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Abstract   In this study, a limit equilibrium method has been developed that satisfies all conditions 
of equilibrium and assumes circular slip surfaces. All force and moment equilibrium equations are 
employed without using simplification assumptions.  A non-linear optimization technique is used to 
solve the system of equations with the corresponding constraints. The proposed method is capable to 
determine the interslice forces, factor of safety, and the coordinates of the critical slip surface center 
and the length of its radius. Examples for various unknown slope stability parameters are presented 
and compared to other conventional methods. The concept of the proposed method can be simply 
extended to multi-layered soil problems with circular and non-circular slip surfaces. 
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نمايد و   يك روش تعادل حدي توسعه داده شده است كه كليه شرايط تعادل را ارضا مي             در اين تحقيق     چكيدهچكيدهچكيدهچكيده
معادلات تعادل نيروها و گشتاورها بدون هيچگونه فرض ساده كننده           . كند سطوح لغزش را دايره اي فرض مي       

ربوطه روش بهينه سازي غير خطي براي حل اين معادلات بهمراه قيود م               . در اين روش بكار برده شده اند        
روش ارائه شده توانايي تعيين نيروهاي بين قطعه اي، مختصات مركز دايره لغزش و شعاع                 . استفاده شده است  

مثالهايي با پارامتر هاي پايداري سطوح شيبدار مختلف ارائه و نتايج آن با روشهاي متداول                . باشد آن را دارا مي   
 قابل بسط به خاكهاي لايه اي با سطوح لغزش           مفاهيم روش پيشنهادي به راحتي        . ديگر مقايسه شده است    

 .باشد دايره اي و غير دايره اي مي
 
 

1. INTRODUCTION 
 
Many methods for analyzing slope stability have 
been developed. The limit equilibrium methods are 
considered the most common ones for practical 
purposes (Duncan [1]). Equilibrium methods, such 
as Lowe and Karafiath [2] and U.S. Army Corps of 
Engineers [3] satisfy force equilibrium conditions. 
Ordinary method of slices (Fellenius [4]) satisfies 
moment equilibrium conditions. Bishop’s modified 
method [5] satisfies moment and vertical force 
equlibriums. Morganstern and Price’s method [6], 

Janbu’s generalized procedure of slices [7], and 
Spencer’s method [8] satisfy all conditions of 
equilibrium. The number of equilibrium equations 
available is less than the number of unknowns in 
slope stability problems. Therefore, the problem is 
indeterminate. All equilibrium methods employ 
assumptions to render the problem determinate. In 
the case of methods that satisfy all conditions of 
equilibrium, it has been found that the error in 
estimating the factor of safety is much less than the 
other equilibrium methods. Force equilibrium 
methods do not afford as high a degree of accuracy  
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as do methods that satisfy all conditions of 
equilibrium (Duncan and wright [9]). 
     Locating the slip surface with the lowest factor 
of safety is an important part of analyzing slope 

stability. Most of the methods that assume circular 
critical slip surfaces use systematic changes in the 
position of the center of circle and length of the 
radius to find the critical circle that has the lowest 
factor of safety. Nguyen [10] and Chen and Shao 
[11] used optimization techniques to find the critical 
slip surface. Spencer [12] found that circular slip 
surfaces were as critical as logarithmic spiral slip 
surfaces for all practical purposes. Celestino and 
Duncan [13] and Spencer found that, in analyses 
where the slip surface was allowed to take any 
shape, the critical slip surface found by the search 
was essentially circular. 
     In this study, a method has been developed that 
satisfies all conditions of equilibrium and assumes 
the slip surfaces to be circular. A non-linear 
optimization technique has been employed in the 
analysis to determine the unknown parameters. 
 
 
 

2. PROPOSED METHOD 
 
Figure 1 shows a potential sliding mass along a 
trial slip surface through a homogeneous slope. 
The sliding mass is subdivided into a number of 
vertical slices. The free body diagram of a slice is 
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Figure 2. Free body diagram of a slice. 

