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Abstract In this study, a limit equilibrium method has been developed that satisfies all conditions
of equilibrium and assumes circular dlip surfaces. All force and moment equilibrium equations are
employed without using simplification assumptions. A non-linear optimization technique is used to
solve the system of equations with the corresponding constraints. The proposed method is capable to
determine the interdlice forces, factor of safety, and the coordinates of the critical slip surface center
and the length of its radius. Examples for various unknown slope stability parameters are presented
and compared to other conventiona methods. The concept of the proposed method can be simply
extended to multi-layered soil problems with circular and non-circular slip surfaces.

Key Words Slope Stability, Limit Equilibrium, Nonlinear Optimization, Slip Surface, Factor of
Safety

5Ll o Lol 1y doles Lol i alS aS ol o 0013 dne g5 (i Jales 35, SO Gaosd 0l 53 sdSr
oS ol 53 5 5Sma Osks Lo liS 5 Ly Jolas S Vslae S o 55 (sl ol 1) 25 e
ab g o 548 ol ey OVsles oyl J= sl st e ol W oy el ey SIS By ol s
Cl;;..fl} Lf:’J’J °J:'.\'> JSJA Slaise c&‘ axlad e L;L‘h}j:" u,:.;.u" &L.\js ol Ajb\ Lfi'}) RGSUOH IS S P
Il sl b OT s 5 €yl oo Jlud b (65IL sla el b alglen A3l o 1l 1 O
Sy ijﬂ.w Ll ¥ gl & s LB ) 4 ol Sy mealle .l ol aslie s

1. INTRODUCTION

Many methods for analyzing slope stability have
been developed. The limit equilibrium methods are
considered the most common ones for practical
purposes (Duncan [1]). Equilibrium methods, such
as Lowe and Karafiath [2] and U.S. Army Corps of
Engineers [3] satisfy force equilibrium conditions.
Ordinary method of dlices (Fellenius [4]) satisfies
moment equilibrium conditions. Bishop’s modified
method [5] satisfies moment and vertical force
equlibriums. Morganstern and Price's method [6],
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Janbu’'s generalized procedure of dlices [7], and
Spencer’s method [8] satisfy all conditions of
equilibrium. The number of equilibrium equations
available is less than the number of unknowns in
slope stability problems. Therefore, the problem is
indeterminate. All equilibrium methods employ
assumptions to render the problem determinate. In
the case of methods that satisfy all conditions of
equilibrium, it has been found that the error in
estimating the factor of safety is much lessthan the
other equilibrium methods. Force equilibrium
methods do not afford as high a degree of accuracy
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Figure 1. Sliding circular surface subdivided into vertical slices.
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Figure 2. Free body diagram of adlice.

as do methods that satisfy all conditions of
equilibrium (Duncan and wright [9]).

Locating the dlip surface with the lowest factor
of safety is an important part of analyzing slope
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stability. Most of the methods that assume circular
critical dlip surfaces use systematic changes in the
position of the center of circle and length of the
radius to find the critical circle that has the lowest
factor of safety. Nguyen [10] and Chen and Shao
[11] used optimization techniquesto find the critical
dip surface. Spencer [12] found that circular slip
surfaces were as critical as logarithmic spiral dip
surfaces for al practica purposes. Celestino and
Duncan [13] and Spencer found that, in analyses
where the slip surface was allowed to take any
shape, the critical dip surface found by the search
was essentialy circular.

In this study, a method has been developed that
satisfies al conditions of equilibrium and assumes
the slip surfaces to be circular. A non-linear
optimization technique has been employed in the
analysis to determine the unknown parameters.

2. PROPOSED METHOD

Figure 1 shows a potential sliding mass along a
trial dlip surface through a homogeneous slope.
The diding mass is subdivided into a number of
vertical slices. The free body diagram of adliceis
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illustrated in Figure 2 The forces acting on the dice
are its own weight W, , side forces, both which have
shear component X; , and norma components E; ,
and the shear resistance S and the normal force P,
which act on the base of the dice. Equating the
moment of the weight of the sliding mass with the
moment of the external forces acting on the dlip
surface, about the center O of the dlip circular
surface yields:

S Wi &

in which X; and r are shown in Figure 1.

The relation between the shear strength of failure
and equilibrium shear stress aong the shear surface
can be expressed as:

= Zsi (¢ (1)

It
T @

in which F is the factor of safety. Combining
Equation 2 with the Mohr-Columb eguation gives:

rz%[C’+(Pi/Ii—ui)Dtan o] ©)

where;

C' = drained cohesion of the soil
¢ = drained internal friction angle
I the dlice base length

u;= porewater pressure

Vertical equilibrium for the slicei gives:

W; +X; - X4 =P, [kosa; +S; [&ina; 4)
Resolving for P, yields:
Pi :(Wi +Xi —Xi+1)|:$eC(xi _Si Dan(xi (5)

Substituting the last expression in Equation 3 and
after manipulation gives:

