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Abstract   one of the simplest numerical integration method which provides a large saving in 
computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes 
quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the 
need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four 
different anti-hourglassing approaches, Flanagan (elastic approach), Dyna3d, Hansbo and Liu have 
been investigated. The first two approaches have been used in 2 and 3-D explicit codes and the latters 
have been employed in 2-D implicit codes. For 2-D explicit codes, the computational time was 
reduced by 55% and 60% for elastic and Dyna3d, respectively. However, for 3-D codes the reduction 
was dependent on the number of elements and was obtained between 50% and 70%. Also, the error 
due to the application of elastic methods was less than that for Dyna3d when the results were 
compared with those obtained from 2-points Gauss quadrature. Nevertheless, the convergence 
occurred more rapidly and the oscillations were damped out more quickly for Dyna3d approach. For 
implicit codes, the anti-hourglassing methods had no effect on the computations and therefore a 2-
points Gauss quadrature is recommended for implicit codes as it provide the results more accurately. 
 
Key Words   Hourglassing, Anti-Hourglassing Control, Flanagan Method (Elastic), Dyna3d, 
Hansbo, Liu, Explicit, Implicit 
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1. INTRODUCTION 
 

One of the most efficient numerical integration in 

Finite Element is Gauss quadrature. This method is 
based upon the use of Legendre polynomials and 
has the minimum points for an optimized integration. 
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One-dimensional Gauss rule is: 
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In which n is the number of integrating points, iξ
is the value of local coordinate ξ at point i and iw

is the weight of ith point. In 2 and 3-dimension, 
Gauss rules are as follows: 
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It is evident that one-point Gauss quadrature 
requires only one iteration for integration, while 
the number of iterations for 2-D and 3-D problems 
is 4 and 8 respectively. This implies that the use of 
one-point Gauss quadrature offers a large saving in 
computational operations. This is highly important 
in solving the time dependent finite element 
problems in which the integration must be repeated 
at each time step, and also in solving the problems 
with large number of elements. 
     However, the use of low-order Gauss quadrature 
leads to instabilities, which may arise because of 
shortcomings in the element formulation process. 
The instability may be called spurious singular 
mode, kinematics mode, zero energy mode, or 
hourglass mode. The term �zero energy mode� 
refers to a nodal displacement vector { }Q  that is 
not a rigid-body motion but nevertheless produces 
zero strain energy. 
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To explain the term �zero energy mode� further 
and show how such a mode may arise, we substitute 

the relation and [ ] [ ] [ ][ ] dVBDBK
T

V

e
e∫=  and 

{ } [ ]{ } e
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=ε  into the expression for strain energy  

in an element , eU : 
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When [ ]K  is formed by numerical integration, it 

TABLE 1. Displacement Vectors of a Hexahedron Element. 
 

Node ξ
 

η
 

ζ
 

IΣ
 

I1Λ
 

2Λ
 

I3Λ
 

I1Γ
 

I2Γ
 

I3Γ
 

I4Γ
 

1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 

2 1 -1 -1 1 1 -1 -1 1 -1 -1 1 

3 1 1 -1 1 1 1 -1 -1 -1 1 -1 

4 -1 1 -1 1 -1 1 -1 -1 1 -1 1 

5 -1 -1 1 1 -1 -1 1 -1 -1 1 1 

6 1 -1 1 1 1 -1 1 -1 1 -1 -1 

7 1 1 1 1 1 1 1 1 1 1 1 

8 -1 1 1 1 -1 1 1 1 -1 -1 -1 

 
 
 
 
 
 

 
 
