect was captured for the
flow through the stage of an axial compressor by
varying the operating point to the unstable
condition. The results show that this mode of
rotating stall may have a constant frequency in
axial velocity traces and this depends on the cyclic
configuration of the moving cells. The results have
nearly the same characteristics as with these
reported in previous numerical works.

Considering separated flow over asingleairfail
in a high angle of attack and the results of the
present work, it may be concluded that the moving,
growing and the diffusion of an instability vortex
in the cascade flow are completely different from
those of a separated vortex on an airfoil with a
high angle of attack. It may be concluded that the
multi-blade cascade geometry, the adverse pressure
gradient, and the reduction in mass flow rate which
increases of the inlet angle of attack in a constant
rotating speed, may be the main causes of starting
the rotating stall effect.

6. NOMENCLATURE

P density
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FEr
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mo & &
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=

v

g(A)

limiter function
unknown vector
averaged u at cell boundary

limited slopes

transformed inviscid flux vector
inn direction

transformed inviscid flux vector in
¢ direction

transformed of Q

transformed viscous vector flux

vector in & direction

transformed viscous flux vector in
n direction

x-direction component of velocity
vector

x-direction component of velocity
vector and a abitrary parameter.
flow coefficient

load coefficient

inlet angle of relative

diagona matrix with its elements
being the eigen values

eigen values of A*

eigen values of A

turbulent viscosity

bounding surface of volume I
Maximun velocity difference in
normal direction

partial of & with respect to x
partial of n with respect to x
partial of & with respect toy
partial of n with respecttoy
Jacobian matrix for E
decomposed matrix of A
absolute viscosity

Jacobian matrix for E,

Jacobian matrix for F
Jacobian matrix for F,

velocity of sound
total energy
overa flux vector
inviscid flux vector
viscous flux vector
any matrix having the right and
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left eigenvectors

total enthalpy

horizontal axis of transformed
coordinate

unit tensor

cell index in & direction

cell index inn direction
Jacobian transformation

(=G
C

eigenvector matrix of A

Inverse matrix of L

Mach number

Inlet Mach number

Mach number in n direction
normal vector of A
thermodynamic pressure

down stream pressure

inlet pressure

static pressure

total pressure

Heat flux

constant of ideal gas and the
reaction degree

Roation velocity of the Rotor
slope averaging parameter

stress tensor

time in physical coordinate

time in transformed coordinate
inlet temperature

static temperature

static temperature

static temperature

total temperature

velocity vector

Linear rotation velocity of the
Rotor.

inviscid velocity in n direction
volume velocity

vertical axis of transformed
coordinate

Axial velocity in stage
inlet axial velocity
vetical axis  of
coordinate

partial of x with respect to &
partial of x with respect ton
horizontal axis of Cartesian

Cartesian
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Ve
Yn
Ymax

182

coordinate

partial of y with respect to ¢
partial of y with respect ton

The point of maximum velocity in
normal direction
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