 
 

Figure 1. Sliding circular surface subdivided into vertical slices. 
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illustrated in Figure 2 The forces acting on the slice 
are its own weight Wi , side forces, both which have 
shear component Xi , and normal components Ei , 
and the shear resistance Si and the normal force Pi 
which act on the base of the slice. Equating the 
moment of the weight of the sliding mass with the 
moment of the external forces acting on the slip 
surface, about the center O of the slip circular 
surface yields: 
 

rSxW iii∑ ∑ ⋅=⋅  (1) 
 
in which Xi and r are shown in Figure 1. 
     The relation between the shear strength of failure 
and equilibrium shear stress along the shear surface 
can be expressed as: 
 

F
fτ

=τ  (2) 

 
in which F is the factor of safety. Combining 
Equation 2 with the Mohr-Columb equation gives: 
 

( )[ ]tanulPC
F
1

iii φ′⋅−+′=τ  (3) 

 
where: 
 
C’  =  drained cohesion of the soil 
φ’  =  drained internal friction angle 
l i   =   the slice base length 
u i =   pore water pressure 
 
Vertical equilibrium for the slice i gives: 
 

sinScosPXXW iiii1iii α⋅+α⋅=−+ +  (4) 
 
Resolving for Pi yields: 
 

( ) tanSsecXXWP iii1iiii α⋅−α⋅−+= +  (5) 
 
Substituting the last expression in Equation 3 and 
after manipulation gives: 
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Hence, by substituting the last expression for Si  in 
Equation 1 yields: 
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 (7) 
 
The summation of the normal interslice forces 
should also be zero: 
 

( ) 0EE 1ii =−∑ +  (8) 
 
Resolving the forces acting on the slice in a tangential 
direction to the base of the slice: 
 

i1iii1iii sec)XXW(cos)EE(S α⋅−++α⋅−= ++  
 (9) 
 
Therefore: 
 

∑∑ α⋅−+−α⋅=− ++ i1iiiii1ii tan)XXW(secS)EE(  
 (10) 
 
Insertion of the value of Si from Equation 6 into 
Equation 10 yields: 
 

( ){ }
−α

φ′⋅α+
φ′−α−++∑ +

i
i

iii1iiii
'

sec
tantanF

tanlusecXXWlC
 

    ( ) 0tanXXW i1iii =α−+ +  
 (11) 
 
Equations 7 and 11 are the moment and force 
equilibrium equations, respectively. These equations 
are considered to be the fundamental equations, 
which should be solved to determine the unknowns 
Xi for every slice and the factor of safety F. The 
number of equations is less than the number of 
unknowns and the system is thus indeterminate. 
 
 
 

3. OPTIMIZATION TECHNIQUE 
 
In this study, it is desired to solve Equations 7 and 
11 to obtain the shear interslice forces Xi, and the 
factor of safety F. It is obvious that this system of 
equations has infinite number of solutions, but it is 
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possible to constraint the unknown values to lower 
and upper limits in order to be able to obtain the 
appropriate solution. This requires adequate 
experience and engineering judgment. In this study, 
an optimization technique has been used to solve 
the problem. In this regard the objective function is 
selected as: 
 

22 )11.Eq()7.Eq(FunctionObjective +=  (12) 
 
which is subjected to the following constraints: 
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The transformed conjugate nonlinear optimization 
method (Box 1966) is used for minimizing the 
objective function given by Equation 12. In this 
technique which is an iterative method, each iteration 
of the procedure commences with a search down n 
linearly independent directions called the conjugate 
directions. The method does not require calculation 
of derivatives and it is based on a searching 
procedure. The method starts searching from different 
initial points distributed in the problem domain in 
order to find the global minimum. It is obvious that  
the unknowns which satisfy Equations 7 and 11 
and the constraints given by Equation 13 should 
make the objective function given by Equation 12 
equal or close to zero. This goal is achieved by the 
optimization technique. 
     A computer program has been developed in this 
study in which circular slip surfaces are concerned 
and the slip surface is divided into a number of 
vertical slices. Based on the dimensions of the slice 
and soil properties, the interslice forces are 
determined. This program is linked to the 
optimization program in order to determine the 