Figure 1. Hexahedron and its displacement. 
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contains only the information that can be sensed at 
the sampling points of the quadrature rule. If it 

happens that { } [ ]{ } e
QB
r

=ε  are zero at all sampling 
points for a certain mode, { }Q then eU will vanish 
for that { }Q  and, according to Equation 4, [ ]K
will be a zero stiffness matrix in the sense that 
strain energy eU is zero for this particular{ }Q . 
We expect that 0U e =  if { }Q  is a rigid body 
motion. If eU is zero when { }Q  is not a rigid 
body motion, then an instability is present. 
     Now, consider a hexahedron element in 3-D 
space whose stiffness matrix is 8 by 8. The relation 
for the shape functions of this element can be 
expressed as follows [1]: 
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In  wh ich  the re  a r e  e igh t  i ndependen t  
displacement modes { }Q  that can be identified as 

I4I3I2I1I3I2I1I  and ,,,,,, ΓΓΓΓΛΛΛΣ , and are 
given in Table 1. These displacement modes are 
shown in Figure 1. 
Similarly, for quadilateral element we have: 
 

)(N II2I1I4
1

I Γξη+Λη+Λξ+Σ=  (6) 
 
in which II2I1I  and ,, ΓΛΛΣ  are displacement 
modes of the element and are given in Table 2 .The 
modes are also shown in Figure 2. 
     The first one is a rigid body mode, for which 

0Ue = . The next two modes are constant-strain 
mode, for which 0U e 〉 . Mode 3 is bending mode. 
The one-point rule, whose single Gauss point is at 
the element center, dose not sense this mode, as 

0xyyx =γ=ε=ε  at the center. The mechanism 

3, which corresponds to mode IΓ is called hourglass 
mode because of its physical shape. 
     Though, the savings in cost, which is attributable 
to one point integration, should not be scarified to 
prevent hourglassing. Thus, we consider the anti-
hourglass control procedures of Flanagan and 
Belytschko [1], Dyna3d [2], Hansbo [4], and Liu et 

al [3]. 
     Flanagan and Belytschko have used an artificial 
load to the nodal forces to combat hourglassing. In 
their procedure, the hourglass resistance is given as  
follows: 
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8

1f Ii
HG

iI =γ= αα  (7) 

 
Iαγ  can be calculated using the relation: 
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In which V is the volume of the element, iIB is 
geometry matrix and ijX  is the nodal coordinates. 

αiQ  is the generalized force, which is  

TABLE 2. Displacement Vectors of a Quadilateral Element. 
 

Node ξ  η  I∑  I1Λ  I2Λ  IΓ  

1 -1 -1 1 -1 -1 1 

2 1 -1 1 1 -1 -1 

3 1 1 1 1 1 1 

4 -1 1 1 -1 1 -1 

 
 
 
 
 
 

 
Figure 2. Quadilateral and its displacement modes. 
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For the artificial damping and artificial stiffness, 
respectively. ε  and κ  are the user defined damping 
and stiffness parameters ,respectively. λ  and  µ
are lame� coefficients, and αiq& is the hourglass modal 
velocity and is expressed as follows: 
 

IiIi u
8
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Where iIu&  is the nodal velocity. 
Lawrence Livermore national laboratory has employed 
another hourglass control scheme which is used in 
Dyna3d F.E. code. In this method a viscous 
hourglass resisting force is calculated from the 
relation [2]: 
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Where αih  defines the magnitude of the hourglass 

mode ∑
=
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in which eV is the element volume, c is the material 
sound speed, hgQ  is a user defined constant usually 

set to a value between 0.05 and 0.15, k
iv is the 

nodal velocity of the kth node in ith direction. 
     Hansbo has proposed a method of quadrature 
for bilinear element, which may be interpreted as 
one-point Gaussian quadrature with stabilizing 
hourglass control. In this method, one way of 
increasing the accuracy of a quadrature scheme 
without increasing the number of evaluation points 
is to use both functional evaluation and evaluation 
of derivatives, i.e. 
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In which 1w and 2w are 4 and 32 , respectively. 
In the proposed method, the stiffness matrix is 
calculated as follows: 
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In which the subscript 0 indicates the value of the 
parameter at element center )0( =η=ξ  and ε is 
a constant usually set to one. The integration 
should be done using Equation 13. 
Liu et al [3] have proposed a different technique to 
combat hourglassing. In their proposed method, a 
stabilizing stiffness matrix sK  is added to the 
stiffness matrix obtained from one-point Gauss 
quadrature [ ]1K  to vanish the hourglass modes: 
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In which A is the element area and D is the property 
matrix. Similarly, for 3-dimension, the Equation 15 