Z{C'[I] +
F+tan0( Etan(p

[(W; +X; = Xi4)Beca; —u; O] dang }

(6)
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Hence, by substituting the last expression for § in
Equation 1 yields:

c'o, +[(W; +X; —X,1) seca; —u; O ]tang
z F+tana; dang
ZrDNi Bnoa; =0
(1

The summation of the norma interslice forces
should also be zero:

Z(Ei ~Ej4)=0 ®

Resolving the forces acting on the dice in a tangential
direction to the base of the dlice:

Si =(Ei —Ejyq) [Bosa; +(W; + X = Xj,q) [$eca;
)
Therefore:
Z(Ei —Ei+1)=ZS [Seca; — (W, +X; —Xj,y) Hana;
(10)

Insertion of the value of § from Equation 6 into
Equation 10 yields:

ZC'Ii +H{(W +X; =X.1) seca; —ul} tan(ﬁseca- _
F+tana; (ang '
(W, +X; =X,y )tana; =0

(11)

Equations 7 and 11 are the moment and force
equilibrium equations, respectively. These equations
are considered to be the fundamental equations,
which should be solved to determine the unknowns
X for every dlice and the factor of safety F. The
number of equations is less than the number of
unknowns and the system is thus indeterminate.

3. OPTIMIZATION TECHNIQUE

In this study, it is desired to solve Equations 7 and
11 to obtain the shear interdlice forces X;, and the
factor of safety F. It is obvious that this system of
eguations has infinite number of solutions, but it is
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possible to constraint the unknown values to lower
and upper limits in order to be able to obtain the
appropriate solution. This requires adequate
experience and engineering judgment. In this study,
an optimization technique has been used to solve
the problem. In this regard the objective function is
selected as:

Objective Function = (Eq.7)? + (Eq.11)? (12)
which is subjected to the following constraints:

(Lower Limit)y, < X; < (Upper Limit)y,

(Lower Limit)y, < X, < (Upper Limit)y,

(Lower Limit)y < Xy

IN

(Upper Limit)y
(Lower Limit)y, <

|

bas
o

IN

(Upper Limit) y.

< (Upper Limit)y.

(Lower Limit), < r < (Upper Limit),
0 < F (Upper Limit) g

(Lower Limit)y,

IN
<
o

IN

(13)

The transformed conjugate nonlinear optimization
method (Box 1966) is used for minimizing the
objective function given by Equation 12. In this
technique which is an iterative method, each iteration
of the procedure commences with a search down n
linearly independent directions called the conjugate
directions. The method does not require calculation
of derivatives and it is based on a searching
procedure. The method starts searching from different
initial points distributed in the problem domain in
order to find the global minimum. It is obvious that
the unknowns which satisfy Equations 7 and 11
and the constraints given by Equation 13 should
make the objective function given by Equation 12
equal or close to zero. This goal is achieved by the
optimization technique.

A computer program has been developed in this
study in which circular slip surfaces are concerned
and the dip surface is divided into a number of
vertical dlices. Based on the dimensions of the slice
and soil properties, the interslice forces are
determined. This program is linked to the
optimization program in order to determine the
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unknowns given by Equation 12 and 13. The
coordinates of the critical dlip surface and its center
are obtained by a searching technique in a given
domain . The optimizatin technique solves for the
factor of safety and interdlices forces starting from
an arbirary circle and proceeds for other circlesin
the given domain. The critical slip circle will be
the one with the lowest factor of safty. The
computer program is adapted by such away that if
desired any of the unknowns can be taken out of
the optimization procedure and given as known
parameters.

In this stage of the study, to examine the method,
a number of simple cases with homogeneous and
dry soils have been analyzed.

4. ILLUSTRATIVE EXAMPLES

Example 1 The geometry of the slope is shown
in Figure 3. The parameters of the soil are given as:

o = 16 kN/m®
¢ = 10kPa
@ = 15°

The coordinates of the dlip circle center and its
radius are:

X. = 12.6 m.
Yo = 20.6 m.
r = 10.6m.

As was mentioned before, a computer program has
been written so that any of the unknowns can be
taken out of the optimization procedure and given
as known parameters. In this example, the slip
surface geometry parameters are taken out of the
optimization procedure and given as known
parameters. In examples 3 and 4, which will be
illustrated | ater, the dlip circle geometry parameters
are considered to be unknowns, i.e., they are
included in the optimization parameters.

Factors of safety determined by the proposed
method and other conventional slope stability
analysis methods for 10 slicesare givenin Table 1.
Interslice shear forces are given in Table 2.

Example 2 Thegeometry of the lopeis depicted
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Am 18
Figure 3. Geometry of dope of Examplel.
am
1
3
Figure 4. Geometry of slope of Example 2.
TABLE 1. Factors of Safety Calculated by Different M ethodsfor Example 1.
Fellenius Bishop Janbu Morgenstern-Price Proposed method
1.634 1.688 1.588 1.686 1.700
in Figure 4. The soil parameters are given as: r =94m.

o = 18 kKN/m®
¢ = 12kPa
¢ = 10°

The coordinates of the dlip circle center and its
radius are:

X. = 14.2m.

Yo = 17.4m.
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Results of this example are given in Tables 3 and
4.