unknowns given by Equation 12 and 13. The 
coordinates of the critical slip surface and its center 
are obtained by a searching technique in a given 
domain . The optimizatin technique solves for the 
factor of safety and interslices forces starting from 
an arbirary circle and proceeds for other circles in 
the given domain. The critical slip circle will be 
the one with the lowest factor of safty. The 
computer program is adapted by such a way that if 
desired any of the  unknowns can be taken out of 
the optimization procedure and given as known 
parameters. 
     In this stage of the study, to examine the method, 
a number of simple cases with homogeneous and 
dry soils have been analyzed. 
 
 
 

4. ILLUSTRATIVE EXAMPLES 
 
Example 1   The geometry of the slope is shown 
in Figure 3. The parameters of the soil are given as: 
 
γd  =  16 kN/m3 

c’ =  10 kPa 
φ’ =  15° 
 
The coordinates of the slip circle center and its 
radius are: 
 
xc  =  12.6 m. 
yc  =  20.6 m. 
r   =  10.6 m. 
 
As was mentioned before, a computer program has 
been written so that any of the unknowns can be 
taken out of the optimization procedure and given 
as known parameters. In this example, the slip 
surface geometry parameters are taken out of the 
optimization procedure and given as known 
parameters. In examples 3 and 4, which will be 
illustrated later, the slip circle geometry parameters 
are considered to be unknowns, i.e., they are 
included in the optimization parameters. 
     Factors of safety determined by the proposed 
method and other conventional slope stability 
analysis methods for 10 slices are given in Table 1. 
Interslice shear forces are given in Table 2. 
 
Example 2   The geometry of the slope is depicted  
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in Figure 4. The soil parameters  are given as: 
 
γd  =  18 kN/m3 

 
c’ =  12 kPa 
 
φ’ =  10° 
 
The coordinates of the slip circle center and its 
radius are: 
 
xc  =  14.2 m. 
 
yc  =  17.4 m. 

r   =  9.4 m. 
 
Results of this example are given in Tables 3 and 
4. 
 
Example 3   The slope of this example is illustrated 
in Figure 5. In this example, it is desired to find the 
coordinates of the critical slip circle center and its 
diameter in addition to the shear interslice forces 
and factor of safety. 
Soil properties are given as: 
 
γd  =  16 kN/m3 

 
Figure 3. Geometry of slope of Example1. 

 
 
 
 

Figure 4. Geometry of slope of Example 2. 
 
 
 
 

TABLE 1. Factors of Safety Calculated by Different Methods for Example 1. 
 
 

Fellenius Bishop Janbu Morgenstern-Price Proposed method 
1.634 1.688 1.588 1.686 1.700 
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c’ =  10 kPa 
 
φ’ =  10° 

The results found by the proposed method and 
other methods are given in Tables 5 and 6. The 
calculated coordinates of the of critical slip circle 

TABLE 2. Interslice Shear Forces Calculated by Different Methods for Example 1. 
 

 

Constant Interslice Half-Sine Corps of Lowe-Karafiath Proposed 
3.81 1.62 0.96 2.14 0.60 
7.15 5.31 3.35 4.98 8.60 
9.86 9.75 6.76 8.2 11.7 
11.41 12.92 10.27 10.95 13.6 
11.46 13.35 12.64 12.37 13.9 
9.85 10.76 12.7 11.7 12.35 
7.57 7.39 10.72 9.55 11.8 
3.32 2.46 5.21 2.54 1.69 
-0.4 -0.2 -0.58 -0.35 -1.35 

 
 
 
 

TABLE 3. Factors of Safety Calculated by Various Methods for Example 2. 
 