Nulls the 000 x,x,x &&&  

 Loop for all time step  

 1x replace  with 
0

2
2

1
00 xtxtx &&& ∆+∆+   

  Loop for all elements   
  Reads the geometry subroutine   
  Find nodal displacements   
   Loop for all Gauss points    
   Find B and D matrices    
   Find element strain 1Bx=ε     
   Find element stress ε=σ D     
   Find internal force    

   Add BLOAD to ∫∫∫ σdxdydzBT     

  Add forces to BDYLDS   
 Add external forces to internal forces  

 Calculate BDYLDSMx -1
1 =&&   

 Replace 1x& with )xx(tx 10
2

2
1

0 &&&&& +∆+   

Replace 1x&& with 0x&&  
 
Figure 3. Flow chart of EXPLICIT-3D. 
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becomes: 
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In which V is the element volume. 
 
 

2. COMPUTER PROGRAMS 
 
In order to asses the efficiency of the previously 
mentioned anti-hourglass control procedures, two 
2-D and 3-D explicit and 2-D implicit computer 
programs are written in Fortran 90 for solving time 
dependent elastic problems. The first program called 
�EXPLICIT-3D� employs isoparametric hexahedron 
elements with three degrees of freedom at each 
node. The second program named �EXPLICIT- 

Initialized variable and input data 
 Loop for all elements  

 Reads the geometry subroutine  

 Nulls the [M] , [C] and  [K]  matrices  

  Loop for all Gauss points   
  Find shape function   
  Find  [B] and [D] matrices   
  Form the global coordinate   
  Find DBBT    

  
Find NNT  

Add to [M] , [C] and  [K]  element matrices 
  

 Add to [M] , [C] and  [K]  global matrices  
 Insert initial condition  
 Simplified left hand of equation   
 Loop for all time step  
 Form the right hand of equation   
 Complete the solve of equation  
 Find the new x,x &&&   
 Update the right hand of equation  
 

 
Figure 4. Flow chart of IMPLICIT-2D. 
 
 
 
 
 
 
 

 
 

Figure 5. 3-D example. 

 
 
Figure 6. Sequence of the deformed shape of the beam obtained 
using 2-point Gauss integration. 
 
 
 
 
 

 
 
Figure 7. Sequence of the deformed shape of the beam obtained 
using 1-point Gauss integration without anti-hourglass control.
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2D� uses isoparametric quadilateral element with 
two degrees of freedom at each node. Lump mass 
matrices have been used in both programs. The 
steps of the solution (flow chart) in EXPLICIT-3D 
and EXPLICIT-2D are shown in Figure 3. Two 
optional anti-hourglass schemes, Elastic and 
Dyna3d, have been incorporated in the programs. 
     The third program called �IMPLICIT-2D� was 
allocated to the solution of two-dimensional elastic 

and time dependent plain strain problems. Two 
anti-hourglass approaches, Hansbo and Liu, were 
incorporated in the program to investigate the 
efficiency of the approaches in implicit codes. The 
flow chart of IMPLICIT-2D is shown in Figure 4. 
 
 

3. NUMERICAL RESULTS 
 

Example 1   The first example is a 3-D simply 
supported rectangular beam, which is subjected to 
a uniform distributed loading. The numerical 
simulation has been carried out using EXPLICIT-
3D. The dimensions of the beam and its properties 
are given in Figure 5. In Figure 6, the deformed 
shape of the beam obtained using 2-point Gauss 
integration is shown and Figures 7 to 9 illustrate 
the solution with no anti-hourglass control, Elastic  

 
 
Figure 8. Sequence of the deformed shape of the beam obtained 
using 1-point Gauss integration with Elastic anti-hourglass 
control. 
 