Example 3 The dope of thisexampleisillustrated
in Figure 5. In this example, it is desired to find the
coordinates of the critical dip circle center and its
diameter in addition to the shear interslice forces
and factor of safety.

Soil properties are given as:

o = 16 kN/m®
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TABLE 2. Interdice Shear Forces Calculated by Different M ethods for Example 1.

Constant Interslice Half-Sine Corps of Lowe-Karafiath Proposed
3.81 1.62 0.96 2.14 0.60
7.15 531 3.35 4.98 8.60
9.86 9.75 6.76 8.2 11.7
11.41 12.92 10.27 10.95 13.6
11.46 13.35 12.64 12.37 13.9
9.85 10.76 12.7 11.7 12.35
1.57 7.39 10.72 9.55 11.8
3.32 2.46 521 2.54 1.69
-04 -0.2 -0.58 -0.35 -1.35
TABLE 3. Factors of Safety Calculated by Various M ethods for Example 2.
Fellenius Bishop Janbu Morgenstern-Price Proposed method
2.263 2.394 2.125 2.391 2.437
TABLE 4. Interdice Shear Forces Calculated by Various M ethods for Example 2.
Constant Half-Sine Corps of Lowe-Karafiath Proposed
3.38 1.39 34 -3.21 3.0
1.27 5.49 7.3 0.35 1.4
10.95 11.29 11.0 441 12.3
13.54 16.28 13.6 10.5 19.7
14.44 18.1 14.5 15.26 218
14.0 17.04 14.06 19.8 22.5
10.7 10.92 10.74 19.33 221
7.35 6.12 1.4 9.44 215
244 124 2.45 3.8 12.
¢ = 10kPa The results found by the proposed method and
other methods are given in Tables 5 and 6. The
g = 10° calculated coordinates of the of critical dlip circle
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Figure 5. Geometry of slope of Example 3.

Figure 6. Geometry of slope of Example 4.

center and radius are;
X.=10.8 m.
Ye=17.0m

r=70m.

Example 4 Geometry of the slopeisshownin
Figure 6. Similar to the previous example, X,
yc. and r of the critical slip circle in addition
to the interslice shear forces and factor of safety
are to be determined. Soil properties are given
as:

ya = 16kN/m’
¢’ = 10kPa
@ =10°
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The results associated with the factor of safety and
the shear interslice forces are given in Tables 7 and
8. The calculated coordinates of the of critical slip
circle center and radius are:

X.=10.8 m.
y.=16.2m

r=6.2m.

5. CONCLUSION

In general, the results found by the proposed
method indicate that it gives slightly higher factor
of safeties. The main advantage of the developed
method compared to other methods that satisfy
both force and moment equilibriums is that no
simplification assumptions are required to be used
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TABLE 5. Factors of Safety Calculated by Various M ethods for Example 3.

Fellenius

Bishop

Janbu

Morgenstern-Price

Proposed method

1.081

1.103

1.069

1.102

1.106

TABLE 6. Interdice Shear Forces Calculated by Various M ethods for Example 3.

Constant interslice Half-sine Corps of Lowe-Karafiath | Proposed method
381 0.27 ~148 0.68 0.46
6.96 0.87 2.75 14 55
9.33 1.6 3.73 2.1 8.6
10.42 2.08 421 2.56 9.08
9.9 2.05 4.02 2.62 11.23
7.5 142 3.01 2.07 11.54
3.3 0.41 117 0.31 115
-1.01 -0.3 -0.78 -0.32 10.9
-3.26 -0.36 -1.82 -0.77 5.66

in the developed method. The non-linear optimization
technique employed in this study to solve the
system of the equilibrium equations with the
corresponding constraints is a powerful mean
because it does not require caculation of derivatives
and it is based on a searching procedure. In this
study, simple cases are concerned in which the soil
is homogeneous, dry and there is no earthquake
force acting on the dices. The concept of the proposed
method can be simply extended to multi-layered
soil problems with circular and non-circular slip
surfaces.
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7. APPENDIX | NOTATION

Xi interslice shear force component

Ei interslice normal force component

S shear resistance on the base of the dlice
shear stress of faillure

Pi normal force on the base of the dlice

Wi slice weight
F factor of safety

T shear strength of failure
T equilibrium shear stress
c cohesion of the soil

IJE Transactions A: Basics



TABLE 7. Factors of Safety Calculated by Various M ethods for Example 4.

Fellenius

Bishop

Janbu

Morgenstern-Price

Proposed method

1.401

1.428

1.366

1.426

1.450

TABLE 8. Interdice Shear Forces Calculated by Various M ethods for Example 4.

Constant Interslice Half-Sine Corps of Lowe-Karafiath | Proposed Method
Force Engineers
177 0.58 1.75 1.13 0.23
3.10 1.76 3.07 2.26 5.16
4.08 3.04 4.04 3.32 577
452 3.83 4.5 4.04 74
4.4 3.82 4.37 4.2 8.6
3.6 2.96 3.57 3.67 8.3
2.04 14 2.02 2.18 8.3
-0.04 -0.11 -0.04 -0.06 1.7
-1.42 -0.5 -141 -0.99 -1.07
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