 

Fellenius Bishop Janbu Morgenstern-Price Proposed method 
2.263 2.394 2.125 2.391 2.437 

 
 
 
 

TABLE 4. Interslice Shear Forces Calculated by Various Methods for Example 2. 
 

 

Constant Half-Sine Corps of Lowe-Karafiath Proposed 
3.38 1.39 3.4 -3.21 3.0 
7.27 5.49 7.3 0.35 7.4 
10.95 11.29 11.0 4.41 12.3 
13.54 16.28 13.6 10.5 19.7 
14.44 18.1 14.5 15.26 21.8 
14.0 17.04 14.06 19.8 22.5 
10.7 10.92 10.74 19.33 22.1 
7.35 6.12 7.4 9.44 21.5 
2.44 1.24 2.45 3.8 12. 
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center and radius are: 
 
xc = 10.8 m. 
 
yc = 17.0 m  
 
r =  7.0 m. 
 
Example 4   Geometry of the slope is shown in 
Figure 6. Similar to the previous example, xc, 
yc and r of the critical slip circle in addition 
to the interslice shear forces and factor of safety 
are to be determined. Soil properties are given 
as: 
 
γd  = 16kN/m3 

 
c’ = 10kPa 
 
φ’ = 10° 

The results associated with the factor of safety and 
the shear interslice forces are given in Tables 7 and 
8. The calculated coordinates of the of critical slip 
circle center and radius are: 
 
xc = 10.8 m. 
 
yc = 16.2 m  
 
r =  6.2 m. 

 
 
 

5. CONCLUSION 
 

In general, the results found by the proposed 
method indicate that it gives slightly higher factor 
of safeties. The main advantage of the developed 
method compared to other methods that satisfy 
both force and moment equilibriums is that no 
simplification assumptions are required to be used 

 
 
 

Figure 5. Geometry of slope of Example 3. 
 
 
 
 
 

 
 

Figure 6. Geometry of slope of Example 4. 
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in the developed method. The non-linear optimization 
technique employed in this study to solve the 
system of the equilibrium equations with the 
corresponding constraints is a powerful mean 
because it does not require calculation of derivatives 
and it is based on a searching procedure. In this 
study, simple cases are concerned in which the soil 
is homogeneous, dry and there is no earthquake 
force acting on the slices. The concept of the proposed 
method can be simply extended to multi-layered 
soil problems with circular and non-circular slip 
surfaces. 
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7. APPENDIX I NOTATION 
 

Xi interslice shear force component 
Ei interslice normal force component 
Si shear resistance on the base of the slice 

shear stress of faillure 
Pi normal force on the base of the slice 
Wi slice weight 
F factor of safety 

fτ  shear strength of failure 
τ  equilibrium shear stress 
C’ cohesion of the soil 

TABLE 5. Factors of Safety Calculated by Various Methods for Example 3. 
 
 

Fellenius Bishop Janbu Morgenstern-Price Proposed method 

1.081 1.103 1.069 1.102 1.106 
 
 
 
 

TABLE 6. Interslice Shear Forces Calculated by Various Methods for Example 3. 
 

 

Constant interslice 
force

Half-sine Corps of 
Engineers

Lowe-Karafiath Proposed method 

3.81 0.27 1.48 0.68 0.46 

6.96 0.87 2.75 1.4 5.5 

9.33 1.6 3.73 2.1 8.6 

10.42 2.08 4.21 2.56 9.08 

9.9 2.05 4.02 2.62 11.23 

7.5 1.42 3.01 2.07 11.54 

3.3 0.41 1.17 0.31 11.5 

-1.01 -0.3 -0.78 -0.32 10.9 

-3.26 -0.36 -1.82 -0.77 5.66 
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φ’ internal friction angle 
l I the slice base length 
u I pore water pressure  

iα  angle between vertical line that passes 
through the circle center and the radius 
that passes through the middle of  the slice 
base  

xc x coordinate of slip circle 
yc y coordinate of slip circle 
r radius of slip circle 
γd dry unit weight 
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