 
 
 
 
 

 
 

Figure 9. Sequence of the deformed shape of the beam obtained 
using 1-point Gauss integration with Dyna3d anti-hourglass 
control. 
 

 
 
Figure 10. The time-history of midpoint displacement of the
beam. 
 
 
 
 
 

 
 

Figure 11. 2-D example 
 
 
 
 



IJE Transactions B: Applications Vol. 15, No. 3, September 2002 - 7 

control, and Dyna3d control, respectively. Figure 7 
indicates that the use of one-point Gauss quadrature 
results in a gross mesh distortion, which is caused 
by the unstable global mode. Consequently, the 
solution rapidly becomes meaningless. The solution 
for anti-hourglass Elastic and Dyna3d methods are 
shown in Figures 8 and 9 respectively. Figure 8 

demonstrates that the anti-hourglass stiffness κ = 
0.125 stabilizes the solution. This value of κ, 
suggested by Flanagan and Belytschko [1], has 
been chosen so that the hourglass mode in the x-
direction is integrated as accurately as possible. 
Flanagan and Belytschko have shown that by 
increasing the value of κ even by several times, the 
solution would not be affected significantly. Figure 
9 illustrates that Dyna3d has stabilized the solution 
for 1.0Qhg = . This value is the default value 
defined in Dyna3d hydrocode [8]. However, the 
Figures 8 and 9 don�t represent any difference 

 
Figure 12. Sequence of the deformed shape of the beam 
obtained using 2-point Gauss integration. 
 
 
 
 
 

 
Figure 13. Sequence of the deformed shape of the beam obtained 
using 1-point Gauss integration without anti-hourglass control. 
 
 
 
 
 

 
 
Figure 14. The time-history of midpoint displacement of the
beam. 
 
 
 
 
 
 

 
 
Figure 15. Variation of CPU-time versus the number of elements
for EXPLICIT-3D program. 
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between the two anti-hourglass control schemes. 
Therefore, in order to study the efficiency of the 
methods more accurately, the time-history of 
midpoint displacement of the beam was obtained 
Figure 10 shows the displacement of midpoint; 
obtained using 2-point Gauss quadrature and anti-
hourglass schemes, Elastic and Dyna3d. The figure 
demonstrates that the Elastic anti-hourglass slows 
down the oscillations of displacement but dues not 
stabilize the solution, while Dyna3d method  

rapidly damps out the oscillations and stabilizes 
the solution within a short period of time. A 
comparison also can be made for the maximum 
deflection of midpoint of the beam ( maxy ) 
obtained from the exact solution with those obtained 
from the numerical simulations. maxy for a simply 
supported beam with a uniform distributed load is 
calculated from the relation: 
 

EI384
wl5y

4

max =  (17) 

 
For the data shown in Figure 5 we obtain 26.0ymax = . 
From Figure 10, the midpoint maximum deflection is 
found to be 0.27, 0.28 and 0.29 for two-point integration,  
Elastic and Dyna3d anti-hourglass schemes, 
respectively. Therefore, a good agreement between 
the exact and the numerical solution is obtained. 
 
Example 2   The second example is a 2-D beam 
with simply supported ends. It is subjected to a 
concentrated loading. The numerical simulation 
has been performed using EXPLICIT-2D. The 
geometry and properties of the beam is shown in 
the Figure 11. In Figure 12 the solution has been 
shown for 4-point integration and Figure 13 illustrates 
the solution with no anti-hourglass control. Figure 
13 shows the gross mesh distortion caused by the 
unstable global mode. Obviously, the solution 

 
 
Figure 16. Variation of CPU-time versus the number of 
elements for EXPLICIT-2D program. 
 
 
 
 
 
 
 

 
 
Figure 17. Variation of CPU-time reduction for EXPLICIT-3D 
program. 

 
Figure 18. Variation of CPU-time reduction for EXPLICIT-2D
program. 
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rapidly becomes meaningless. Observe also that an  
unrestrained global mode persists even though the 
elements hourglass mode shapes change drastically. 
In other word, mesh dose not stabilizes as it 
distorts. The solutions with Elastic and Dyna3d 
anti-hourglass schemes, not shown here, indicated 
that a value of κ = 0.125 for Elastic method and 

1.0Qhg =  for Dyna3d scheme could prevent 
hourglass modes to happen. Here again, the 
theoretical midpoint displacement of the beam (

maxy ) was compared with those obtained from the 
numerical simulations. maxy for a simply supported 
beam with a concentrated load F at its center is 
calculated from the relation: 
 

EI48
Fly

3

max =  (18) 

 
For the data shown in Figure 11 we obtain 

m0021.0ymax = . Figure 14 shows the time-
history of midpoint displacement of the beam. 
Again, it is observed that, oscillations are damped 
out more rapidly for Dyna3d method compared 
with Elastic method and even 4-point integration 
rule. A comparison between the theoretical value 
of midpoint displacement with those obtained from 
the Elastic and Dyna3d methods is given in Table 
3. As it is seen, an error of about 9.5% and 19% 
obtained for Elastic and Dyna3d anti-hourglass 
scheme, respectively. 
     The numerical modeling with different number 
of elements were performed on a Pentium III PC 
and the CPU time was measured for 1000 time 
steps. The results are shown in Figures 15 and 16 
for EXPLICIT-3D and EXPLICIT-2D, respectively. 
As it is seen, the numerical modeling have been 
carried out for 2-point integration, Elastic and 
Dyna3d anti-hourglass schemes. From Figures 15 
and 16, the reduction in CPU-time for Elastic and 
Dyna3d methods with respect to that for 2-point 
integration for each number of element was 
calculated. The results are shown in Figures 17 and 
18. It is observed that, for the 2-D explicit code, 
the computational time is reduced by 55% and 60% 
for Elastic and Dyna3d, respectively. However, for 
the 3-D explicit code, the reduction is depends on 
the number of elements and is obtained between  

50% and 70%. 
 
 

4. CONCLUSION 
 

From the previous result and discussion the following 
conclusion can be derived: 

1- 8-point integration for 3-D problems and 4-
point integration for 2-D problems provides the 
solution more accurately than one-point Gauss 
quadrature that produces a global unstable deformation 
mode called hourglassing. 
2- Dyna3d anti-hourglass scheme stabilize the 
solution more rapidly than Elastic methods. However, 
both methods can successfully vanish the 
hourglassing deformation. 
3- A large saving in computational efforts is 
achieved for one-point integration rule when using 
anti-hourglass Elastic and Dyna3d procedures. 
4- For implicit methods, anti-hourglass schemes 
have no effect on computations. So, two-point 
integration rule will be to the benefit in this case as 
it predicts the solution more accurately. 
5- If there is some constraints that may prevent the 
hourglassing to happen, then by taking some 
precautions, anti-hourglass procedures can be 
omitted from the program. This will results in 
more saving in computational operations. 

TABLE 3. Comparison Between the Theoretical Value of 
Midpoint Displacement With Those Obtained From the 
Elastic and Dyna3d Methods. 
 

Finite elements method 

2-point 

Gauss 

quadrature 

One-point Gauss 

 quadrature 

quadrature 
Elastic 

method 

Dyna3d 

method 

No. of 

example 

Theoretical 

solution 

Ans

. 

Err

. % 
Ans. 

Err

. % 
Ans. 

Err

. % 

1 0.25 
0.2

7 
3.8 0.28 7.6 0.29 

11.

4 

2 0.0021 
0.0

022 
4.7 

0.002

3 
9.5 

0.002

5 
19 
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